
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

1

Adaptive modelling languages:
Abstract syntax and model migration

JUAN DE LARA, Universidad Autónoma de Madrid, Spain

ESTHER GUERRA, Universidad Autónoma de Madrid, Spain

Modelling languages are heavily used in many disciplines, including software engineering. However, current

languages are rigid, since they do not get adapted to fit the users’ expertise, the modelling task, or the usage

platform. This may turn some languages unsuitable for a range of users (from unexperienced to experts), goals

(from informal discussion to precise specification) and platforms (from desktops to mobile phones). We claim

that making languages adaptive to the modelling scenario would alleviate these issues and help simplifying

recurring tasks such as language evolution or interoperability between the languages of a family.

In this paper, we propose the new notion of adaptive modelling language. This concept combines meta-

modelling and product lines to support variants of a given language, and encompasses contextual conditions

triggering language reconfigurations, and mechanisms for model migration across the language variants. The

paper presents a theory and its realisation atop the Eclipse Modeling Framework. Our tool includes an Eclipse

workbench to specify adaptive languages and produce Eclipse modelling editors with adaptation support. We

report on an evaluation demonstrating the advantages of using our framework to express migrations across

the variants of adaptive languages, which moreover have generally fast execution times.

CCS Concepts: • Software and its engineering→ Domain specific languages; Software design engineering.

Additional Key Words and Phrases: modelling language engineering, flexible modelling, model transformation,

graph transformation, model migration, software product lines.

ACM Reference Format:
Juan de Lara and Esther Guerra. 2024. Adaptive modelling languages: Abstract syntax and model migration.

ACM Trans. Softw. Eng. Methodol. 1, 1, Article 1 (October 2024), 54 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Modelling is pervasive in software engineering [46] and essential in model-driven engineering

(MDE) [12]. Models are built using modelling languages, which can be either general-purpose, like

the UML [74], or domain-specific languages (DSLs) tailored for a domain and task [41].

Modelling can serve a variety of purposes, from informal discussions to precise software specifi-

cation for code generation or verification [29, 83]; it is performed by users with different expertise,

from novices to experts [11]; and it is supported on a variety of IDEs and devices, from computers

with keyboard and mouse, to smart mobile and virtual reality devices [13, 82], or interactive multi-

touch displays and whiteboards [48, 76]. However, most modelling languages are rigid, in the sense

that they cannot be adapted to the modelling task, the target user or the modelling platform. This

may hinder the language usage for a range of users or scenarios.

To alleviate the rigidity of current modelling languages, we propose the new notion of adaptive
modelling language. An adaptive language is flexible, since it permits choosing between variants of

Authors’ addresses: Juan de Lara, Universidad Autónoma de Madrid , Madrid, Spain, Juan.deLara@uam.es; Esther Guerra,

Universidad Autónoma de Madrid , Madrid, Spain, Esther.Guerra@uam.es.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Association for Computing Machinery.

1049-331X/2024/10-ART1 $15.00

https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

1:2 Juan de Lara and Esther Guerra

the language that can be a better fit to different usage scenarios. Moreover, since the modelling

needs may change over time, the language variant a model is being defined with can be modified

dynamically. The language variant can be explicitly chosen by the user, or reconfigurations may be

triggered when certain conditions specified by the language designer are met. The latter conditions

may pertain, e.g., the usage or not of certain language primitives, the selection of a modelling

phase in a process model, the level of expertise of the user (which can be either stated explicitly or

induced automatically), the device the modelling tool is running on, or patterns found in the model,

among others. Moreover, language variants are not isolated, but an adaptive language provides

interoperability between them by the automated migration of models.

We have realised these ideas on a framework for creating adaptive languages based on the

principles of MDE and software product lines [57]. Product lines make it possible to define highly

configurable languages with hundreds or thousands of variants in a compact way [30]. In such

a setting, a naive approach that creates migration transformations between each two language

variants becomes unfeasible. Therefore, our framework reduces this burden by incorporating

techniques to compose automatically those transformations out of small modules called adapters.
In this paper, we present both a theory and a practical implementation within Eclipse, and evaluate

the feasibility and advantages of our proposal based on six case studies.

Overall, this paper makes the following contributions: (i) the novel notion of adaptive modelling

language, along with application scenarios; (ii) a theoretical formulation that encompasses a product

line of modelling languages, language adapters that are composed on the fly to assemble migration

transformations between language variants, and flexible language adaptation trigger mechanisms;

(iii) techniques to analyse the compatibility and correctness of adapters; (iv) a practical implementa-
tion atop the Eclipse IDE; and (v) an evaluation that shows the benefits of expressing migrations

across a language family using our notion of adaptive language. In particular, the evaluation aims

at answering the following research questions (RQs):

RQ1: How feasible is it to specify adaptive languages in practice?
RQ2: How efficient is the adaptation process at runtime?

In turn, RQ1 is decomposed into the next follow-up RQs, which analyse the specification size

reduction achieved by the use of adapters for defining migrations across language variants:

RQ1.1: What is the specification size reduction of using adapters w.r.t. a naive approach?
RQ1.2: What is the specification size reduction achieved by the sequential composition of
adapters?

In the following, Section 2 overviews adaptive modelling languages and their usage scenarios.

Next, Section 3 gives background on meta-models, models, graph transformation, and language

product lines. Then, Section 4 defines a theory for adaptive modelling languages, with mechanisms

(called adapters) to reduce the effort needed to define migration transformations between language

variants. Sections 5 and 6 present techniques to compose and analyse adapters. Next, Section 7

describes tool support, and Section 8 evaluates our proposal. Finally, Section 9 compares with related

work, and Section 10 presents the conclusions and lines for future work. Appendix A provides

details of the theory, including proofs of the lemmas, propositions and theorems.

2 OVERVIEW AND SCENARIOS OF ADAPTIVE MODELLING LANGUAGES
This section provides an intuitive notion of adaptive modelling languages, describing scenarios

where they are useful (Section 2.1). Then, it overviews our approach to the definition and use of

adaptive modelling languages, explaining briefly its building blocks (Section 2.2).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Adaptive modelling languages 1:3

2.1 Intuition and Usage Scenarios
A modelling language is made of abstract syntax (the primitives of the language, their properties

and relations), concrete syntax (how the primitives are rendered, typically graphically or textually),

and semantics (what models mean, often realised via code generators or simulators). These language

parts are typically fixed and unchanging. Instead, we define an adaptive modelling language as:

A language with variants, along with mechanisms to trigger dynamic adaptations between them
– based on the modelling context – and for automated model migration across the language
variants.

Supporting a coordinated use of variants of a language and automating the migration of models

across those variants is useful in several scenarios, like:

• Languages that adapt to the user. The cognitive fit principle for visual language design [51] states

that users with different expertise in a language can benefit from different language versions.

Beginners could use simple language variants, which become more complete as they learn. For

instance, novice users of UML could use simpler versions without composition, inheritance or

navigation decorators in associations, and experienced users could use more sophisticated UML

versions. This can be useful in education, where increasingly sophisticated language versions

(called gradual languages [32]) can guide the learning process
1
, or in lowcode platforms [62],

which need to support citizen developers with a diverse range of skills. While user adaptation is

a desirable language feature, most notations exhibit visual monolinguism, as they use a single

visual notation for all purposes [51]. Thus, the design of user-oriented language variants must

consider their concrete syntax representation, as well as their abstract syntax.

• Languages that adapt to the IDE. According to Moody [51], different representational media

for the modelling task may require the design of different language variants. For example,

devices with a reduced screen size (e.g., mobile devices [13]) or sketch-based interaction (e.g.,

digital whiteboards [48] or tablets [44]) may employ simple language variants, while traditional

computers with wide screens, mouse-based interaction, and high computational power can

use more complete languages. Likewise, different variants of a concrete syntax (e.g., tabular vs

graphical) could be used to maximise the information presented in reduced spaces.

• Languages that adapt to the process. In software engineering, early development phases benefit

from informal modelling as a vehicle for discussion and problem understanding. As a project

progresses, precise models may be needed to enable system analysis or code generation. To

transition between both operation modes, the discussion phase could rely on permissive variants

of a modelling language, and later phases could use more constrained variants [29].

Figure 1 shows an example of this scenario that will be used to illustrate our proposal throughout

the paper. In the figure, a modelling process goes through three stages: analysis, design and

detailed design. Each stage uses a different variant of class diagrams. The analysis phase employs

a simple variant without methods, compositions or aggregations. The design phase uses another

variant that considers these elements. Since the implementation language is Java, the detailed

design phase uses single inheritance and interfaces. The figure depicts that, whenever the phase

changes, a model adaptation occurs, which transforms the current model into the language

variant of the next phase.

• Language/model co-evolution. In this scenario [78], a language evolves into a new version, and the

existing models must be migrated to remain compatible with the new version. This is a special

case of adaptive languages where each language variant corresponds to a different language

1
The term gradual language was proposed in [32], where different versions of Python were created to help children in

learning programming.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

1:4 Juan de Lara and Esther Guerra

Analysis Design Detailed design

Analysis
Class Diagrams

Design
Class Diagrams

Java
Class Diagrams

Class Diagrams
Language Family

M0 M’0 M1 M’1

adapter1 adapter2

variant D of

Class Diagrams
Adaptive Language

modelling process

model
adaptations

M2

Fig. 1. Class diagrams as an adaptive language that adapts to the modelling phase.

version. This way, the model adaptation mechanisms of adaptive languages can be used for

co-evolving models.

• Language families. A language family is a group of related languages, and can be included within

the usage applications of adaptive languages. Examples of language families include the more

than 120 variations of architectural languages reported in [47], and the many variants of Petri

nets [52], access control languages [40] and symbolic automata [20]. An interesting scenario

here is to start modelling with a language variant of the family (e.g., black and white Petri nets),

and then switching to a more expressive variant as modelling progresses and new needs arise

(e.g., when the modeller needs to use inhibitor arcs).

All these scenarios require being able to migrate models between the language variants employed.

In Figure 1, the adaptive language provides facilities to migrate from the analysis to the design

language variant, and from the design to the detailed design variant. Even though this example

considers three variants only, an adaptive language may comprise many. Hence, mechanisms that

avoid the explicit creation of migration transformations between each language variant would be

most helpful. Our notion of adaptive language includes mechanisms – called adapters – to specify

the migration in “pieces”, which are combined depending on the source and target language variant.

Another issue is the adaptation trigger. In the simplest case, the user selects the new language

variant, causing the adaptation (i.e., the migration) of the current model to the new language variant.

In addition, we foresee scenarios where adaptation is triggered automatically based on the language

features (un-)used by the current user, or on the preferred language variants of like-minded users

(i.e., using collaborative filtering recommendation techniques [3, 71]). Our notion of adaptive

language considers a general triggering mechanism that can accommodate these scenarios.

This paper focuses on the abstract syntax of adaptive languages, as it is the basis for defining the

concrete syntax and semantics. However, adapting the concrete syntax is also meaningful to provide

more or less sophisticated visualisations depending on the screen size (e.g., to accommodate the

cognitive fit principle [51]), or even moving between graphical, textual, tabular, or conversational

syntaxes [54]. Similarly, adapting the semantics can also be of interest, e.g., to select between the

different semantics of Statecharts [77]. These two topics are left for future work.

Overall, the MDE community has done extensive work in language syntax and semantics, but

their pragmatics – how languages are used – is not so explored [69]. Adaptive modelling languages

aim at making pragmatics a first-class citizen in software language engineering.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Adaptive modelling languages 1:5

2.2 Overview
Figure 2(a) shows the main ingredients of our approach. The specification of an adaptive language

is responsibility of a language engineer. It involves defining a language product line (label 1 in the

figure) and a set of language reconfigurations that include a set of model migration rules (label 2)

and triggers stating the circumstances for reconfiguration between language versions (label 3).

Abstract
syntax

Language
product line

Variability
model

configures

Language
configuration A

Abstract
syntax A

Language
configuration B

Model

Modelling context

Language
user

«conforms to»

Adapter
definition

Trigger
definition

Adaptive Language Definition

from

typed by

A-to-B
reconfig

A-to-B
migration

run-time

config
A

«conforms to»

Modelling context

«config of» «config of»

conditions
for

«when»

Model’

Abstract
syntax B

config
B

«defined by»

triggers

to

Language
engineer

Language
reconfigurations

1

2

4

5
6

7

3
analysis

Concept Description

150% meta-model
(150MM)

Abstract syntax of all language
variants in an overlapped way

3.17

Feature model Description of the variability of
the language family, via features
and relations between them

3.13

Presence condition
(PC)

Boolean formula over the
features, which annotates
elements of the 150MM

3.17

Language product
line (LPL)

A family of languages, made of a
feature model and a 150MM
with PCs

3.17

Graph transformation
system (GTS)

A set of rules, with an execution
policy, and a meta-model

3.11

Diff A tuple specifying feature
changes and feature invariants

4.1

Feature configuration A set of features consistent with
the feature model

3.15

Language adapter A GTS with a diff stating feature
conditions for its selection

4.9

Migration
transformation
between configs

A GTS built by selecting adapters
compatible with the source and
target configurations

4.17

Triggered adaptive
language (TAL)

An adaptive language with
trigger conditions for adaptation

4.19

Adaptive language An LPL with a set of adapters 4.15

(a) (b)

Def.

4.22Model with context, conforming
to one configuration of the TAL

Contextual adaptive
model

Fig. 2. (a) Schema of our approach to define and use adaptive modelling languages. (b) Key concepts.

A language product line is a compact specification of a set of language variants. As previously

stated, we focus on the abstract syntax of the language only. Thus, in our approach, a language

product line is made of: a meta-model specifying the abstract syntax of all language variants in an

overlapped way (so-called negative variability [65]), a variability model describing the features of

the allowed language variants (so-called language configurations), and conditions on the presence

or absence of the meta-model elements in each language configuration
2
. Section 3.3 will introduce

language product lines.

A reconfiguration from a source to a target language configuration is defined bymeans of adapters.

These are sets of transformation rules that specify model migration piecewise. As Sections 4.2 and 5

will show, adapters are defined based on the available language features, and then get automatically

selected and composed depending on the features of the source and target language configurations.

We use graph transformation [28] to express model transformations, but other approaches could

be used as well. In addition, we propose techniques for the language engineer to analyse the local

correctness and compatibility of adapters, and the reachability of configurations using meaningful

migration transformations (cf. Section 6).

Triggers are conditions evaluated on the current model or its context, specifying when an

adaptation into a new language variant should occur. Context models [13] may include information

2
Our approach can be easily extended to include a model-based definition of the concrete syntax of a language family (e.g.,

using Sirius odesign models [66]). Selecting a configuration would then produce the abstract and concrete syntax definitions

for the language variant. At runtime, a framework that interprets the model-based concrete syntax definitions (e.g., Sirius)

would enable replacing the concrete syntax based on the language variant. We will consider concrete syntax in future work.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

1:6 Juan de Lara and Esther Guerra

regarding the model construction history or the modelling activity (e.g., properties of the modelling

device or the current user, time of modelling, position of the device). Some adaptive languages may

also allow the user to freely select the desired target language variant, while ensuring that such a

language reconfiguration is allowed. Section 4.4 will explain triggers.

The bottom of Figure 2(a) depicts the usage schema of an adaptive language at run-time. A user is

editing a model with the language variant A, given by the configuration 𝜌𝐴 of the adaptive language

(label 4). The environment is monitoring the model and the context of interest (label 5). When a

reconfiguration trigger into the language variant B occurs (label 6), a migration transformation is

composed on the fly out of the defined adapters (label 7). This transformation is executed, so that

the model is migrated and the user can continue modelling using the language variant B.

As a reference for the reader, Figure 2(b) provides a brief description of the key concepts that

will be introduced throughout the paper, and a pointer to their formal definition.

3 PRELIMINARIES
This section provides some background for the notion of adaptive modelling language. Section 3.1

starts defining the concepts of meta-model, model and model mapping. Section 3.2 introduces graph

transformation, as we will use it to express migrations across language variants. Then, Section 3.3

presents language product lines, over which adaptive languages are defined.

3.1 Models and Meta-models
Our theory requires a notion of model and meta-model, for which we use a representation based

on graphs. For convenience, we use a slight simplification of the notion of E-Graph defined in [28]

to represent both models and meta-models.

Definition 3.1 (E-Graph). An E-Graph 𝐺 = ⟨𝑉 , 𝐷, 𝐸,𝐴, 𝑠𝑟𝑐, 𝑡𝑎𝑟, 𝑜𝑤𝑛𝑒𝑟, 𝑣𝑎𝑙⟩ consists of the sets:
• 𝑉 of graph vertices, 𝐷 of data values, 𝐸 of graph edges, and 𝐴 of attributes

and the functions:

• 𝑠𝑟𝑐 : 𝐸 → 𝑉 , 𝑡𝑎𝑟 : 𝐸 → 𝑉 providing a source and target vertex to each graph edge

• 𝑜𝑤𝑛𝑒𝑟 : 𝐴→ 𝑉 , 𝑣𝑎𝑙 : 𝐴→ 𝐷 providing an owner vertex and a value to each attribute

Remark 3.2. Given an E-Graph 𝐺 , we write 𝑉 , 𝐸, 𝐴 to denote its sets of vertices, edges and

attributes, when no confusion can arise. When considering several graphs (e.g.,𝑀 ,𝑀𝑀) then we

use subindices for these sets (e.g.,𝑀𝑉 ,𝑀𝐸 ,𝑀𝐴,𝑀𝑀𝑉 ,𝑀𝑀𝐸 ,𝑀𝑀𝐴).

Models can be encoded as E-Graphs by using the set 𝑉 to represent the objects, 𝐴 the attributes,

𝐷 the attribute values, and 𝐸 the links between objects. E-Graphs are often enriched with an algebra

over a data signature [64] that describes the attribute data types (string, integer, boolean). Such

graphs are called attributed graphs, and the set 𝐷 is then defined as the union of the carrier sets of

the algebra [28]. Meta-models can be encoded using the same structure, but in this case, attributes

specify a data type and do not hold values. This way, meta-models are attributed graphs over a

final signature, where the carrier set of each sort has just one element [28]. Richer meta-model

formalisations have been proposed, e.g., considering inheritance [21] or cardinalities [72]. Instead,

we opt for a simpler formulation as it serves better to illustrate our ideas.

Example 3.3. Figure 3(a) depicts a meta-model 𝑀𝑀 and a model 𝑀 as per Definition 3.1. The

meta-model 𝑀𝑀 contains one vertex Class with a reflexive edge parent and an attribute name of

type String (being String the only element of 𝑀𝑀𝐷). The model 𝑀 has two vertices (person and

emp) connected via an edge parent and giving values to attribute name (“Person” and “Employee”).

Figure 3(b) depicts the same meta-model and model using the UML notation, which we will use

from now on.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Adaptive modelling languages 1:7

Class String
name

owner val

parent

src tar

Meta-model MM

person “Person”
name

owner val

parent

tar

src

Model M

Graph vertex (V)

Data value (D)

Graph edge (E)

Attribute (A)

src, tar, owner, val

emp “Employee”
name

owner val

Legend

(a) (b)

Class

Meta-model MM

name: String

parent

person: Class

Model M

name=“Person”

:parent

emp: Class

name=“Employee”

E-Graphs

E-Graph Morphisms

Graph morphism

Fig. 3. A model𝑀 typed over meta-model𝑀𝑀 using (a) Definitions 3.1 and 3.4, and (b) the UML notation.

We use graph morphisms [28] to express relations between graphs, like the type relationship

between model𝑀 and meta-model𝑀𝑀 in Figure 3(a). A graph morphism is a tuple of commuting

functions mapping the sets 𝑉 , 𝐷 , 𝐸 and 𝐴 in both graphs.

Definition 3.4 (E-Graphmorphism). Given two E-Graphs𝐺𝑖 = ⟨𝑉𝑖 , 𝐷𝑖 , 𝐸𝑖 , 𝐴𝑖 , 𝑠𝑟𝑐𝑖 , 𝑡𝑎𝑟𝑖 , 𝑜𝑤𝑛𝑒𝑟𝑖 , 𝑣𝑎𝑙𝑖⟩
for 𝑖 ∈ {1, 2}, an E-Graph morphism 𝑓 : 𝐺1 → 𝐺2 = ⟨𝑓𝑉 , 𝑓𝐷 , 𝑓𝐸, 𝑓𝐴⟩ is made of a tuple of set func-

tions 𝑓𝑋 : 𝑋1 → 𝑋2 (for 𝑋 ∈ {𝑉 , 𝐷, 𝐸,𝐴}) commuting with functions 𝑠𝑟𝑐 , 𝑡𝑎𝑟 , 𝑜𝑤𝑛𝑒𝑟 , and 𝑣𝑎𝑙 , i.e.,

𝑓𝑉 ◦ 𝑠𝑟𝑐1 = 𝑠𝑟𝑐2 ◦ 𝑓𝐸 , 𝑓𝑉 ◦ 𝑡𝑎𝑟1 = 𝑡𝑎𝑟2 ◦ 𝑓𝐸 , 𝑓𝑉 ◦ 𝑜𝑤𝑛𝑒𝑟1 = 𝑜𝑤𝑛𝑒𝑟2 ◦ 𝑓𝐴, and 𝑓𝐷 ◦ 𝑣𝑎𝑙1 = 𝑣𝑎𝑙2 ◦ 𝑓𝐴.
Example 3.5. Figure 3(a) shows an E-Graph morphism 𝑓 : 𝑀 → 𝑀𝑀 , which maps person and

emp to Class (i.e., 𝑓𝑉 (person) = 𝑓𝑉 (emp) = Class). It is valid according to Definition 3.4 since all

functions commute. For example, the source vertex of parent in𝑀 is emp, which is mapped to Class

(i.e., 𝑓𝑉 (𝑠𝑟𝑐𝑀 (parent)) = Class); and commutatively, we get the same result by first obtaining the

mapping of edge parent in𝑀 , which is edge parent in𝑀𝑀 , and then taking the source vertex of this

latter edge (i.e., 𝑠𝑟𝑐𝑀𝑀 (𝑓𝐸 (parent)) = Class).

Given a meta-model 𝑀𝑀 , we define the set 𝑆𝐸𝑀 (𝑀𝑀) = {𝑀 | ∃𝑓 : 𝑀 → 𝑀𝑀} of all models

typed by𝑀𝑀 . We also say that𝑀 ∈ 𝑆𝐸𝑀 (𝑀𝑀) is a typed graph.

3.2 Graph Transformation
Changing the language variant in use entails the migration of the current model to the new variant.

We use graph transformation [28] for this task. This is a rule-based declarative transformation

approach with a formal basis. Next, we introduce the basic concepts that we will use in our proposal,

and refer to [28] for more details.

The theory of graph transformation works with graphs and morphisms (like those in Defini-

tions 3.1 and 3.4) and has been generalised to work with more abstract structures [28]. Conceptually,

rules have a left-hand side graph3 (LHS) describing a pattern to be found on a model, a right-hand
side graph (RHS) defining the changes to perform to the model, and an intermediate gluing graph
𝐾 with the common parts of the LHS and the RHS. In addition, rules can define a set of negative
application conditions (NACs) stating forbidden conditions on the model for the rule to be applicable.

Definition 3.6 (Graph transformation rule). A graph transformation rule 𝑡𝑟 = ⟨𝐿 𝑙←− 𝐾
𝑟−→

𝑅, 𝑁𝐴𝐶𝑆 = {𝐿 𝑛𝑖−→ 𝑁𝑖 }𝑖∈𝐼 ⟩ is made of:

3
In the paper, we use the terms graph and model interchangeably.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

1:8 Juan de Lara and Esther Guerra

• Three (typed) graphs 𝐿 (called the left-hand side, LHS), 𝐾 (called the gluing graph), and 𝑅

(called the right-hand side, RHS), with two injective morphisms 𝑙 and 𝑟 between them

• A set 𝑁𝐴𝐶𝑆 of negative application conditions made of a collection of graphs 𝑁𝑖 (for 𝑖 ∈ 𝐼)
and injective morphisms 𝑛𝑖 from 𝐿 to each such graph

Example 3.7. The top of Figure 4 shows an example rule tr that creates a parent class named

Parent for two classes that lack a parent class. The morphisms 𝑙 and 𝑟 are defined by equality of

identifiers (e.g., morphism 𝑙 maps node c1 in graph 𝐾 to c1 in graph 𝐿). The rule has two NACs,

given by morphisms 𝑛0 : 𝐿 → 𝑁0 and 𝑛1 : 𝐿 → 𝑁1, where 𝑁0 and 𝑁1 are isomorphic. The figure

shows morphisms 𝑛0 and 𝑛1 explicitly as mappings, since they map differently c1 and c2. The NACs

forbid applying the rule if either Class identified by 𝐿 has a parent.

G

c1: Class c2: Class

c1: Class c2: Class

c: Class

name=“Parent”
L K

R

l r

b: Class

p: Class

N0 = N1
n0

H

m d h

f g

(1) (2)
c1 car
c2 bike

c1 car
c2 bike
c c

c1: Class c2: Class

c1 car
c2 bike=

car: Class

name=“Car”

bike: Class

name=“Bike”

D

:parent :parent
:parent

ecar: Class

name=“ElectricCar”

:parent

car: Class

name=“Car”

bike: Class

name=“Bike”

ecar: Class

name=“ElectricCar”

:parent

car: Class

name=“Car”

bike: Class

name=“Bike”

ecar: Class

name=“ElectricCar”

:parent

c: Class

name=“Parent”

:parent :parent

c1 a
c2 b
n1

c1 b
c2 a

rule tr

a: Class

Fig. 4. Example rule (top) and rule application to a graph 𝐺 yielding graph 𝐻 .

A rule is applicable on a model if the model contains an occurrence (i.e., a match) of the LHS,
no occurrence of the NACs (i.e., the model does not include any of the graphs 𝑁𝑖), and the rule

application yields a valid model. The rule application deletes the elements present in the LHS but

not on the RHS (𝐿 \ 𝑙 (𝐾))4, and adds those present in the RHS but not in the LHS (𝑅 \ 𝑟 (𝐾)). The
resulting graph is valid if the match satisfies the dangling edge and the identification conditions.

The former states that if a node is deleted, all its incident and outgoing edges should be deleted as

well to avoid dangling edges without source or target. The identification condition states that if two

elements in the LHS are identified into a single element in the model (via a non-injective match),

then the rule does not specify contradictory actions for them (i.e., deleting one and preserving the

other) [28].

Definition 3.8 (Rule application [28]). Given a rule 𝑡𝑟 = ⟨𝐿 𝑙←− 𝐾 𝑟−→ 𝑅, 𝑁𝐴𝐶𝑆 = {𝐿 𝑛𝑖−→ 𝑁𝑖 }𝑖∈𝐼 ⟩
and a graph 𝐺 , 𝑡𝑟 is applicable on 𝐺 via the match morphism𝑚 : 𝐿 → 𝐺 , written 𝐺 |=𝑚 𝑡𝑟 , if:

• There is no injective morphism𝑚𝑖 : 𝑁𝑖 → 𝐺 from any negative application condition in

𝑁𝐴𝐶𝑆 , s.t. the triangle to the left of Figure 5 commutes (i.e., �𝑚𝑖 ·𝑚𝑖 ◦ 𝑛𝑖 =𝑚)

• Dangling edge condition: the nodes in 𝐿 whose image under𝑚 are the source or target of an

edge in 𝐺 that is not mapped by𝑚, are preserved by 𝑡𝑟 (cf. Definition 3.9 in [28])

• Identification condition: if two nodes or edges in 𝐿 have the same image under𝑚, they are

preserved by 𝑡𝑟 (cf. Definition 3.9 in [28])

4𝐿 \ 𝑙 (𝐾) are the elements (vertices and edges) belonging to 𝐿 that 𝑙 (𝐾) does not map.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Adaptive modelling languages 1:9

𝑁𝑖

|
𝑚𝑖 ((

=

𝐿
𝑛𝑖oo

𝑚

��

𝐿

𝑚

��
(1)

𝐾 𝑟 //𝑙oo

𝑑
��

𝑅

ℎ
��

(2)

𝐺 𝐺 𝐷 𝑓 //𝑔oo 𝐻

Fig. 5. Satisfaction of NACs (left). Rule application (right).

Given a rule 𝑡𝑟 , a graph 𝐺 , and a match𝑚 s.t. 𝐺 |=𝑚 𝑡𝑟 , then 𝑡𝑟 is applied to 𝐺 yielding graph

𝐻 , written 𝐺
𝑡𝑟,𝑚
=⇒ 𝐻 , by the double pushout diagram to the right of Figure 5, where (1) and (2) are

pushouts. We write 𝐺
𝑡𝑟 ∗
=⇒ 𝐻 for zero or more consecutive applications of 𝑡𝑟 , yielding graph 𝐻 .

A pushout [28] is a gluing construction that merges two graphs (e.g., 𝐷 , 𝑅) via a common

subgraph (e.g., 𝐷
𝑑← 𝐾

𝑟→ 𝑅). A rule application (cf. right of Figure 5) calculates first a pushout

complement graph 𝐷 , which is a graph that makes the square (1) a pushout. Intuitively, it is a graph

equal to𝐺 , but deprived of the elements that are in 𝐿 and not in 𝐾 (𝑚(𝐿 \ 𝑙 (𝐾))). A second pushout

(square (2)) adds to 𝐷 the elements in 𝑅 \ 𝑟 (𝐾), yielding graph 𝐻 .

Example 3.9. Figure 4 shows an example rule application. The rule is applied to graph 𝐺 , on a

match identifying c1 to car and c2 to bike. This is allowed since neither car nor bike have a parent
5
.

Instead, identifying c1 or c2 to ecar is not possible because ecar has a parent, which violates the

NACs. The rule does not delete anything (𝐷 is isomorphic to𝐺), but it creates a Class named Parent
connected to car and bike. The created elements are those belonging to 𝑅 \ 𝑟 (𝐾) (i.e., the node c

and the two edges). The pushout of square (2) performs this creation, merging graphs 𝑅 and 𝐷 via

the common elements in 𝐾 , to yield graph 𝐻 . In the rest of the paper, rules will omit graph 𝐾 and

morphisms 𝑙 , 𝑟 and 𝑛𝑖 , as they can be deduced by the equality of object identifiers in 𝐿, 𝑅 and 𝑁𝑖 .

Given a set 𝑅𝑆 of transformation rules and a graph 𝐺 , we use the predicate 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 (𝐺, 𝑅𝑆) ≜
∀𝑡𝑟𝑖 ∈ 𝑅𝑆, �𝑚 : 𝐿𝑖 → 𝐺 ·𝐺 |=𝑚 𝑡𝑟𝑖 to denote that no rule in 𝑅𝑆 is applicable to𝐺 . We write𝐺

𝑅𝑆∗
=⇒ 𝐻

for zero or more consecutive applications of the rules within 𝑅𝑆 starting from graph 𝐺 .

Our notion of transformation system requires the concept of trace of a derivation, defined next.

Definition 3.10 (Derivation trace). Given a set 𝑅𝑆 of rules, a graph 𝐺 , and a derivation 𝑑 : 𝐺
𝑡𝑟𝑖
=⇒

𝐺1...
𝑡𝑟𝑛
=⇒ 𝐺𝑛 , the function 𝑡𝑟𝑎𝑐𝑒 (𝑑) = 𝑡𝑟𝑖 ...𝑡𝑟𝑛 yields the sequence of rules applied within 𝑑 .

A graph transformation system is made of rules where 𝐿, 𝐾 , 𝑅 and 𝑁𝑖 are typed by a common

meta-model𝑀𝑀 . We consider transformation units [43] to control the rule execution order. These

consist of regular expressions over rules, which can include parenthesis for grouping, and use 𝑡𝑟 ∗

to denote 0 or more applications of the rule 𝑡𝑟 , 𝑡𝑟+ for 1 or more applications of 𝑡𝑟 , 𝑡𝑟0 + 𝑡𝑟1 for the
application of 𝑡𝑟0 or 𝑡𝑟1, and 𝑡𝑟0; 𝑡𝑟1 for the sequential application of 𝑡𝑟0 and 𝑡𝑟1. Given a regular

expression 𝐶 , we write 𝐿𝐴𝑁 (𝐶) to denote the language it defines.

Definition 3.11 (Graph transformation system). A graph transformation system𝐺𝑇𝑆 = ⟨𝑅𝑆,𝑀𝑀,𝐶⟩
contains a set 𝑅𝑆 of rules typed over meta-model𝑀𝑀 , and a regular expression 𝐶 over the rules in

𝑅𝑆 .

Finally, we define the semantics of a graph transformation system, which is given by all terminal

graphs produced by derivations whose trace belongs to the language of the regular expression.

5
Another valid injective match from 𝐿 to𝐺 exists, identifying c1 to bike and c2 to car, as well as two other non-injective

matches, identifying c1 and c2 to car, and c1 and c2 to bike.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

1:10 Juan de Lara and Esther Guerra

ClassDiagram

Methods

Classes

Inheritance

Single Multi No

Associations

Comp Aggr Navig Card

Interfaces

a={Multi, Cardinal}
d={Multi, Methods, Composit, Aggregat, Navigat, Cardinal}
Jd={Single,Methods, Composit, Aggregat, Navigat, Cardinal, Interfaces}

FM=(F = {ClassDiagram, Classes, Methods, Inheritance, Single, ...},
 = ClassDiagram Classes Associations Inheritance Style

((Decorations (Comp Aggr Navig Card))
((SingleMulti No) (SingleMulti No) (SingleMulti No))
((Ref FullAssoc) (Ref FullAssoc))
(InterfacesMethods)

(a)

(b)

Style Decorations

Ref FullAssoc

Cross tree constraints: (Interfaces Methods)

alternative
(exactly one)

or
(at least one)

mandatory optional

Fig. 6. Feature model for the class diagrams adaptive language represented using: (a) the feature diagram

notation, and (b) Definition 3.13.

Definition 3.12 (Application of graph transformation system). Given a graph transformation system

𝐺𝑇𝑆 = ⟨𝑅𝑆,𝑀𝑀,𝐶⟩, and a graph𝐺 typed over𝑀𝑀 , its semantics 𝑆𝐸𝑀𝐺 (𝐺𝑇𝑆) = {𝐻 | ∃𝑑 : 𝐺
𝑅𝑆∗
=⇒

𝐻 ∧ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 (𝐻, 𝑅𝑆) ∧ 𝑡𝑟𝑎𝑐𝑒 (𝑑) ∈ 𝐿𝐴𝑁 (𝐶)} consists of all terminal graphs 𝐻 produced by 0 or

more applications of the rules in 𝑅𝑆 , such that the trace of the derivation belongs to the language

of the regular expression 𝐶 .

3.3 Language Product Lines
As a first step to define an adaptive language, we build on works [30, 55] that propose combining

meta-models and software product lines to create families of modelling languages in a compact

way. This way, each variant of an adaptive language corresponds to a language of the family.

We define the variability space of an adaptive language by means of a feature model, which
represents all features an adaptive language may have and restricts how they can be combined.

While feature diagrams [39] are a popular notation for them, we use a formalisation to facilitate

the precise definition of adaptive language and related concepts in the next section.

Definition 3.13 (Feature model [30]). A feature model 𝐹𝑀 = (𝐹,Ψ) consists of a set of variables
𝐹 = {𝑓1, ..., 𝑓𝑛} called features, and a propositional formula Ψ over the variables in 𝐹 .

Example 3.14. Figure 6 shows the variability in the adaptive class diagrams language of our

running example, represented using the feature diagram notation in part (a), and Definition 3.13 in

part (b). The feature model allows choosing whether classes have methods; the supported kind of

inheritance (single, multiple or none); whether interfaces are supported; the style for associations

(unidirectional references or full associations); and the available decorations for association ends

(composition, aggregation, navigation, and cardinality). The cross-tree constraint ensures that

when interfaces are present in a language variant, so are methods.

A specific selection of features that is compatible with the feature model is called a configuration.

Definition 3.15 (Feature configuration). Given a feature model 𝐹𝑀 = (𝐹,Ψ), a configuration 𝜌 ⊆ 𝐹
is a partition of 𝐹 into two subsets of selected (𝐹+ = 𝜌) and unselected (𝐹 − = 𝐹 \ 𝜌) features that
satisfy Ψ, i.e., Ψ[𝑡𝑟𝑢𝑒/𝐹+, 𝑓 𝑎𝑙𝑠𝑒/𝐹 −] evaluates to true when each 𝑓 ∈ 𝐹+ is substituted by true, and

each 𝑓 ∈ 𝐹 − by false. We write 𝐶𝐹𝐺 (𝐹𝑀) for the set of all configurations of 𝐹𝑀 .

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Adaptive modelling languages 1:11

Example 3.16. The feature model in Figure 6 admits 288 configurations. Three of them are

𝜌𝐴 = {Multi, FullAssoc, Decorations, Card}, 𝜌𝐷 = {Methods, Multi, FullAssoc, Decorations, Comp, Aggr,

Navig, Card}, and 𝜌 𝐽 = {Methods, Single, Ref, Interfaces, Decorations, Comp, Aggr, Navig, Card}. We

will use these configurations to obtain the analysis, design and Java variants of the class diagrams

adaptive language in our running example (cf. Figure 1). For simplicity, the configurations only list

the selected features with white background in Figure 6, since the shaded features (e.g., ClassDiagram,

Classes) are mandatory and must be selected in any configuration.

A language product line (LPL) [30] comprises a feature model and a so-called 150% meta-model

(150MM). The latter overlaps the meta-models of all language variants, and its elements attach a

boolean formula – called presence condition (PC) – stating the variants the element belongs to.

Definition 3.17 (Language product line). A language product line is a tuple 𝐿𝑃𝐿 = ⟨𝐹𝑀,𝑀𝑀,Φ⟩
consisting of:

• A feature model 𝐹𝑀 = (𝐹,Ψ)
• A meta-model𝑀𝑀 , called the 150% meta-model (150MM)

• A tuple Φ = ⟨Φ𝑉 ,Φ𝐸,Φ𝐴⟩ of functions Φ𝑋 : 𝑋 → Prop𝐹 (for 𝑋 ∈ {𝑉 , 𝐸,𝐴}) assigning
presence conditions (PCs) to the 150MM elements. Prop𝐹 is the set of all propositional

formulae over the features in 𝐹 , and Φ(𝑥) is called the PC of 𝑥6

such that the following conditions hold:

• The PC of each attribute 𝑎 ∈ 𝐴 must be stronger than that of its owning class: Φ(𝑎) ⇒
Φ(𝑜𝑤𝑛𝑒𝑟 (𝑎))
• The PC of each reference 𝑟 ∈ 𝐸 must be stronger than that of its source and target classes:

(Φ(𝑟) ⇒ Φ(𝑠𝑟𝑐 (𝑟))) ∧ (Φ(𝑟) ⇒ Φ(𝑡𝑎𝑟 (𝑟)))

Example 3.18. Figure 7(a) shows the 150MM for the example. It displays the PCs between square

brackets, omitting those equal to true. For instance, the PC of class Interface is Interfaces. This PC is a

propositional formula that uses features (Interfaces) as variables. Hence, selecting feature Interfaces

makes this formula true, while not selecting it makes the formula false. In the figure, the PC of

Role is true so the figure does not show it. By convention, the figures assume that the PC of fields
(attributes and references) is conjoined with that of their owning class. For instance, the PC of

Interface.methods is Interfaces, the PC of Role.navig is Navig, and the one of Method.name is Methods ∨
Interfaces (i.e., Method.name will be present in any language variant that selects either Methods or

Interfaces). This simplifies the definition of the LPLs and ensures the required implication from the

PC of fields to the PC of their owner classes (e.g., Φ(Interface.name) ⇒ Φ(Interface)). Elements with

PC false (like reference Class.iface) are auxiliary elements used by the migration transformations (cf.

Section 4) but absent from any language variant. This avoids polluting the individual meta-models

of the language variants with these auxiliary elements. Finally, the figure shows cardinalities in

references, but since the notion of meta-model of Definition 3.1 does not consider them, these are

displayed for explanatory purposes only.

Given a configuration, we can derive a meta-model variant (i.e., a product) by removing from the

150MM the elements whose PC evaluates to false when substituting the features in their PC by

their value in the configuration.

Definition 3.19 (Derivation). Given 𝐿𝑃𝐿 = ⟨𝐹𝑀,𝑀𝑀 = ⟨𝑉 , 𝐷, 𝐸,𝐴, 𝑠𝑟𝑐, 𝑡𝑎𝑟, 𝑜𝑤𝑛𝑒𝑟, 𝑣𝑎𝑙⟩,Φ⟩ and a

configuration 𝜌 ∈ 𝐶𝐹𝐺 (𝐹𝑀), a meta-model product𝑀𝑀𝜌 = ⟨𝑉𝜌 , 𝐷, 𝐸𝜌 , 𝐴𝜌 , 𝑠𝑟𝑐𝜌 , 𝑡𝑎𝑟𝜌 , 𝑜𝑤𝑛𝑒𝑟𝜌 , 𝑣𝑎𝑙𝜌⟩
is derived by deleting from the 150MM those elements whose PC evaluates to false in configuration

6
For simplicity, given 𝑥 ∈ 𝑉 ∪ 𝐸 ∪𝐴, we use Φ(𝑥) (instead of, e.g., Φ𝑉 (𝑥)) when no confusion can arise.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

1:12 Juan de Lara and Esther Guerra

methods

methods

2 roles

[false]

[Ref]

parents

[Multi]

[Single]

[Interfaces] realizes

[Methods]

Role

name: String
navig: boolean=true [Navig]
isComp: boolean=false [Comp]
isAggr: boolean=false [Aggr]
min: int=0 [Card]
max: int=-1 [Card]

playedBy

[Interfaces]
Interface

name: String

[Methods or Interfaces]
Method

name: String

Attribute

name: String
type: String

[FullAssoc]
Association

name: String

Class

name: String
isAbstract: boolean

iface
*

references
*

*

parent
0..1

*

*

*

attributes
*

(a)

roles2
parents

Role

name: String
min: int=0
max: int=-1

playedBy
Attribute

name: String
type: String

Association

name: String

Class

name: String
isAbstract: boolean

*
attributes
*

(b)

Fig. 7. (a) 150% meta-model for the class diagrams adaptive language. (b) Meta-model productMM𝜌𝐴 .

𝜌 , i.e., 𝑋𝜌 = {𝑥 ∈ 𝑋 | Φ(𝑥) [𝑡𝑟𝑢𝑒/𝐹+, 𝑓 𝑎𝑙𝑠𝑒/𝐹 −] = 𝑡𝑟𝑢𝑒}, for 𝑋 ∈ {𝑉 , 𝐸,𝐴}, and restricting the

functions: 𝑠𝑟𝑐𝜌 = 𝑠𝑟𝑐 |𝐸𝜌 , 𝑡𝑎𝑟𝜌 = 𝑡𝑎𝑟 |𝐸𝜌 , 𝑜𝑤𝑛𝑒𝑟𝜌 = 𝑜𝑤𝑛𝑒𝑟 |𝐴𝜌
, 𝑣𝑎𝑙𝜌 = 𝑣𝑎𝑙 |𝐴𝜌

.

Example 3.20. Figure 7(b) shows the meta-model derived from the 150MM of Figure 7(a) using the

configuration 𝜌𝐴 = {Multi, FullAssoc, Decorations, Card} (i.e., the analysis class diagrams meta-model).

According to Definition 3.19, the derivation deletes all classes, attributes and references whose PC

evaluates to false for the given configuration. The derivation does not delete elements of 𝐷 , i.e.,

data types like String or int. The unused data types are simply ignored.

4 ADAPTIVE MODELLING LANGUAGES
This section builds on LPLs to introduce the new notion of adaptive modelling language. This
extends LPLs with support for model migration between the language variants of a family.

Amajor concern in this proposal is to avoid the explicit specification of migration transformations

between every two variants derivable from the LPL, since the cost may be prohibitive (e.g., the

running example would imply defining 288·287 = 82 656 transformations). To this aim, we provide

means to define smaller transformation pieces (called language adapters) that take care of the

migration tasks needed upon changing individual language features (or a small set of them). A

language adapter declares a set of feature differences (features changes and feature invariants),

plus a set of in-place transformation rules stating how models should be changed to accommodate

those diffs. This way, an adapter is directed to bridge the gap between a (typically reduced) set of

language features. When moving from a source to a target language configuration, their feature

diffs are identified, and a suitable migration transformation is constructed on the fly by combining

adapters compatible with such diffs. As we will see later, a transformation from 𝑀𝑀𝜌𝑠 to 𝑀𝑀𝜌𝑡

will include all adapters having a diff consistent with the configuration diff between 𝜌𝑡 and 𝜌𝑠 .

Next, Section 4.1 describes configuration diffs as a way to express changes in configurations.

Then, Section 4.2 uses them to build language adapters that permit modularising model migra-

tion transformations feature-wise. Section 4.3 defines adaptive languages as LPLs equipped with

language adapters that ensure the interoperability between language variants. Finally, Section 4.4

extends adaptive languages with adaptation triggers. For readability, part of the theory and the

proofs of the lemmas and propositions can be found in Appendix A.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Adaptive modelling languages 1:13

4.1 Diffs and Configuration Diffs
We start defining diffs, which represent changes and invariants in the selection values of a set of

features. A diff is a tuple made of a difference 𝛿 (the features that modify their selection value) and

a context 𝐶 (the features that preserve their selection value).

Definition 4.1 (Diff). Given a feature model 𝐹𝑀 = ⟨𝐹,Ψ⟩, a diff Δ = ⟨𝛿,𝐶⟩ contains:
• A tuple 𝛿 = ⟨𝐹+−, 𝐹 −+⟩ called difference, with sets 𝐹+− ⊆ 𝐹 of features changing from

selected to unselected, and 𝐹 −+ ⊆ 𝐹 of features changing from unselected to selected

• A tuple𝐶 = ⟨𝐹++, 𝐹 −−⟩ called context, with sets 𝐹++ ⊆ 𝐹 of features remaining selected, and

𝐹 −− ⊆ 𝐹 of features remaining unselected

such that the four sets 𝐹+− , 𝐹 −+, 𝐹++, 𝐹 −− are disjoint.

The union of the feature sets within a diff is not required to yield the complete set of features 𝐹 ,

but diffs may describe just a few changes in a configuration, like (un)selecting one feature. These

are called partial diffs, and we use them to specify the conditions for including an adapter in a

migration transformation. In contrast, configuration diffs consider all features within a feature

model, and we use them to describe the difference between two configurations.

Example 4.2. The diff Δ1 = ⟨𝛿 = ⟨{Multi}, {Single}⟩,𝐶 = ⟨{Methods}, {}⟩⟩ states that Multi

changes to unselected, Single to selected, andMethods remains selected. The features not included in

the diff can change or retain their value. As shown in Figure 8(a), Δ1 is a partial diff as it uses a subset

of the features of the feature model, describing some feature changes and contextual conditions

that remain invariant. We will attach this type of diff to adapters. Instead, Δ𝐷𝐽 in Figure 8(b) is a

configuration diff
7
that captures how all features change or retain their value when moving from

𝜌𝐷 to 𝜌 𝐽 . We will define compatibility conditions between diffs that will enable selecting adapters

with diffs like Δ1 when assembling a migration transformation from 𝜌𝐷 to 𝜌 𝐽 .

Methods

Classes

Inheritance

Single Multi

Methods

Classes

Inheritance

Single Multi

1 = ={Multi}, {Single},
 C={Methods},

(a) (b)

’

ClassDiagram

Methods

Classes

Inheritance

Single Multi No

Associations

Comp Aggr Navig Card

Interfaces

Style Decorations

Ref

ClassDiagram

Methods

Classes

Inheritance

Single Multi No

Associations

Comp Aggr Navig Card

Interfaces

Style Decorations

Ref

DJ = ={Multi, FullAssoc}, {Single, Ref, Interfaces},
 C={Methods, Decorations, Comp, Aggr, Navig, Card}, {No}

D

J

FullAssoc

FullAssoc

Fig. 8. (a) A partial diff Δ1 expressing a few changes and contextual conditions. (b) A configuration diff Δ𝐷𝐽
expressing the difference between 𝜌𝐷 and 𝜌 𝐽 . As Definition 4.7 will show, Δ1 is compatible with Δ𝐷𝐽 .

Not any diff is meaningful, but the features included in their difference and context need to

be compatible with the feature model. As the next definition states, in a well-formed (wff) diff,

7
For readability, configuration diffs like Δ𝐷𝐽 omit all mandatory features that are always selected, like ClassDiagram.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

1:14 Juan de Lara and Esther Guerra

the initially selected (𝐹+− ∪ 𝐹++) and unselected (𝐹 −+ ∪ 𝐹 −−) features, and the finally selected

(𝐹 −+ ∪ 𝐹++) and unselected (𝐹+− ∪ 𝐹 −−) features, need to be compatible with the feature model.

Definition 4.3 (Well-formed diff). A diff Δ is well-formed (wff) w.r.t. 𝐹𝑀 = ⟨𝐹,Ψ⟩ if:
(1) the pre-state (i.e., the initial feature values) is wff:

Ψ[𝑡𝑟𝑢𝑒/(𝐹+− ∪ 𝐹++), 𝑓 𝑎𝑙𝑠𝑒/(𝐹 −+ ∪ 𝐹 −−)] ≠ 𝑓 𝑎𝑙𝑠𝑒

(2) the post-state (i.e., the final feature values) is wff:

Ψ[𝑡𝑟𝑢𝑒/(𝐹 −+ ∪ 𝐹++), 𝑓 𝑎𝑙𝑠𝑒/(𝐹+− ∪ 𝐹 −−)] ≠ 𝑓 𝑎𝑙𝑠𝑒

Condition (1) in Definition 4.3 requires that, when taking the features that the diff assumes true

(𝐹+− , 𝐹++) and false (𝐹 −+, 𝐹 −−), there is no contradiction with the feature model. In our example,

a diff assuming both Multi and Single to be true would not be wff. Condition (2) states that the

features that become (or stay) true (𝐹 −+, 𝐹++) and false (𝐹+− , 𝐹 −−) after the diff application should

not be contradictory with the feature model. For example, a diff selecting Single (𝐹 −+) and assuming

that Multi stays selected (𝐹++) would not be wff.

Example 4.4. The diff Δ2 = ⟨𝛿 = ⟨{Multi, Single}, {}⟩,𝐶 = ⟨{}, {}⟩⟩ is not wff for the feature

model of the running example, since both Multi and Single cannot be true at the same time, so the

pre-state is not wff. Conversely, the diff Δ3 = ⟨𝛿 = ⟨{Multi}, {}⟩,𝐶 = ⟨{}, {}⟩⟩ is wff. Even if it does

not specify that either Single or No should become selected (since Multi is deselected), the changes

in Δ3 do not contradict the feature model.

Appendix A.1 shows that diffs can be used to transform configurations [28]. However, we are

rather interested in their use to express the difference between two configurations (a configuration
diff, cf. Definition 4.5), and then check if partial diffs are compatible with that difference (using

notions of diff inclusion and consistency, cf. Definition 4.7). Next, Definition 4.5 uses diffs to record

all feature values that are modified and preserved when moving from one configuration to another.

Definition 4.5 (Configuration diff). Given 𝜌𝑖 , 𝜌 𝑗 ∈ 𝐶𝐹𝐺 (𝐹𝑀), the configuration diff 𝜌 𝑗 − 𝜌𝑖 (which
records the feature changes and invariants when moving from 𝜌𝑖 to 𝜌 𝑗) is given by the diff Δ𝑖 𝑗 =
⟨𝛿𝑖 𝑗 = ⟨𝐹+𝑖 ∩ 𝐹 −𝑗 , 𝐹 −𝑖 ∩ 𝐹+𝑗 ⟩,𝐶𝑖 𝑗 = ⟨𝐹+𝑖 ∩ 𝐹+𝑗 , 𝐹 −𝑖 ∩ 𝐹 −𝑗 ⟩⟩.

Example 4.6. Given the configurations 𝜌𝐷 and 𝜌 𝐽 in Example 3.16, the configuration diff 𝜌 𝐽 − 𝜌𝐷 ,
which corresponds to moving from configuration 𝜌𝐷 to configuration 𝜌 𝐽 , is Δ𝐷𝐽 = ⟨⟨{Multi,

FullAssoc}, {Single, Ref, Interfaces}⟩, ⟨{Methods, Decorations, Comp, Aggr, Navig, Card}, {No}⟩⟩ (cf. Fig-
ure 8(b)). Hence, features Multi and FullAssoc change to unselected; Single, Ref and Interfaces change

to selected; and the others preserve their selection value.

Next, we define diff inclusion and consistency, which enable checking if a partial diff is com-

patible with another, “bigger” diff (like a configuration diff). Later, in Section 4.2, we will define

language adapters with diffs, and exploit the notion of diff consistency to compose full migration

transformations out of adapters.

Definition 4.7 (Diff inclusion and consistency). Given two diffs Δ = ⟨⟨𝐹+−, 𝐹 −+⟩, ⟨𝐹++, 𝐹 −−⟩⟩ and
Δ′ = ⟨⟨𝐹 ′+−, 𝐹 ′−+⟩, ⟨𝐹 ′++, 𝐹 ′−−⟩⟩, we say that:

• Δ is included in Δ′ (written Δ ⊆ Δ′) if 𝐹𝑋 ⊆ 𝐹 ′𝑋 , for 𝑋 = {+−,−+, ++,−−}
• Δ is pre-consistent with Δ′ (written Δ ⊑𝑝𝑟𝑒 Δ′) if 𝐹+− ⊆ 𝐹 ′+− , 𝐹 −+ ⊆ 𝐹 ′−+, 𝐹++ ⊆ (𝐹 ′++ ∪
𝐹 ′+−), and 𝐹 −− ⊆ (𝐹 ′−− ∪ 𝐹 ′−+)
• Δ is post-consistent with Δ′ (written Δ ⊑𝑝𝑜𝑠𝑡 Δ′) if 𝐹+− ⊆ 𝐹 ′+− , 𝐹 −+ ⊆ 𝐹 ′−+, 𝐹++ ⊆ (𝐹 ′++ ∪
𝐹 ′−+), and 𝐹 −− ⊆ (𝐹 ′−− ∪ 𝐹 ′+−)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Adaptive modelling languages 1:15

Diff inclusion requires the feature sets in Δ to be included in those of Δ′. Diff consistency is more

permissive as the context may be satisfied in the pre- or post-states. That is, the delta features of Δ
must be included in those of Δ′, but the context of Δ can either be guaranteed by the context of Δ′

or be satisfied at the initial (for pre-consistency) or final (for post-consistency) configurations. If

Δ ⊆ Δ′, then Δ ⊑𝑝𝑟𝑒 Δ′ and Δ ⊑𝑝𝑜𝑠𝑡 Δ′.

Example 4.8. In our example, Δ1 = ⟨⟨{Multi}, {Single}⟩, ⟨{Methods}, {}⟩⟩, and Δ𝐷𝐽 = ⟨⟨{Multi,

FullAssoc}, {Single, Ref, Interfaces}⟩, ⟨{Methods, Decorations, Comp, Aggr, Navig, Card}, {No}⟩⟩ (cf. Fig-
ure 8). Then, Δ1 ⊆ Δ𝐷𝐽 , since every set in Δ1 is included in the corresponding set of Δ𝐷𝐽 . On the

contrary, Δ = ⟨⟨{Multi}, {Single}⟩, ⟨{Ref}, {}⟩⟩ ⊈ Δ𝐷𝐽 , since Ref is not in the positive context of Δ𝐷𝐽 .
However, Δ ⊑𝑝𝑜𝑠𝑡 Δ𝐷𝐽 , since Ref ∈ 𝐹 −+

𝐷𝐽
.

4.2 Language Adapters
A language adapter associates a graph transformation system to a diff. Intuitively, the transformation

encodes how to adapt a model when the language variant changes according to the diff. Adapters

typically manage changes in a single language feature, or a reduced set of them. This way, they

enable defining migration transformations feature-wise.

Definition 4.9 (Language adapter). Given a language product line 𝐿𝑃𝐿 = ⟨𝐹𝑀,𝑀𝑀,Φ⟩, a language
adapter 𝑎 = ⟨Δ,𝐺𝑇𝑆⟩ is made of a diff Δ over 𝐹𝑀 , and a graph transformation system 𝐺𝑇𝑆 =

⟨𝑅𝑆,𝑀𝑀,𝐶⟩.

Remark 4.10. The rules in 𝑅𝑆 are typed over the 150MM of the LPL, so they can use any element

of the language, including the auxiliary ones.

Example 4.11. Figure 9 shows three language adapters for the running example. Their rules are

typed over the 150MM in Figure 7(a). Adapter InhByDelegation transforms from multiple to single

inheritance when the feature Ref remains selected, as specified by the adapter diff Δ. The adapter
has two rules: multiBySingle and inhByRef. The adapter’s regular expression 𝐶 specifies that these

rules are to be applied randomly as long as possible. The first rule changes a link parents (used for

multiple inheritance) by a link parent, provided that the child class has no other parents (checked

by the NACs). Instead, if the child class already has a parent, then the second rule substitutes the

link parents by a reference. This rule also creates an auxiliary link iface, which other adapters may

process (in particular, adapter InhByDelegationInterface). As Definition 4.17 will show, after applying

all suitable adapters to a model, a subsequent step removes from the model all elements that do not

belong to the target language meta-model (e.g., link iface, or attributes tar.min and tar.max if the

target configuration does not select feature Card). This way, by setting values that can be removed

if not needed, a single rule can address several similar cases.

Adapter InhByDelegationInterface is to be used when moving from Multi to Single inheritance, and

features Interfaces and Methods remain selected (positive context of the diff). It comprises two rules

to be applied randomly as long as possible. The first one creates an Interface for each class pointed

by an iface link, if the interface does not exist yet (ensured by the NAC). The second rule creates

suitable Method objects in the interface and the source class of the iface link. The rules do not need

to delete the iface links, but this is deferred to the final deletion step mentioned above.

Finally, adapter AssocByRef transforms full associations into references. It declares two rules to

be randomly applied as long as possible: addNavigRole, which creates a reference for each navigable

association role, and removeNonNavigRole, which deletes non-navigable roles. The rules do not

delete the Association objects, but the final deletion step will take care of that. Note that the adapter’s

Δ does not include feature Navig in its positive context, even though the rules make use of attribute

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

1:16 Juan de Lara and Esther Guerra

c:Class

b:Class

name=B

:parents

a:Class

c:Class

b:Class

name=B

RHS

adapter InhByDelegation
=={Multi}, {Single}, C={Ref}, {}

LHS

tar:Role
name= B
navig=true
isComp=true
isAggr=false
min=1
max=1

a:Class

:playedBy

:iface

:parent

:parent

:references

inhByRef

c:Class

LHS

p:Class

:parents

NAC2

c:Class :Class

multiBySingle

c:Class

p:Class

:parent

RHS=NAC1

:parent

C=(multiBySingle + inhByRef)*

adapter AssocByRef
=={FullAssoc}, {Ref}, C={}, {}

a:Class b:Class

r2:Role

:playedBy

asc:Association

r1:Role
navig=true

:roles
:roles

:playedBy

LHS RHS=NAC
addNavigRole

a:Class b:Class

r2:Role

:playedBy

asc:Association

r1:Role
navig=true

:roles :roles

:playedBy : references

b:Class

a:Association

:Role
navig=false

:roles

:playedBy

LHS RHS

removeNonNavigRole

b:Class

a:Association

C=(addNavigRole + removeNonNavigRole)*

adapter InhByDelegationInterface
=={Multi}, {Single}, C={Interfaces,Methods}, {}

c:Class

b:Class

name=B

RHSLHS

:iface

c:Class

b:Class

name=B

:iface

:Interface

name=“I”+B:r
ea

liz
es

:realizes

LHS

c:Class

b:Class

:iface

i:Interface
:r

ea
liz

es

m:Method

name=M

c:Class

b:Class

:iface

i:Interface

:r
ea

liz
es

m:Method

name=M

:Method

name=M

RHS=NAC

:Method

name=M

:m
et

h
o

d
s

:methods :methods:methods

NAC

b:Class

name=B

:Interface

name=“I”+B

:realizes

createInterface copyMethods

C=(createInterface + copyMethods)*

Fig. 9. Three language adapters for the running example (cf. feature model and 150MM in Figures 6 and 7(a)).

navig. This is allowed since rules are typed by the 150MM. Moreover, as Definition 4.17 will show,

any model adaptation will start by making it conform to the 150MM, adding any missing fields with

their default value (e.g., adding navig with value false to the Role objects if they lack this attribute).

This avoids having two sets of rules, for the cases that the Navig feature is or is not selected.

Next, we define a set of predicates (𝑐𝑟𝑒𝑎𝑡𝑒 , 𝑑𝑒𝑙𝑒𝑡𝑒 , 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒 , 𝑓 𝑜𝑟𝑏𝑖𝑑 , 𝑟𝑒𝑎𝑑) characterising the

actions that a rule performs on the objects of types activated by a set of selected (𝐹𝑆+) and unselected
(𝐹𝑆−) features. For example, a rule 𝑡𝑟 satisfies predicate 𝑐𝑟𝑒𝑎𝑡𝑒 (𝐹𝑆+, 𝐹𝑆−, 𝑡𝑟) if the rule creates an
object 𝑜 whose type 𝑡𝑦𝑝𝑒 (𝑜) has a PC that: (1) uses some of the features in 𝐹𝑆+ or 𝐹𝑆− , and (2)

is satisfied when substituting the features in 𝐹𝑆+ by true, and those in 𝐹𝑆− by false. Similarly, 𝑡𝑟

satisfies 𝑓 𝑜𝑟𝑏𝑖𝑑 , if any of its NACs contains an object of a type activated by the predicate features.

Definition 4.17 and Algorithm 2 employ these predicates to choose the adapters used to build

migration transformations, e.g., to avoid selecting those that create elements whose type is not

present in the target configuration, and those that delete elements whose type is not present in the

source configuration.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Adaptive modelling languages 1:17

Definition 4.12 (Rule-feature interaction). Given two disjoint feature sets 𝐹𝑆+ and 𝐹𝑆− , and a rule

𝑡𝑟 = ⟨𝐿 𝑙←− 𝐾 𝑟−→ 𝑅, 𝑁𝐴𝐶𝑆 = {𝐿 𝑛𝑖−→ 𝑁𝑖 }𝑖∈𝐼 ⟩, we define the following predicates
8
:

𝑐𝑟𝑒𝑎𝑡𝑒 (𝐹𝑆+, 𝐹𝑆−, 𝑡𝑟) ≜ ∃𝑥 ∈ (𝑅 \ 𝑟 (𝐾)) · 𝐴𝑐𝑡𝑖𝑣𝑒𝑇𝑦𝑝𝑒 (𝑡𝑦𝑝𝑒 (𝑥), 𝐹𝑆+, 𝐹𝑆−)
𝑑𝑒𝑙𝑒𝑡𝑒 (𝐹𝑆+, 𝐹𝑆−, 𝑡𝑟) ≜ ∃𝑥 ∈ (𝐿 \ 𝑙 (𝐾)) · 𝐴𝑐𝑡𝑖𝑣𝑒𝑇𝑦𝑝𝑒 (𝑡𝑦𝑝𝑒 (𝑥), 𝐹𝑆+, 𝐹𝑆−)

𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒 (𝐹𝑆+, 𝐹𝑆−, 𝑡𝑟) ≜ ∃𝑥 ∈ 𝐾 · 𝐴𝑐𝑡𝑖𝑣𝑒𝑇𝑦𝑝𝑒 (𝑡𝑦𝑝𝑒 (𝑥), 𝐹𝑆+, 𝐹𝑆−)
𝑓 𝑜𝑟𝑏𝑖𝑑 (𝐹𝑆+, 𝐹𝑆−, 𝑡𝑟) ≜ ∃𝑛𝑖 : 𝐿 → 𝑁𝑖 , ∃𝑥 ∈ (𝑁𝑖 \ 𝑛𝑖 (𝐿)) · 𝐴𝑐𝑡𝑖𝑣𝑒𝑇𝑦𝑝𝑒 (𝑡𝑦𝑝𝑒 (𝑥), 𝐹𝑆+, 𝐹𝑆−)
𝑟𝑒𝑎𝑑 (𝐹𝑆+, 𝐹𝑆−, 𝑡𝑟) ≜ 𝑑𝑒𝑙𝑒𝑡𝑒 (𝐹𝑆+, 𝐹𝑆−, 𝑡𝑟) ∨ 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒 (𝐹𝑆+, 𝐹𝑆−, 𝑡𝑟) ∨ 𝑓 𝑜𝑟𝑏𝑖𝑑 (𝐹𝑆+, 𝐹𝑆−, 𝑡𝑟)

with

𝐴𝑐𝑡𝑖𝑣𝑒𝑇𝑦𝑝𝑒 (𝑡, 𝐹𝑆+, 𝐹𝑆−) ≜ 𝑇𝑒𝑟𝑚𝑂𝑓 (𝐹𝑆+ ∪ 𝐹𝑆−,Φ(𝑡)) ∧ Φ(𝑡) [𝑡𝑟𝑢𝑒/𝐹𝑆+, 𝑓 𝑎𝑙𝑠𝑒/𝐹𝑆−] = 𝑡𝑟𝑢𝑒

where 𝑇𝑒𝑟𝑚𝑂𝑓 (𝐹,Φ) holds if the formula Φ uses some of the literals in the set 𝐹 .

In the definition, predicate 𝐴𝑐𝑡𝑖𝑣𝑒𝑇𝑦𝑝𝑒 (𝑡, 𝐹𝑆+, 𝐹𝑆−) holds if the PC of type 𝑡 is true and uses

some feature in the sets 𝐹𝑆+ or 𝐹𝑆− . Next, we generalise some of these predicates for adapters.

Definition 4.13 (Adapter-feature interaction). Given two disjoint sets 𝐹𝑆+ and 𝐹𝑆− of features,
and an adapter 𝑎 = ⟨Δ,𝐺𝑇𝑆⟩, we define the following predicates:

𝑐𝑟𝑒𝑎𝑡𝑒 (𝐹𝑆+, 𝐹𝑆−, 𝑎) ≜ ∃𝑡𝑟 ∈ 𝑅𝑆 · 𝑐𝑟𝑒𝑎𝑡𝑒 (𝐹𝑆+, 𝐹𝑆−, 𝑡𝑟)
𝑑𝑒𝑙𝑒𝑡𝑒 (𝐹𝑆+, 𝐹𝑆−, 𝑎) ≜ ∃𝑡𝑟 ∈ 𝑅𝑆 · 𝑑𝑒𝑙𝑒𝑡𝑒 (𝐹𝑆+, 𝐹𝑆−, 𝑡𝑟)
𝑟𝑒𝑎𝑑 (𝐹𝑆+, 𝐹𝑆−, 𝑎) ≜ ∃𝑡𝑟 ∈ 𝑅𝑆 · 𝑟𝑒𝑎𝑑 (𝐹𝑆+, 𝐹𝑆−, 𝑡𝑟)

Example 4.14. Rule inhByRef in Figure 9 creates a Role object and links of type iface, playedBy and

references. Hence, predicate 𝑐𝑟𝑒𝑎𝑡𝑒 ({Ref}, {}, inhByRef) is true, since the PC of references is Ref, and

this PC evaluates to true. On the contrary, predicate 𝑑𝑒𝑙𝑒𝑡𝑒 ({Ref}, {}, inhByRef) is false as the rule
does not delete elements of types whose PC includes feature Ref. At the adapter level, predicate

𝑐𝑟𝑒𝑎𝑡𝑒 ({Ref}, {}, InhByDelegation) is true, but 𝑑𝑒𝑙𝑒𝑡𝑒 evaluated with the same parameters is false.

4.3 Adaptive Languages
An adaptive modelling language is defined as a language product line plus a set of language adapters.

Definition 4.15 (Adaptive modelling language). An adaptive modelling language 𝐴𝐿 = ⟨𝐿𝑃𝐿,𝐴⟩ is
made of a language product line 𝐿𝑃𝐿 and a set 𝐴 of language adapters over 𝐿𝑃𝐿.

Example 4.16. Our example adaptive language comprises the LPL made of the feature model

in Figure 6 and the 150MM in Figure 7(a), and the seven language adapters in Figures 9 and 10.

In Figure 10, adapter SingleToMulti replaces single by multiple inheritance, and so, its only rule

swaps link parent by parents. Adapter SingleToNo replaces single by no inheritance, and its diff Δ
requires Ref in its positive context (𝐹++). It has just one rule that swaps link parent by a reference.

Adapter RefByAssoc replaces references by full associations. It has two rules that create Association

objects, one handling the case of classes connected via opposite references, and the other handling

unidirectional references. Finally, adapter InterfacesToNo deals with the case of deselecting the

Interfaces feature, and assumes both Multi and Methods. It has two rules, one creating an abstract

class for each interface, and the other copying the interface methods to the created class.

Next, Definition 4.17 describes the process for migrating a model from a source to a target

language variant. First, the model – typed by the source language variant – is retyped to the 150MM.

8
In the following, given a graph𝐺 , we use 𝑥 ∈ 𝐺 as a shortcut for 𝑥 ∈ (𝐺𝑉 ∪𝐺𝐸 ∪𝐺𝐴) .

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

1:18 Juan de Lara and Esther Guerra

adapter SingleToMulti
=={Single}, {Multi}, C={}, {}

replaceInhRel

c:Class

p:Class

c:Class

RHSLHS

p:Class

:parent :parents

adapter SingleToNo
=={Single}, {No}, C={Ref}, {}
singleByRef

p:Class

LHS

:parent

name=P

c:Class

name=C

RHS

p:Class

name=P

c:Class

name=C

:Role

name=C+P
navig=true
isComp=true
min=1
max=1:references

:playedBy

adapter RefByAssoc
=={Ref},{FullAssoc},C={},{}

a:Class

b:Class

b2a:Role

:p
la

ye
d

B
y

a2b:Role

:r
ef

er
en

ce
sLHS

oppositeRoles2Assoc

:references

:playedBy

RHS

a:Class b:Class

b2a:Role

:playedBy

a2b:Role

:playedBy

:Association

a:Class

b:Class

:playedBy

a2b:Role

:r
ef

er
en

ce
s

LHS
singleRole2Assoc

RHS

a:Class

b:Class

:playedBy

a2b:Role

:Association

:Role

:p
la

ye
d

B
y

NAC

a:Class

b:Class

:playedBy

:Role

:references

:roles:roles

:roles

:roles

adapter InterfacesToNo
=={Interfaces}, {}, C={Multi, Methods}, {}

i:Interface

LHS

:realizes

name=N

c:Class

RHS=NAC
interfaceByAbstractClass

i:Interface

:realizes

name=N

c:Class

:Class
name=N
isAbstract=true

:parents

LHS RHS=NAC

copyInterfaceMethods

i:Interface

:realizes

name=N

c:Class

p:Class
name=N
isAbstract=true

:parents

m:Method

name=M

:m
et

h
o

d
s i:Interface

:realizes

name=N

c:Class

p:Class
name=N
isAbstract=true

:parents

m:Method

name=M

:m
et

h
o

d
s

:Method

name=M

:m
et

h
o

d
s

C=replaceInhRel* C=singleByRef* C=(oppositeRoles2Assoc
+ singleRole2Assoc)*

C=(interfaceByAbstractClass + copyInterfaceMethods)*

name=A

name=B name=A+B

name=A name=B

name=A

name=B name=B

name=A

name=A+B

Fig. 10. Remaining adapters for the running example (cf. feature model and 150MM in Figures 6 and 7(a)).

With our notion of meta-model and typing (cf. Section 3.1), a valid model of any language variant is

also a valid model of the 150MM. However, to fit in with the usual notion of conformance of objects

to their types – which requires objects to have as many attributes as specified in their type – objects

are added the non-instantiated attributes from their types, using their default values. If no default

value is specified, they take the default value of their datatype (0 for numbers, false for Boolean,

or the empty String). Then, in a second step, a graph transformation system is automatically

assembled out of the adapters consistent with the language reconfiguration, taking their rules and

the star-iterated sum of their regular expressions (i.e., the adapters are applied in random order,

until none is applicable anymore). This transformation is applied to the model. Finally, in a third

step, the elements not typed by the meta-model of the target language variant are removed from

the migrated model.

Definition 4.17 (Migration between language variants). Given 𝐴𝐿 = ⟨⟨𝐹𝑀,𝑀𝑀,Φ⟩, 𝐴⟩ and two

different configurations 𝜌𝑠 , 𝜌𝑡 ∈ 𝐶𝐹𝐺 (𝐹𝑀), the migration of a model𝑀𝑠 conforming to𝑀𝑀𝜌𝑠 into

a model𝑀𝑡 conforming to𝑀𝑀𝜌𝑡 proceeds in three steps (cf. Figure 11):

(1) Model augmentation:𝑀𝑠 is retyped w.r.t.𝑀𝑀 . Every object 𝑜 ∈ 𝑀𝑠𝑉 is completed with new

attributes typed by the attributes in 𝑡𝑦𝑝𝑒 (𝑜) (if not already defined), using their default

values. This yields model𝑀 ′𝑠 .
(2) Model transformation: The set of adapters consistent with Δ𝑠𝑡 is collected (cf. Definition 4.7):

𝐴𝐷 = {𝑎𝑘 ∈ 𝐴 | Δ𝑘 ⊆ Δ𝑠𝑡∨
(Δ𝑘 ⊑𝑝𝑟𝑒 Δ𝑠𝑡 ∧ ¬𝑐𝑟𝑒𝑎𝑡𝑒 (𝐹++𝑘 \ 𝐹

++
𝑠𝑡 , 𝐹

−−
𝑘
\ 𝐹 −−𝑠𝑡 , 𝑎𝑘))∨

(Δ𝑘 ⊑𝑝𝑜𝑠𝑡 Δ𝑠𝑡 ∧ ¬𝑑𝑒𝑙𝑒𝑡𝑒 (𝐹++𝑘 \ 𝐹
++
𝑠𝑡 , 𝐹

−−
𝑘
\ 𝐹 −−𝑠𝑡 , 𝑎𝑘))}

This set is used to build the graph transformation system:

𝐺𝑇𝑆𝑠𝑡 = ⟨
⋃

𝑎𝑘 ∈𝐴𝐷
𝑅𝑆𝑘 , 𝑀𝑀, (

∑︁
𝑎𝑘 ∈𝐴𝐷

𝐶𝑘)∗⟩

𝐺𝑇𝑆𝑠𝑡 is applied on model𝑀 ′𝑠 , which yields model𝑀 ′𝑡 ∈ 𝑆𝐸𝑀𝑀 ′𝑠 (𝐺𝑇𝑆𝑠𝑡).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Adaptive modelling languages 1:19

(3) Model restriction:𝑀 ′𝑡 is deleted the elements typed by𝑀𝑀 \𝑀𝑀𝜌𝑡 , yielding model𝑀𝑡 .

𝑀𝑀

𝑀𝑀𝜌𝑠

' �

55jjjjjjjjjjjjjjj
𝑀𝑀𝜌𝑡

7 W

iiTTTTTTTTTTTTTTT

𝑀𝑠
� � //

OO�
�

::v
v

v
v

v
v

v
v

v
v

𝑀 ′𝑠
𝐺𝑇𝑆𝑠𝑡 +3

(1)

DD

(2)

𝑀 ′𝑡

(3)

ZZ4
4
4
4
4
4
4

𝑀𝑡
? _oo

OO�
�

ddH
H
H
H
H
H
H
H
H
H

Fig. 11. Model migration scheme from𝑀𝑀𝜌𝑠 to𝑀𝑀𝜌𝑡 .

Step 2 in Definition 4.17 collects all adapters whose diff is included in Δ𝑠𝑡 , all pre-consistent
adapters that do not create elements activated by the adapters’ context but not by Δ𝑠𝑡 ’s context, and
all post-consistent adapters that do not delete elements activated by the adapters’ context but not

by Δ𝑠𝑡 ’s context. This precludes selecting pre-consistent adapters creating elements of non-existent

types in the target language variant (they would be removed in the third step of the migration), as

well as post-consistent adapters deleting elements of non-existent types in the source variant.

Example 4.18. Figure 12 shows the migration of a model𝑀𝑠 from configuration 𝜌𝐴 to configura-

tion 𝜌 𝐽 (defined in Example 3.16). The first step (augmentation) retypes𝑀𝑠 w.r.t.𝑀𝑀 (i.e., w.r.t. the

150MM of the LPL). This produces a model𝑀 ′𝑠 , in which the two Role objects are added attributes

navig, isComp and isAggr, to make them conform to class Role in MM (labels 1 and 2 in the figure).

The second step (transformation) creates a transformation system containing the rules of the

adapters consistent with the language reconfiguration. The consistent adapters are InhByDelegation,

AssocByRef and InhByDelegationInterface (cf. Figure 9). The first one removes multiple inheritance, the

second converts full associations into references, and the third uses the auxiliary iface links created

by InhByDelegation to add interfaces to the classes from which multiple inheritance is removed.

Adapter AssocByRef is selected because its diff is included in Δ𝐴𝐽 = ⟨⟨{Multi, FullAssoc}, {Single,
Ref, Interfaces, Methods, Comp, Aggr, Navig}⟩, ⟨{Decorations, Card}, {No}⟩⟩. Adapter InhByDelegation
is selected because it is post-consistent with Δ𝐴𝐽 (its context requires Ref, which is available in

𝜌 𝐽 but not in 𝜌𝐴), and does not delete elements with PC Ref. Similarly, InhByDelegationInterface

is post-consistent with Δ𝐴𝐽 (its context requires Interfaces and Methods, only available in 𝜌 𝐽) and

does not delete elements with PC Interfaces or Methods. The regular expression of the resulting

transformation system is the iterated sum of the regular expressions of the three adapters, which is

equivalent to randomly applying the rules of the adapters for as long as possible.

Figure 12 applies the transformation system over model𝑀 ′𝑠 to yield model𝑀 ′𝑡 , which is terminal

(no rules can be applied to it). The figure shows this transformation in two steps. The first one

depicts the execution of rules multiBySingle and inhByRef, both from adapter InhByDelegation. The

rules replace the links parents by links parent and iface, and create a Role object (labels 3 and 4 in the

figure). Next, the transformation executes rules addNavigRole (twice) and createInterface. The first

rule adds roles r1 and r2 to object c1, and the second rule creates an interface. Since the rules are

applied randomly, other rule execution orders than the one in the example are possible.

The last step (restriction) removes from model𝑀 ′𝑡 the elements whose type does not belong to

𝑀𝑀𝑡 (i.e., the iface link and the Association object). The result is model𝑀𝑡 , which is typed by𝑀𝑀𝜌 𝐽 .

4.4 Adaptation Triggers
Triggered adaptive languages extend adaptive languages with triggers that unleash a change in the

language variant in use, and migrate the current model accordingly. Triggers may consider not

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

1:20 Juan de Lara and Esther Guerra

c1:Class

name=“MScStudent”
isAbstract=false

c0:Class c2:Class

:parents :parents

Ms

M’t

name=“Graduate”
isAbstract = false

name=“Person”
isAbstract = true

r2:Role

name= “mentors”
min=0
max=-1

r1:Role

name= “mentoredBy”
min=0
max=1

a:Association

name=“mentoring”

:playedBy:playedBy

:roles:roles

c1:Class

name=“MScStudent”
isAbstract=false

c0:Class c2:Class

:parents :parents

name=“Graduate”
isAbstract = false

name=“Person”
isAbstract = true

r2:Role

name= “mentors”
min=0
max=-1
navig=true
isComp=false
isAggr=false

r1:Role

name= “mentoredBy”
min=0
max=1
navig=true
isComp=false
isAggr=false

a:Association

name=“mentoring”

:playedBy:playedBy

:roles:roles

M’s

1 2

MMA MM

c1:Class

name=“MScStudent”
isAbstract=false

c0:Class c2:Class

:parent :iface

name=“Graduate”
isAbstract = false

name=“Person”
isAbstract = true

:playedBy:playedBy

r2:Role

name= “mentors”
min=0
max=-1
navig=true
isComp=false
isAggr=false

r1:Role

name= “mentoredBy”
min=0
max=1
navig=true
isComp=false
isAggr=false

a:Association

name=“mentoring”

:roles:roles

r:Role

name= “Graduate”
navig=true
min=1
max=1
isComp=true
isAggr=false

:references

:p
la

ye
d

B
y

addNavigRole (x2);
createInterface

multiBySingle;
inhByRef

3 4

MM

c1:Class

name=“MScStudent”
isAbstract=false

c0:Class c2:Class

:parent :iface

name=“Graduate”
isAbstract = false

name=“Person”
isAbstract = true

:playedBy:playedBy

r2:Role

name= “mentors”
min=0
max=-1
navig=true
isComp=false
isAggr=false

r1:Role

name= “mentoredBy”
min=0
max=1
navig=true
isComp=false
isAggr=false

a:Association

name=“mentoring”

:roles:roles

r:Role

name= “Graduate”
navig=true
min=1
max=1
isComp=true
isAggr=false:references

:p
la

ye
d

B
y

:references :references

5

i:Interface

name=“IGraduate”
:realizes

:r
ea

liz
es

6

MM

Mt

c1:Class

name=“MScStudent”
isAbstract=false

c0:Class c2:Class

:parent

name=“Graduate”
isAbstract = false

name=“Person”
isAbstract = true

:playedBy:playedBy

r2:Role

name= “mentors”
min=0
max=-1
navig=true
isComp=false
isAggr=false

r1:Role

name= “mentoredBy”
min=0
max=1
navig=true
isComp=false
isAggr=false

r:Role

name= “Graduate”
navig=true
min=1
max=1
isComp=true
isAggr=false:references

:p
la

ye
d

B
y

:references :references

i:Interface

name=“IGraduate”
:realizes

:r
ea

liz
es

MMJ

Fig. 12. Migrating a model from𝑀𝑀𝜌𝐴 to𝑀𝑀𝜌 𝐽 .

only the model, but also contextual information such as user actions performed at modelling-time,

or conditions about the modelling environment. For example, Figure 1 assumes the existence of

a process model, and the user explicitly triggers the transition to the next phase by clicking on

a button of the modelling IDE. Other scenarios may trigger language reconfigurations upon the

occurrence of certain conditions in the model (e.g., expressed in OCL), the repetition of certain

user errors, or the use of devices with different screen sizes, among many other possibilities.

Figure 13(a) depicts the working scheme of our approach, which involves three ingredients:

• A triggered adaptive language, which consists of an adaptive language, plus a state transition

system whose states are configurations of the adaptive language. The triggered language may

transition from one configuration to another when certain events (from a set Λ of relevant

language events) occur.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Adaptive modelling languages 1:21

• A contextual adaptive model that enriches models with a context and the current language

configuration. The context captures relevant information for the modelling experience, and is

represented as a sequence of timed events.

• Adaptation triggers, which are generated by a function called 𝑒𝑣𝑎𝑙 . The function receives a timed

event from the context, and the current model and language configuration. Then, if appropriate,

it generates a trigger that causes a reconfiguration of the adaptive language.

Monitor

Analysis

Plan

Execute

Model
Language

variant

Shared
knowledge

=
Definition of

triggered adaptive
language

Managed elements

Triggered Adaptive Language
Triggered adaptive language

Contextual adaptive model

M
model

Meta-model
MMi

current
config

Language
user

interacts
with

i j

config
transition

system
Adaptive
language

config

configs
of

events

1

2
, t

4

Meta-model
MMj

reconfiguration

5

M’
model

conforms to

6
migration

CTX
context

eval

3

(a) (b)

Fig. 13. (a) Working scheme of triggered adaptive modelling languages. (b) Adaptation MAPE-K loop.

As depicted in Figure 13(a), the user interacts with the model𝑀 (label 1). The context captures

this interaction via a sequence of timed events, and may produce other events that consider

further elements besides the model. When any of these events occurs, function 𝑒𝑣𝑎𝑙 (the adaptation

trigger, label 2) evaluates whether the event is relevant for the current model state and language

configuration. If so, the function forwards a new event _ to the triggered adaptive language

(label 3). The language’s configuration transition system determines whether, given the language

configuration in use and the received event _, a language reconfiguration should occur. In such a

case, the new language configuration is stored in the contextual adaptive model (label 4), and the

model𝑀 is migrated to become conformant with the new configuration (labels 5 and 6).

This way, similar to many self-adaptive [15] and autonomous software systems [42], triggered

adaptive languages manage their adaptation using a MAPE-K (Monitor-Analyze-Plan-Execute over

a shared Knowledge) loop, but tailored to languages as follows (cf. Figure 13(b)):

• Monitor: Triggered adaptive modelling languages monitor the context for relevant events. These

events may include actions like saving or editing the model (to analyse constraints on it), explicit

validation requests, or the explicit selection of language reconfigurations.

• Analysis: The function 𝑒𝑣𝑎𝑙 analyses the context event and the current model state and language

configuration, and then forwards a reconfiguration event to the triggered adaptive language.

• Plan: The configuration transition system plans the target language variant to adapt to, based on

the reconfiguration event produced by the 𝑒𝑣𝑎𝑙 function, and the current language configuration.

• Execute: The language is adapted to the new variant, and the model is migrated to this variant.

• Knowledge: This is the definition of the triggered adaptive language, comprising the 150MM, the

feature model, the adapters, and the configuration transition system.

We start defining a triggered adaptive modelling language as an adaptive language equipped with

a configuration transition relation (a transition system over the set of all configurations, labelled

over a set Λ of possible language events) and an initial configuration.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1:22 Juan de Lara and Esther Guerra

Definition 4.19 (Triggered adaptive modelling language). Given a set Λ of language events, a

triggered adaptive modelling language over Λ is a tuple TALΛ = ⟨𝐴𝐿,𝐶𝐹, 𝜌𝑖𝑛𝑖𝑡 ⟩ made of:

• An adaptive modelling language 𝐴𝐿 = ⟨𝐿𝑃𝐿 = ⟨𝐹𝑀,𝑀𝑀,Φ⟩, 𝐴⟩ as in Definition 4.15

• A configuration transition system𝐶𝐹 ⊆ 𝐶𝐹𝐺 (𝐹𝑀) ×Λ×𝐶𝐹𝐺 (𝐹𝑀), which is a deterministic

labelled transition system having the language configurations as states and labels over Λ.
Being deterministic, for every 𝜌𝑠 ∈ 𝐶𝐹𝐺 (𝐹𝑀) and for every _ ∈ Λ, there is at most one

𝜌𝑡 ∈ 𝐶𝐹𝐺 (𝐹𝑀) s.t. (𝜌𝑠 , _, 𝜌𝑡) ∈ 𝐶𝐹
• An initial configuration 𝜌𝑖𝑛𝑖𝑡 ∈ 𝐶𝐹𝐺 (𝐹𝑀)

Example 4.20. Without any restriction, the full variability space of the triggered adaptive language

of our running example would yield a transition system with 288 language configurations as states,

and 82 656 transitions between them. The set Λ of language events contains all tuples ⟨𝜌𝑖 , 𝜌 𝑗 ⟩, with
{𝜌𝑖 , 𝜌 𝑗 } ⊆ 𝐶𝐹𝐺 (𝐹𝑀). Hence, 𝐶𝐹 = {⟨𝜌𝑖 , ⟨𝜌𝑖 , 𝜌 𝑗 ⟩, 𝜌 𝑗 ⟩ | 𝜌𝑖 ≠ 𝜌 𝑗 ∧ {𝜌𝑖 , 𝜌 𝑗 } ⊆ 𝐶𝐹𝐺 (𝐹𝑀)}. The initial
configuration 𝜌𝑖𝑛𝑖𝑡 is set to be 𝜌𝐴 (cf. Example 3.16).

Remark 4.21. A triggered adaptive language may omit transitions between some language vari-

ants. For instance, in educational applications, the language designer may not allow reconfigurations

into language variants that are simpler than the current one. Hence, in practice, the variability

space of interest may be much smaller than the space of all possible configurations (e.g., Figure 1

comprises just three language variants and two transitions). Thus, there is no need to define adapters

from one language configuration to another that is not reachable in the transition system.

Next, we define contextual adaptive models, which store the current language configuration 𝜌

and an instance model of the current meta-model 𝑀𝑀𝜌 . They are embedded in a context where
the modelling activity aspects relevant for language reconfiguration purposes are represented as

a sequence of timed events. For example, in a language that adapts to the IDE, the context may

populate events when the screen size changes; in a language adaptive to a modelling process, the

context may inform about the current phase; and in a language that adapts to the user knowledge,

the context may store static background information about the user (e.g., years of modelling

experience) or infer the expertise dynamically by counting the user errors when creating the model.

Definition 4.22 (Contextual adaptive model). Given a triggered adaptive language 𝑇𝐴𝐿Λ and a set

𝐸 of context events, a contextual adaptive model 𝐴𝑀𝐸 = ⟨𝜌,𝑀, 𝑡𝑦𝑝𝑒 : 𝑀 → 𝑀𝑀𝜌 , 𝑐𝑡𝑥, 𝑡⟩ is made of:

• A configuration 𝜌 ∈ 𝐶𝐹𝐺 (𝐹𝑀), called the current configuration
• A model𝑀 typed over𝑀𝑀𝜌 via morphism type
• A sequence 𝑐𝑡𝑥 ∈ (𝐸 × R)∗ ({⊥𝑒 } × R) of all relevant past and future context events, where

⊥𝑒 ∉ 𝐸 is the final event, and the second component (R) is the timestamp

• The current time 𝑡

Remark 4.23. The sequence 𝑐𝑡𝑥 contains a (potentially infinite) succession of timestamped events

from 𝐸, ending in a final event ⊥𝑒 . We use 𝑐𝑡𝑥 (𝑖) to refer to its i-th element.

Example 4.24. Figure 14(a) shows a contextual adaptive model for our running example. It

contains the current configuration 𝜌 , a model typed by𝑀𝑀𝜌 , the current time 𝑡 , and a sequence 𝑐𝑡𝑥

of context events. The current configuration corresponds to 𝜌𝐷 , which configures the class diagram

language for the design phase. The process model in Figure 14(b) specifies the possible project

phases and how to transition between them. We assume that the modelling IDE generates the

events in the process model transitions (i.e., toDesign, toJava, toC++, Java2C++, C++2Java) when the

user selects the next modelling phase. This means that, effectively, the transition system of interest

for our example (cf. Definition 4.19) comprises four language variants and five reconfigurations.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Adaptive modelling languages 1:23

c1:Class

name=“MScStudent”
isAbstract=false

c0:Class c2:Class

:parents :parents

m: Method

name=“grades”

:methods

AME

name=“Graduate”
isAbstract=false

name=“Person”
isAbstract=true

 = {Methods, Multi,
FullAssoc, Decorations,
Comp, Aggr,
Navig, Card}

t = 1300.5

ctx = (toDesign, 1300.5)
(toJava, 4500)
(Java2C++, 6700)
…

M

Analysis

Design

toDesign

Java C++

toJava

E = {toDesign, toJava, toC++, Java2C++, C++2Java}

toC++

Java2C++

C++2Java

(a) (b)

Fig. 14. (a) Example of contextual adaptive model. (b) Process model that is used as context.

The last component is the adaptation trigger. A function 𝑒𝑣𝑎𝑙 produces the triggers based on the

occurrence of context events, the current model, and the current configuration. If the context event

is deemed relevant, the function returns a language event _ ∈ Λ of the triggered adaptive language;

otherwise, the function returns an event ⊥Λ that does not belong to the language and is ignored.

Definition 4.25 (Adaptation trigger). Given a triggered adaptive modelling language 𝑇𝐴𝐿Λ, and

a contextual adaptive model 𝐴𝑀𝐸 , an adaptation trigger is a function 𝑒𝑣𝑎𝑙 : 𝐸 × R ×𝐶𝐹𝐺 (𝐹𝑀) ×
𝑆𝐸𝑀 (𝑀𝑀) → Λ ∪ {⊥Λ}. The input of the function is an event 𝑒 ∈ 𝐸, the current time 𝑡 ∈ R, the
current configuration 𝜌 ∈ 𝐶𝐹𝐺 (𝐹𝑀), and the current model 𝑀 ∈ 𝑆𝐸𝑀 (𝑀𝑀). The output of the
function can be either a language event _ ∈ Λ or an event ⊥Λ ∉ Λ.

Example 4.26. The adaptation trigger of our example uses the set 𝐸 = {toDesign, toJava, toC++,
Java2C++, C++2Java}. Its function 𝑒𝑣𝑎𝑙 , defined below, translates events pertinent to the context (in

this case a process model) into language events of the triggered adaptive language:

𝑒𝑣𝑎𝑙 (𝑒, 𝑡, 𝜌, 𝑀) =

⟨𝜌𝐴, 𝜌𝐷⟩ if 𝑒 = 𝑡𝑜𝐷𝑒𝑠𝑖𝑔𝑛

⟨𝜌𝐷 , 𝜌 𝐽 ⟩ if 𝑒 = 𝑡𝑜 𝐽𝑎𝑣𝑎

⟨𝜌𝐷 , 𝜌𝐶⟩ if 𝑒 = toC++
⟨𝜌 𝐽 , 𝜌𝐶⟩ if 𝑒 = Java2C++
⟨𝜌𝐶 , 𝜌 𝐽 ⟩ if 𝑒 = C++2Java
⊥Λ otherwise

where 𝜌𝐶 is a configuration like 𝜌 𝐽 (for Java, cf. Example 3.16), but enabling multiple inheritance.

Algorithm 1 implements the MAPE-K feedback loop that adapts a contextual adaptive model

when context events occur. The algorithm receives as input a triggered adaptive language 𝑇𝐴𝐿Λ,

an adaptation trigger 𝑒𝑣𝑎𝑙 , and a contextual adaptive model 𝐴𝑀𝐸 . The latter may have been just

initialised (with the empty model, the initial configuration 𝜌𝑖𝑛𝑖𝑡 of𝑇𝐴𝐿Λ, and the current time 0) or

be an existing model previously saved.

The algorithm modifies the input model as follows. Line 1 sets 𝑖 (an index over the context events)

to the first event with a timestamp equal to or greater than the current time 𝑡 of the model. For

models just created, the current time is 0, hence 𝑖 is set to 0. Line 2 selects the next context event in

the sequence (produced by an editing command or any other means). Lines 3–7 iteratively process

the context events in the sequence while they are not final. Specifically, line 4 calls function 𝑒𝑣𝑎𝑙 ,

which returns a language event in Λ if the context event is relevant in the current configuration,

and checks if the language’s configuration transition system has a transition from the current

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1:24 Juan de Lara and Esther Guerra

Algorithm 1 Adaptation of contextual adaptive models upon the occurrence of context events

Input: 𝑇𝐴𝐿Λ = ⟨𝐴𝐿,𝐶𝐹, 𝜌𝑖𝑛𝑖𝑡 ⟩ ⊲ Triggered adaptive language as in Def. 4.19

Input: 𝑒𝑣𝑎𝑙 : 𝐸 × R ×𝐶𝐹𝐺 (𝐹𝑀) × 𝑆𝐸𝑀 (𝑀𝑀) → Λ ∪ {⊥} ⊲ Adaptation trigger as in Def. 4.25

Input: 𝐴𝑀𝐸 = ⟨𝜌,𝑀, 𝑡𝑦𝑝𝑒 : 𝑀 → 𝑀𝑀𝜌 , 𝑐𝑡𝑥, 𝑡⟩ ⊲ Contextual adaptive model as in Def. 4.22

1: 𝑖 ←𝑚𝑖𝑛{ 𝑗 | ⟨𝜖, 𝑡 ′⟩ = 𝑐𝑡𝑥 (𝑗) ∧ 𝑡 ′ ≥ 𝑡} ⊲ search the next event to be processed

2: ⟨𝜖, 𝑡⟩ ← ctx(i)

3: while 𝜖 ≠ ⊥𝑒 do
4: if ∃⟨𝜌, 𝑒𝑣𝑎𝑙 (𝜖, 𝑡, 𝜌, 𝑀), 𝜌 ′⟩ ∈ 𝐶𝐹 then
5: 𝐴𝑀𝐸 ← ⟨𝜌 ′, 𝑀 ′, 𝑡𝑦𝑝𝑒′ : 𝑀 ′ → 𝑀𝑀𝜌 ′ , 𝑐𝑡𝑥, 𝑡⟩ ⊲ with𝑀 ′, 𝑡𝑦𝑝𝑒′ as in Def. 4.17

6: 𝑖 ← 𝑖 + 1
7: ⟨𝜖, 𝑡⟩ ← ctx(i)

8: return 𝐴𝑀𝐸

configuration labelled with that language event. If so, line 5 performs a language reconfiguration

into 𝜌 ′ (the target configuration of the identified transition), migrating the model as described in

Definition 4.17, so that it becomes typed over𝑀𝑀𝜌 ′ .

Our approach makes it possible to use the same triggered adaptive language with different

contexts and adaptation triggers. This enables scenarios where the user explicitly selects a language

reconfiguration (e.g., via a process model, as in the running example), or where reconfigurations

are automatically applied when some conditions are met (e.g., evaluating OCL expressions on the

current model when it is saved, whose satisfaction can trigger different language events).

5 SEQUENTIAL COMPOSITION OF ADAPTERS
Definition 4.17 assembles migration transformations out of adapters that tackle orthogonal language

features (e.g., inheritance and associations in Figure 9). Still, further mechanisms are needed to avoid

the combinatorial nature of feature interactions. In product lines, a feature interaction occurs when

the behaviour of a feature is influenced by the presence of another one [67]. This section presents

an optimisation to reduce the number of adapters required in an adaptive language definition,

which is especially useful to tackle feature interactions within the language family.

In Figure 9, the adapter InhByDelegation deletes multiple inheritance assuming references. This

assumption is needed because the adapter rules create references. However, if a language reconfig-

uration needs to delete multiple inheritance when the source and target configurations use full

associations, then the language engineer would have to create another adapter for that case. The

new adapter would tackle the change from Multi to Single inheritance assuming feature FullAssoc.

Its rules would be like those of InhByDelegation, but creating full associations instead of references.

Figure 15 shows part of the example feature diagram, and represents the adapters as arrows

indicating the feature changes they bridge. It can be noticed that, instead of defining another adapter

to bridge Multi to Single when FullAssoc, it would be possible to apply InhByDelegation and then

RefByAssoc (which replaces the created references by associations). This feature interaction happens

because there are two mandatory, alternative feature sets (Inheritance and Style), and an adapter

bridging two features of the first set needs to create elements of the second set. This sequential

composition of adapters can also reduce the number of adapters needed to bridge features within

an alternative set. For example, as Figure 15 shows, there is no need to define an adapter from Multi

to No, but it suffices to apply first InhByDelegation and then SingleToNo.

This section extends the second step in Definition 4.17 (which collects the adapters compatible

with a configuration diff) to select adapters that can be composed sequentially in a meaningful way,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Adaptive modelling languages 1:25

Inheritance

Multi Single No

Style

Ref FullAssoc

InhByDelegation

SingleToNo
SingleToMulti

RefByAssoc

AssocByRef

requires

requires

Fig. 15. Feature interactions between language adapters.

covering feature changes that individual adapters do not cover. For this purpose, we start defining

the sequential composition of diffs. Two diffs Δ1 and Δ2 can be composed if the post-state of Δ1 is

coherent with the pre-state of Δ2. For instance, a feature that changes to unselected in Δ1 cannot

change to unselected also in Δ2, nor be assumed selected by Δ2. The delta of the composed diff is the

union of the changes of the first and second diffs, excluding the changes undone by the second diff

and those that are synchronised. The context is the union of both contexts, excluding the features

that the delta of the other diff changes, and including the features that the deltas synchronise (e.g.,

the features changed from + to − by Δ1 and from − to + by Δ2 are added to 𝐹++
12
).

Definition 5.1 (Sequential composition of diffs). Given diffs Δ1 and Δ2 s.t.

(𝐹 −−
1
∪ 𝐹+−

1
) ∩ (𝐹++

2
∪ 𝐹+−

2
) = ∅ and (𝐹++

1
∪ 𝐹 −+

1
) ∩ (𝐹 −−

2
∪ 𝐹 −+

2
) = ∅

their sequential composition is given by

Δ1;Δ2 =⟨𝛿12 = ⟨(𝐹+−1 \ 𝐹 −+2) ∪ (𝐹+−2 \ 𝐹 −+1), (𝐹 −+1 \ 𝐹+−2) ∪ (𝐹 −+2 \ 𝐹+−1)⟩,
𝐶12 = ⟨(𝐹++1 \ 𝐹+−2) ∪ (𝐹++2 \ 𝐹 −+1) ∪ (𝐹+−1 ∩ 𝐹 −+2), (𝐹 −−1 \ 𝐹 −+

2
) ∪ (𝐹 −−

2
\ 𝐹+−

1
) ∪ (𝐹 −+

1
∩ 𝐹+−

2
)⟩⟩

Remark 5.2. We use predicate composable(Δ1,Δ2) to denote that diffs Δ1 and Δ2 can be composed

according to Definition 5.1.

Example 5.3. Given diffs Δ1 = ⟨𝛿1 = ⟨{Multi}, {Single}⟩,𝐶1 = ⟨{Ref}, {}⟩⟩ and Δ2 = ⟨𝛿2 =

⟨{Single}, {No}⟩,𝐶2 = ⟨{}, {Methods}⟩⟩, their sequential composition is Δ1;Δ2 = ⟨𝛿12 = ⟨{Multi},
{No}⟩,𝐶12 = ⟨{Ref}, {Single, Methods}⟩⟩. The first diff changes from Multi to Single, and the second

changes from Single to No, so their composition changes from Multi to No. As for the context, the

resulting diff contains the union of the positive and negative contexts of the two diffs. In addition,

Single is added to the negative context because it belongs to 𝐹 −+
1
∩ 𝐹+−

2
.

The next lemma states that the sequential composition of two diffs yields a diff, and gives the

conditions to obtain a wff diff out of the sequential composition of two diffs.

Lemma 5.4 (Wff diff composition). Given diffs Δ1 and Δ2 s.t. composable(Δ1,Δ2):
• Δ1;Δ2 is a diff
• If equations (1) and (2) below are satisfied, then Δ1;Δ2 is a wff diff

Ψ[𝑡𝑟𝑢𝑒/(𝐹+−
1
\ 𝐹 −+

2
) ∪ (𝐹+−

2
\ 𝐹 −+

1
) ∪ (𝐹++

1
\ 𝐹+−

2
) ∪ (𝐹++

2
\ 𝐹 −+

1
) ∪ (𝐹+−

1
∩ 𝐹 −+

2
),

𝑓 𝑎𝑙𝑠𝑒/(𝐹 −+
1
\ 𝐹+−

2
) ∪ (𝐹 −+

2
\ 𝐹+−

1
) ∪ (𝐹 −−

1
\ 𝐹 −+

2
) ∪ (𝐹 −−

2
\ 𝐹+−

1
) ∪ (𝐹 −+

1
∩ 𝐹+−

2
)] ≠ 𝑓 𝑎𝑙𝑠𝑒

(1)

Ψ[𝑡𝑟𝑢𝑒/(𝐹 −+
1
\ 𝐹+−

2
) ∪ (𝐹 −+

2
\ 𝐹+−

1
) ∪ (𝐹++

1
\ 𝐹+−

2
) ∪ (𝐹++

2
\ 𝐹 −+

1
) ∪ (𝐹+−

1
∩ 𝐹 −+

2
),

𝑓 𝑎𝑙𝑠𝑒/(𝐹+−
1
\ 𝐹 −+

2
) ∪ (𝐹+−

2
\ 𝐹 −+

1
) ∪ (𝐹 −−

1
\ 𝐹 −+

2
) ∪ (𝐹 −−

2
\ 𝐹+−

1
) ∪ (𝐹 −+

1
∩ 𝐹+−

2
)] ≠ 𝑓 𝑎𝑙𝑠𝑒

(2)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1:26 Juan de Lara and Esther Guerra

Remark 5.5. If equations (1) and (2) in Lemma 5.4 are satisfied, then both Δ1 and Δ2 are wff.

However, the converse is not true in general. We use predicate wffComposable(Δ1,Δ2) to denote

that diffs Δ1 and Δ2 are composable, and their composition is wff according to Lemma 5.4.

In Appendix A.3, we show that applying a composite diff yields the same result as applying each

diff in sequence. Now, we define adapter composition. Given two adapters a and b whose diffs can
be composed into a wff diff (i.e., wffComposable(Δ𝑎,Δ𝑏)), their composition yields an adapter a; b
with diff Δ𝑎 ;Δ𝑏 , containing the rules of both adapters, and whose regular expression concatenates

the regular expressions of both adapters.

Definition 5.6 (Adapter composition). Given an adaptive language 𝐴𝐿 = ⟨𝐿𝑃𝐿,𝐴⟩, and two

adapters 𝑎, 𝑏 ∈ 𝐴 s.t. wffComposable(Δ𝑎,Δ𝑏), the composition of 𝑎 and 𝑏 yields the adapter 𝑎;𝑏 =

⟨Δ𝑎 ;Δ𝑏,𝐺𝑇𝑆 = ⟨𝑀𝑀,𝑅𝑆𝑎 ∪ 𝑅𝑆𝑏,𝐶𝑎 ;𝐶𝑏⟩⟩.

Example 5.7. Composing adapters InhByDelegation (with diff ⟨⟨{Multi}, {Single}⟩, ⟨{Ref}, {}⟩⟩)
and SingleToNo (with diff ⟨⟨{Single}, {No}⟩, ⟨{Ref}, {}⟩⟩) yields adapter InhByDelegation; SingleToNo
with diff ⟨⟨{Multi}, {No}⟩, ⟨{Ref}, {Single}⟩⟩, the rules of both adapters, and the regular expression

(multiBySingle+inhByRef)∗; (singleByRef)∗. This expression executes first the rules of the first adapter

as long as possible, followed by the rules of the second adapter. This phased execution is needed

since rule multiBySingle creates parent links, which rule singleByRef of the second adapter deletes.

Hence, the concatenation of the adapters’ regular expressions avoids interferences between rules

working on the same element types.

Definition 5.6 defines adapter composition for adaptive languages. The composition for triggered

adaptive languages works the same way, by applying this definition to the adapters of the adaptive

language within the triggered language. Note also that the sequential composition of adapters

(using “;” in regular expressions) is complementary to their parallel composition in the migration

transformation built in step 2 of Definition 4.17 (using “+” and star-iteration in regular expressions).

We could now modify the migration process in Definition 4.17 by searching sequential adapter

compositions that bridge feature changes for which no specific adapter exists. However, this search

can be expensive. Instead, we propose two adapter composition patterns able to solve the problems

identified in Figure 15: context fixers, which handle dependencies between two alternative feature

sets (e.g., Inheritance and Style), and completers, which bridge features in the same alternative set

for which no adapter exists (e.g., Multi and No). As we will see later, these patterns are enough to

organise transformations around pivot features, avoiding the creation of similar adapters.

Completers. A completer for a diff Δ𝑎 within a diff Δ𝑠𝑡 is a diff Δ𝑏 such that the sequential

composition Δ𝑎 ;Δ𝑏 yields a diff compatible with Δ𝑠𝑡 . We distinguish completers from soft completers.
The latter yield a diff that may not be compatible with the context of Δ𝑠𝑡 , however, they are still

useful because that context may be fixed with a context fixer (explained later).

Definition 5.8 (Completer). Given three diffsΔ𝑠𝑡 ,Δ𝑎 andΔ𝑏 , we define the predicates SoftCompleter
and Completer as follows:

SoftCompleter(Δ𝑎,Δ𝑏,Δ𝑠𝑡) ≜ wffComposable(Δ𝑎,Δ𝑏)∧
(𝐹+−𝑎 ⊆ 𝐹+−𝑠𝑡) ∧ (𝐹 −−𝑎 ⊆ 𝐹 −−𝑠𝑡)∧
(𝐹 −+𝑎 \ 𝐹 −+𝑠𝑡 = 𝐹+−

𝑏
) ∧ (𝐹 −+

𝑏
⊆ 𝐹 −+𝑠𝑡) (Δ𝑏 deactivates Δ𝑎 ’s extra activations)

Completer(Δ𝑎,Δ𝑏,Δ𝑠𝑡) ≜ SoftCompleter(Δ𝑎,Δ𝑏,Δ𝑠𝑡)∧
(𝐹++𝑎 ⊆ 𝐹++𝑠𝑡) ∧ (𝐹++𝑏 ⊆ 𝐹

++
𝑠𝑡) ∧ (𝐹 −−𝑏 ⊆ 𝐹 −−𝑠𝑡) (contexts are compatible with Δ𝑠𝑡)

We say that Δ𝑏 is a (soft) completer for Δ𝑎 within Δ𝑠𝑡 .

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Adaptive modelling languages 1:27

Example 5.9. Figure 16 shows a completer for Δ𝑎 (which moves from Multi to Single) within Δ𝑠𝑡
(which changes feature No from unselected to selected). The first column displays whether each

feature is initially selected (+) or not (-), and the subsequent columns depict the result of applying a

diff. The completer Δ𝑏 moves from Single to No, and is both a completer and a soft completer. Taking

this into account, there is no need to build an adapter to move from Multi to No, but instead, we

can sequentially compose an adapter whose diff goes from Multi to Single, with an adapter whose

diff is the completer Δ𝑏 .

Multi

Single

No

Inheritance

s

+-

-+

a b
t

-+

+-

Fig. 16. Composing a diff Δ𝑎 with a completer Δ𝑏 to go from configuration 𝜌𝑠 to 𝜌𝑡 .

The next lemma states that completers do their job, that is, composing them yields a compatible

diff with the given Δ𝑠𝑡 .

Lemma 5.10 (Composing completers). Given diffs Δ𝑠𝑡 , Δ𝑎 and Δ𝑏 s.t. Completer(Δ𝑎,Δ𝑏, Δ𝑠𝑡),
then Δ𝑎 ;Δ𝑏 ⊆ Δ𝑠𝑡 .

Context fixers. A context fixer for a diff Δ𝑎 within a diff Δ𝑠𝑡 is a diff Δ𝑏 that repairs the context
of Δ𝑎 to make the resulting context of the sequential composition Δ𝑎 ;Δ𝑏 compatible with that of

Δ𝑠𝑡 . For this notion, we define a predicate ContextFixer, and three auxiliary ones: FixerApplicable,
PositiveFixer and NegativeFixer. FixerApplicable checks if the delta of Δ𝑠𝑡 includes Δ𝑎 , the context
of Δ𝑠𝑡 includes Δ𝑏 , and the deltas of Δ𝑎 and Δ𝑏 are independent. PositiveFixer checks if Δ𝑏 can fix

the positive context of Δ𝑎 , i.e., unselects the features that Δ𝑎 assumes positively but Δ𝑠𝑡 does not.
Conversely, NegativeFixer checks that Δ𝑏 can fix the negative context of Δ𝑎 .

Definition 5.11 (Context fixer). Given diffs Δ𝑠𝑡 , Δ𝑎 and Δ𝑏 , predicate ContextFixer is defined as:

ContextFixer(Δ𝑎,Δ𝑏,Δ𝑠𝑡) ≜FixerApplicable(Δ𝑎,Δ𝑏,Δ𝑠𝑡)∧
(PositiveFixer(Δ𝑎,Δ𝑏,Δ𝑠𝑡) ∨ NegativeFixer(Δ𝑎,Δ𝑏,Δ𝑠𝑡))

with:

FixerApplicable(Δ𝑎,Δ𝑏,Δ𝑠𝑡) ≜wffComposable(Δ𝑎,Δ𝑏)∧
(𝐹+−𝑎 ∪ 𝐹 −+𝑎) ∩ (𝐹+−𝑏 ∪ 𝐹

−+
𝑏
) = ∅ ∧ (delta of Δ𝑎 and Δ𝑏 are independent)

𝐹+−𝑎 ⊆ 𝐹+−𝑠𝑡 ∧ 𝐹 −+𝑎 ⊆ 𝐹 −+𝑠𝑡 ∧ (delta of Δ𝑎 is included in Δ𝑠𝑡)

𝐹++
𝑏
⊆ 𝐹++𝑠𝑡 ∧ 𝐹 −−𝑏 ⊆ 𝐹 −−𝑠𝑡 (context of Δ𝑏 is included in Δ𝑠𝑡)

PositiveFixer(Δ𝑎,Δ𝑏,Δ𝑠𝑡) ≜𝐹 −−𝑎 ⊆ 𝐹 −−𝑠𝑡 ∧ (negative context of Δ𝑎 is included in Δ𝑠𝑡)

(𝐹++𝑎 \ 𝐹++𝑠𝑡) ⊆ 𝐹+−𝑏 ⊆ 𝐹 −−𝑠𝑡 ∧ (Δ𝑏 deactivates Δ𝑎 ’s extra positive context)

𝐹 −+
𝑏
⊆ 𝐹++𝑠𝑡 (Δ𝑏 ’s activations are compatible with required positive context)

NegativeFixer(Δ𝑎,Δ𝑏,Δ𝑠𝑡) ≜𝐹++𝑎 ⊆ 𝐹++𝑠𝑡 ∧ (positive context of Δ𝑎 is included in Δ𝑠𝑡)

(𝐹 −−𝑎 \ 𝐹 −−𝑠𝑡) ⊆ 𝐹 −+𝑏 ⊆ 𝐹++𝑠𝑡 ∧ (Δ𝑏 activates Δ𝑎 ’s extra negative context)

𝐹+−
𝑏
⊆ 𝐹 −−𝑠𝑡 (Δ𝑏 ’s deactivations are compatible with required negative context)

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1:28 Juan de Lara and Esther Guerra

We say that Δ𝑏 is a context fixer for Δ𝑎 within Δ𝑠𝑡 .

Example 5.12. Given diffs Δ𝑠𝑡 = ⟨⟨{Multi}, {Single}⟩, ⟨{FullAssoc, Interfaces, Methods}, {Ref}⟩⟩,
Δ𝑎 = ⟨⟨{Multi}, {Single}⟩, ⟨{Ref}, {}⟩⟩, and Δ𝑏 = ⟨⟨{Ref}, {FullAssoc}⟩, ⟨{}, {}⟩⟩, we have that Δ𝑏 is a
context fixer for Δ𝑎 within Δ𝑠𝑡 . This is so as: (i) Δ𝑎 and Δ𝑏 can be composed (wffComposable(Δ𝑎,Δ𝑏));
(ii) the changes of Δ𝑎 and Δ𝑏 are disjoint; (iii) the delta of Δ𝑎 is included in the delta of Δ𝑠𝑡 ; (iv) the
context of Δ𝑏 is included in the context of Δ𝑠𝑡 (and so FixerApplicable(Δ𝑎,Δ𝑏,Δ𝑠𝑡)); (v) the negative
context of Δ𝑎 is included in the negative context of Δ𝑠𝑡 ; (vi) the positive context of Δ𝑎 that Δ𝑠𝑡 does
not guarantee (Ref) is exactly 𝐹+−

𝑏
, which is compatible with Δ𝑠𝑡 ’s negative context; and (vii) 𝐹 −+

𝑏

activates a feature (FullAssoc) in the positive context of Δ𝑠𝑡 (and so PositiveFixer(Δ𝑎,Δ𝑏,Δ𝑠𝑡)).
In this example, the composition Δ𝑎 ;Δ𝑏 yields ⟨⟨{Multi, Ref}, {Single, FullAssoc}⟩, ⟨{}, {}⟩⟩, which

unselects Multi and Ref, and selects Single and FullAssoc. However, Δ𝑎 ;Δ𝑏 ⊈ Δ𝑠𝑡 , since {Multi,

Ref} ⊈ {Multi}, and {Single, FullAssoc} ⊈ {Single}. This is to be expected, since we are trying to

apply Δ𝑎 in an initial situation where the positive context of Δ𝑠𝑡 (FullAssoc) is violated by Δ𝑎 (which
assumes Ref). Thus, an implicit diff injector Δ®𝑎 of the form ⟨⟨{FullAssoc}, {Ref}⟩, ⟨{}, {}⟩⟩ is needed.
Figure 17 illustrates this situation, where Δ𝑎 is not applicable to 𝜌𝑠 since 𝜌𝑠 does not have Ref

initially selected. Hence, Δ𝑎 is pre-composed with an implicit injector Δ®𝑎 , and post-composed with

the context fixer Δ𝑏 . Overall, Δ𝑏 reverses the actions of Δ®𝑎 , but fixes the context of Δ𝑎 .

Multi

Single

No

Ref

FullAssoc

Inheritance

Style

s a

+-

-+

++-+

+-

a b
t

+-

-+

Fig. 17. Composing a diff Δ𝑎 with its context fixer Δ𝑏 and its implicit injector Δ®𝑎 .

The following lemma states the usefulness of context fixers, and introduces implicit injectors. A

context fixer Δ𝑏 for a diff Δ𝑎 within Δ𝑠𝑡 repairs the contextual expectations of Δ𝑎 , so that, when
pre-concatenated with the implicit injector Δ®𝑎 , we have Δ®𝑎 ;Δ𝑎 ;Δ𝑏 ⊆ Δ𝑠𝑡 .

Lemma 5.13 (Composing context fixers). Given diffsΔ𝑠𝑡 ,Δ𝑎 andΔ𝑏 s.t. ContextFixer(Δ𝑎,Δ𝑏,Δ𝑠𝑡),
then Δ®𝑎 = ⟨⟨𝐹 −+𝑏 , 𝐹+−

𝑏
⟩, ⟨{}, {}⟩⟩ is the implicit diff injector of Δ𝑎 .

At this point, we need a mechanism for finding adapters whose diffs are context fixers for the diffs

of other adapters. Given adapters 𝑎 and 𝑏, and a diff Δ𝑠𝑡 s.t. Δ𝑏 is a context fixer for Δ𝑎 within Δ𝑠𝑡 ,
we use the notation ®𝑎 = (Δ®𝑎,𝐺𝑇𝑆 = ⟨𝑀𝑀, {}, 𝜖⟩) for the empty injector adapter, which has Δ®𝑎 as
diff, and a graph transformation system without rules. In practice, we use an empty injector adapter

when the first adapter 𝑎 does not read elements of types activated by the features in 𝐹++𝑎 \ 𝐹++𝑠𝑡 (for

positive context fixers) or 𝐹 −−𝑎 \𝐹 −−𝑠𝑡 (for negative ones). However, the adapter 𝑎 is allowed to create

elements of such types, since the second adapter 𝑏 will take care of them. In our example, given

adapter InhByDelegation and its context fixer RefByAssoc, we can use an empty injector adapter, since

InhByDelegation creates references links, which have PC Ref (which is in 𝐹++𝑎 \ 𝐹++𝑠𝑡). On the contrary,

if the adapter 𝑎 does not create, but reads or deletes elements of types activated by features in the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Adaptive modelling languages 1:29

unsatisfied context, then an empty injector is not enough, but it is necessary to find and apply

an existing adapter 𝑐 (with same diff as the implicit adapter) instead. This is so, as adapter 𝑐 will

introduce the elements activated by features in 𝐹++𝑎 \ 𝐹++𝑠𝑡 , so that adapter 𝑎 can use them.

Algorithm 2 (migrAlg) uses completers and context fixers to provide an optimised version of the

procedure to select suitable adapters for model migrations (step 2 in Definition 4.17). The algorithm

receives an adaptive language and two (source and target) configurations as input, and returns the

set of adapters to use in the migration transformation between both configurations as output. First

(lines 1–3), the algorithm selects the set 𝐴𝐷 of all adapters consistent with the diff of the source

and target configurations, just like in Definition 4.17. It also stores the features deactivated (𝑈 +−)
and activated (𝑈 −+) by Δ𝑠𝑡 , but which are not covered by the selected adapters (lines 4–5). Next,

a loop traverses each adapter 𝑎 not selected yet (lines 6–15). The loop first checks if all feature

changes are covered (𝑈 +− and𝑈 −+ are empty), in which case, the algorithm returns the current

set 𝐴𝐷 of selected adapters (line 7). Otherwise, the loop searches for context fixers (lines 8–10),
completers (lines 11–12) and soft completers that can be fixed (lines 13–15).

Algorithm 2 Extended migration generation using context fixers and completers (migrAlg)

Input: 𝐴𝐿 = ⟨𝐿𝑃𝐿 = ⟨𝐹𝑀,𝑀𝑀,Φ⟩, 𝐴⟩ ⊲ Adaptive language as in Def. 4.15

Input: 𝜌𝑠 , 𝜌𝑡 ∈ 𝐶𝐹𝐺 (𝐹𝑀) ⊲ Two configurations of FM
Output: Set(Adapter) ⊲ Set of adapters for migrating from 𝜌𝑠 to 𝜌𝑡
1: 𝐴𝐷 = {𝑎𝑘 ∈ 𝐴 | Δ𝑘 ⊆ Δ𝑠𝑡∨
2: (Δ𝑘 ⊑𝑝𝑟𝑒 Δ𝑠𝑡 ∧ ¬𝑐𝑟𝑒𝑎𝑡𝑒 (𝐹++𝑘 \ 𝐹

++
𝑠𝑡 , 𝐹

−−
𝑘
\ 𝐹−−𝑠𝑡 , 𝑎𝑘))∨

3: (Δ𝑘 ⊑𝑝𝑜𝑠𝑡 Δ𝑠𝑡 ∧ ¬𝑑𝑒𝑙𝑒𝑡𝑒 (𝐹++𝑘 \ 𝐹
++
𝑠𝑡 , 𝐹

−−
𝑘
\ 𝐹−−𝑠𝑡 , 𝑎𝑘))} ⊲ As in Def. 4.17

4: 𝑈 +− = 𝐹+−𝑠𝑡 \
⋃
𝑎𝑘 ∈𝐴𝐷 𝐹

+−
𝑘

⊲ Remaining + to - changes

5: 𝑈 −+ = 𝐹−+𝑠𝑡 \
⋃
𝑎𝑘 ∈𝐴𝐷 𝐹

−+
𝑘

⊲ Remaining - to + changes

6: for (𝑎 ∈ 𝐴 \𝐴𝐷) do
7: if (𝑈 +− = ∅ ∧𝑈 −+ = ∅) then return 𝐴𝐷
8: else if (𝐹+−𝑎 ⊆ 𝑈 +− ∧ 𝐹−+𝑎 ⊆ 𝑈 −+∧ ⊲ Looks for context fixers

9: ∃𝑏 ∈ 𝐴 \𝐴𝐷 · ContextFixer(Δ𝑎,Δ𝑏 ,Δ𝑠𝑡) ∧
10: (inj=getInjector(a, b, Δ𝑠𝑡)) ≠ 𝑛𝑢𝑙𝑙) then Update(inj;a;b)

11: else if (𝐹+−𝑎 ⊆ 𝑈 +− ∧ 𝐹−−𝑎 ⊆ 𝐹−−𝑠𝑡 ∧ 𝐹−+𝑎 ⊈ 𝑈 −+∧ ⊲ Looks for completers

12: ∃𝑏 ∈ 𝐴 \𝐴𝐷 · Completer(Δ𝑎,Δ𝑏 ,Δ𝑠𝑡)) then Update(a;b)

13: else if (∃𝑏 ∈ 𝐴 \𝐴𝐷 · SoftCompleter(Δ𝑎,Δ𝑏 ,Δ𝑠𝑡)∧ ⊲ Looks for soft completers

14: ∃𝑐 ∈ 𝐴 \𝐴𝐷 · ContextFixer(Δ𝑎 ;Δ𝑏 ,Δ𝑐 ,Δ𝑠𝑡)∧
15: (inj=getInjector(a;b, c, Δ𝑠𝑡)) ≠ 𝑛𝑢𝑙𝑙) then Update(inj;a;b;c)

16: return AD

17: function getInjector(𝑎, 𝑏 : 𝐴𝑑𝑎𝑝𝑡𝑒𝑟,Δ : 𝐷𝑖 𝑓 𝑓) : 𝐴𝑑𝑎𝑝𝑡𝑒𝑟

18: if (¬read(𝐹++𝑎 \ 𝐹++, 𝐹−−𝑎 \ 𝐹−− , a)) then return (⟨⟨𝐹−+
𝑏
, 𝐹+−
𝑏
⟩, ⟨{}, {}⟩⟩, ⟨𝑀𝑀, {}, 𝜖⟩)

19: if (∃𝑐 ∈ 𝐴𝐷 · (𝐹+−𝑐 = 𝐹−+
𝑏
) ∧ (𝐹−+𝑐 = 𝐹+−

𝑏
) ∧ (𝐹++

𝑏
= 𝐹−−

𝑏
= ∅)) then return c

20: else return null

21: function Update(𝑎 : 𝐴𝑑𝑎𝑝𝑡𝑒𝑟) : 𝑣𝑜𝑖𝑑

22: 𝐴𝐷 = 𝐴𝐷 ∪ {𝑎}
23: 𝑈 +− = 𝑈 +− \ 𝐹+−𝑎
24: 𝑈 −+ = 𝑈 −+ \ 𝐹−+𝑎

To check for context fixers, if the delta of the considered adapter 𝑎 fits within 𝑈 +− and𝑈 −+ (line
8), there is a context fixer for it (line 9), and there is a suitable injector adapter (line 10), then the

sequential composition of the injector, the adapter and the context fixer is added to the current

adapter set 𝐴𝐷 , and the uncovered activated and deactivated features are updated (function Update

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1:30 Juan de Lara and Esther Guerra

in lines 21–24). Function getInjector is used to check for suitable injectors (lines 17–20). The function

returns an empty injector if the adapter does not read context elements (line 18, checked using

predicate 𝑟𝑒𝑎𝑑 in Definition 4.13); otherwise, it returns an existing adapter with the same diff as

the implicit injector (line 19), or null if none exists (line 20).

To check for completers, if the considered adapter 𝑎 only fails in the activation 𝐹 −+𝑎 (line 11)

and there is a completer for it (line 12), then the sequential composition of the adapter and the

completer is added to the current adapter set 𝐴𝐷 , and the uncovered activated and deactivated

features are updated (line 12). If no completer exists, but a soft completer (line 13) for which there

is a context fixer (line 14) and an injector (line 15), then the composed adapter is added to the

adapter set 𝐴𝐷 , and the uncovered features are updated as before (line 15). Overall, the algorithm

complexity is cubic on the number of adapters.

Remark 5.14. The algorithm checks for adapter compositions of length two (for context fixers

and completers) or three (for soft completers). While this could be generalised to find longer com-

positions, it is enough to deal with feature interactions, and permits organising the transformations

conceptually around “pivot features”. A pivot feature is a feature in an alternative set of a feature

diagram that: (a) has adapters to migrate to all other features in the same alternative set, and (b) the

adapters of other alternative sets use the feature for their migrations. In our example, Ref is a pivot

feature within Style since there are adapters to transform from Ref to FullAssoc, and the adapters

handling the Inheritance alternative set use Ref. This permits context-fixing those adapters, if needed,

with the adapter transforming from Ref to FullAssoc. However, the limitation on the composition

length forces to organise the transformations within an alternative set in two steps. For example,

in Figure 15, No is reachable from Multi in two steps. In general, this is always possible by choosing

a pivot feature that is reachable, and can reach, all other features in one transformation step. In our

example, Single is a pivot feature within Inheritance (there is no adapter from No to Single, but this is

because there are no inheritance relationships to migrate).

Example 5.15. Given configurations 𝜌𝑠 = {Multi, FullAssoc} and 𝜌𝑡 = {No, FullAssoc}, lines 1–5 of
Algorithm 2 build sets 𝐴𝐷 = {}, 𝑈 +− = {Multi}, and 𝑈 −+ = {No}. Lines 8–12 do not find context

fixers or completers. Lines 13–15 find a soft completer (SingleToNo) for adapter InhByDelegation. It

is a soft completer because, even though the positive context of none of the adapters is satisfied

(since they require Ref), line 14 finds a context fixer (AssocByRef). Adapters InhByDelegation and

SingleToNo create references (with PC Ref), but do not read them, so ¬𝑟𝑒𝑎𝑑 ({Ref}, {}, InhByDelegation)
and ¬𝑟𝑒𝑎𝑑 ({Ref}, {}, SingleToNo). Therefore, method getInjector returns an empty injector inj in line

18, and the composition inj; InhByDelegation; SingleToNo; AssocByRef is added to 𝐴𝐷 . At this point,

𝑈 +− and𝑈 −+ are empty and the algorithm returns 𝐴𝐷 .

Overall, without Algorithm 2, the language engineer would need to manually define five adapters

more: versions of InhByDelegation and SingleToNo assuming FullAssoc, a version of InterfacesToNo for

single inheritance, an adapter from Multi to No assuming Ref, and a similar one assuming FullAssoc.

Instead, our algorithm synthesises those adapters by composition of other adapters.

6 ANALYSIS
Next, we present analyses to check the correctness of adapters (Section 6.1); to measure the coverage

of the set of possible migrations by the defined adapters (Section 6.2); and to assert whether a

configuration is reachable from another one via non-empty migrations (Section 6.2).

6.1 Correctness of Adapters
Our migration transformation scheme yields models that are syntactically well-typed, since the

model elements that are not typed by𝑀𝑀𝑡 are removed in the last migration step (cf. Definition 4.17).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Adaptive modelling languages 1:31

Nonetheless, the language designer may create rules that use elements of types that do not belong

to all language configurations where the rule is applicable. As discussed in Example 4.11, these rules

are syntactically correct as they are typed over the 150MM. However, this may indicate a design

error in the rule or in the adapter’s diff. This section presents an analysis technique to detect these

cases. We start defining the compatibility of model elements and models w.r.t. a diff (Definition 6.1),

and then use this notion to define the compatibility at the rule level (Definition 6.3).

Definition 6.1 (Diff-model compatibility). Given a language product line 𝐿𝑃𝐿 = ⟨𝐹𝑀,𝑀𝑀,Φ⟩, a
diff Δ over 𝐹𝑀 , a model𝑀 typed by𝑀𝑀 via morphism 𝑡𝑦𝑝𝑒 , and an element 𝑥 ∈ 𝑀 , we say that:

• 𝑥 is source-compatible with Δ, written src-compatΔ (𝑥,𝑀), if:
Φ(𝑡𝑦𝑝𝑒 (𝑥)) = false ∨ Φ(𝑡𝑦𝑝𝑒 (𝑥)) [true/(𝐹+− ∪ 𝐹++), false/(𝐹 −+ ∪ 𝐹 −−)] = true
• 𝑥 is target-compatible with Δ, written tar-compatΔ (𝑥,𝑀), if:
Φ(𝑡𝑦𝑝𝑒 (𝑥)) = false ∨ Φ(𝑡𝑦𝑝𝑒 (𝑥)) [true/(𝐹 −+ ∪ 𝐹++), false/(𝐹+− ∪ 𝐹 −−)] = true
• 𝑥 is compatible with Δ, written compatΔ (𝑥,𝑀), if: src-compatΔ (𝑥,𝑀)∨tar-compatΔ (𝑥,𝑀)
• 𝑀 is source-compatible with Δ, written src-compatΔ (𝑀), if: ∀𝑥 ∈ 𝑀 ·src-compatΔ (𝑥,𝑀)
• 𝑀 is target-compatible with Δ, written tar-compatΔ (𝑀), if: ∀𝑥 ∈ 𝑀 ·tar-compatΔ (𝑥,𝑀)
• 𝑀 is compatible with Δ, written compatΔ (𝑀), if: ∀𝑥 ∈ 𝑀 ·compatΔ (𝑥,𝑀)

Remark 6.2. Definition 6.1 admits elements whose type’s PC is false. This allows considering

the case of auxiliary elements in meta-models, as is the case of the iface reference in our example,

which is an auxiliary element for the transformation.

A model𝑀 source-compatible with Δ is ensured to be well-typed w.r.t. any meta-model derivable

by any configuration in which Δ is applicable. Conversely, a target-compatible model𝑀 is well-

typed w.r.t. any meta-model derivable by any configuration that may result from applying Δ. A
compatible model𝑀 can have elements typed by meta-models of the source or target configurations.

Next, we define compatibility for rules and adapters. A rule compatible with a diff Δ has NACs

whose elements are compatible with either the source or target configurations, may delete elements

from the source configuration, preserves elements of any of the source or target configurations, and

may create elements of the target configuration. An adapter is compatible with Δ, if all its rules are.

Definition 6.3 (Rule and adapter compatibility). Given an adaptive language 𝐴𝐿 = ⟨𝐿𝑃𝐿,𝐴⟩, an
adapter 𝑎 ∈ 𝐴, and a rule 𝑡𝑟 = ⟨𝐿 𝑙←− 𝐾 𝑟−→ 𝑅, 𝑁𝐴𝐶𝑆 = {𝐿 𝑛𝑖−→ 𝑁𝑖 }𝑖∈𝐼 ⟩ of 𝑎, we say that 𝑡𝑟 is

compatible with a diff Δ, written 𝑐𝑜𝑚𝑝𝑎𝑡Δ (𝑡𝑟), if:
(∀𝑛𝑖 : 𝐿 → 𝑁𝑖 ∈ 𝑁𝐴𝐶𝑆 · compatΔ (𝑁𝑖))∧
src-compatΔ (𝐿 \ 𝑙 (𝐾)) ∧ compatΔ (𝐾) ∧ tar-compatΔ (𝑅 \ 𝑟 (𝐾))

The adapter 𝑎 is compatible with a diff Δ′, written 𝑐𝑜𝑚𝑝𝑎𝑡Δ′ (𝑎), iff ∀𝑡𝑟 ∈ 𝑅𝑆 · 𝑐𝑜𝑚𝑝𝑎𝑡Δ′ (𝑡𝑟).
If a rule’s 𝐾 (which contains the preserved elements) is not compatible with Δ, then it may not

be applicable in every configuration compatible with Δ (since the rule expects elements that cannot

be present in the source or target configurations). If a rule’s NAC 𝑁𝑖 is not compatible with Δ, then
it will always succeed (becoming useless), since 𝑁𝑖 will never be present in the model. For the

same reasoning, the elements deleted by the rule (𝐿 \ 𝑙 (𝐾)) should be source-compatible, and the

elements created by the rule (𝑅 \ 𝑟 (𝐾)) should be target-compatible.

Example 6.4. Consider rule multiBySingle in Figure 9, defined by adapter InhByDelegation with

Δ = ⟨⟨{Multi}, {Single}⟩, ⟨{Ref}, {}⟩⟩. The rule preserves objects p and c, of type Class, which has

PC true, and so compatΔ (𝐾). The rule forbids elements with types Class and parent. The latter has

PC Single, which evaluates to true in target configurations, and so compatΔ (𝑁𝑖). The rule deletes a
parents reference (present in source configurations), and so, src-compatΔ (𝐿 \ 𝑙 (𝐾)). Finally, the rule

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1:32 Juan de Lara and Esther Guerra

creates a parent reference (present in target configurations), and so, tar-compatΔ (𝑅 \ 𝑟 (𝐾)). Hence,
overall, we have compatΔ(multiBySingle).

Our compatibility notion is a heuristic to rule out errors, but a non-compatible rule may still be the

intention of the language engineer. For instance, in Figure 9, rule inhByRef of adapter InhByDelegation

creates a Role object and gives value to its attributes navig (with PC Navig), min and max (with PC

Card), isComp (with PC Comp) and isAggr (with PC Aggr). Hence, we have ¬tar-compatΔ (𝑅 \ 𝑟 (𝐾)).
However, the rule is as intended, because giving value to these attributes avoids creating additional

rules for cases where those features are individually selected. Instead, if these features are not

selected, the last step of the migration will delete the corresponding attribute.

Next, we characterise the global correctness of our migration procedure, based on the local

correctness of the adapters (compatibility with its Δ). The next lemma states that, if an adapter is

compatible with its diff Δ, then it will be compatible with any diff Δ𝑠𝑡 that makes the adapter be

selected by the migration transformation of Definition 4.17.

Lemma 6.5 (Migration compatibility). Let 𝐴𝐿 = ⟨𝐿𝑃𝐿,𝐴⟩ be an adaptive language; 𝜌𝑠 , 𝜌𝑡 ∈
𝐶𝐹𝐺 (𝐹𝑀) be two configurations; and 𝑎 = ⟨Δ,𝐺𝑇𝑆⟩ ∈ 𝐴 be an adapter of 𝐿𝑃𝐿 s.t. 𝑐𝑜𝑚𝑝𝑎𝑡Δ (𝑎). Then:

Δ ⊆ Δ𝑠𝑡 =⇒ 𝑐𝑜𝑚𝑝𝑎𝑡Δ𝑠𝑡
(𝑎)

Δ ⊑𝑝𝑟𝑒 Δ𝑠𝑡 ∧ ¬𝑐𝑟𝑒𝑎𝑡𝑒 (𝐹++ \ 𝐹++𝑠𝑡 , 𝐹 −− \ 𝐹 −−𝑠𝑡 , 𝑎) =⇒ 𝑐𝑜𝑚𝑝𝑎𝑡Δ𝑠𝑡
(𝑎)

Δ ⊑𝑝𝑜𝑠𝑡 Δ𝑠𝑡 ∧ ¬𝑑𝑒𝑙𝑒𝑡𝑒 (𝐹++ \ 𝐹++𝑠𝑡 , 𝐹 −− \ 𝐹 −−𝑠𝑡 , 𝑎) =⇒ 𝑐𝑜𝑚𝑝𝑎𝑡Δ𝑠𝑡
(𝑎)

Finally, Theorem 6.6 states that, if each adapter is compatible with its diff, then it is compatible

with the diff of any source and target configurations over which it is selected by Algorithm 2.

Theorem 6.6 (Extended migration compatibility). Let𝐴𝐿 = ⟨𝐿𝑃𝐿,𝐴⟩ be an adaptive language
s.t. ∀𝑎𝑘 ∈ 𝐴 · 𝑐𝑜𝑚𝑝𝑎𝑡Δ𝑘

(𝑎); and 𝜌𝑠 , 𝜌𝑡 ∈ 𝐶𝐹𝐺 (𝐹𝑀) be two configurations. Then, any adapter 𝑎𝑖
returned by Algorithm 2 for 𝜌𝑠 and 𝜌𝑡 is compatible with Δ𝑠𝑡 (i.e., 𝑐𝑜𝑚𝑝𝑎𝑡Δ𝑠𝑡

(𝑎𝑖)).

6.2 Migration Coverage and Configuration Reachability
Our migration approach can bridge any two language configurations even if the transformation

between them lacks adapters, due to the initial model augmentation and final model restriction

steps (cf. Definition 4.17). However, given a triggered adaptive language, it is important to under-

stand which transitions within a configuration transition system 𝐶𝐹 use non-empty migration

transformations (called covered transition system), and which ones use adapters that altogether

cover all feature changes between their source and target configurations (called totally covered).

Definition 6.7 (Configuration transition system coverage). Given a triggered adaptive language

TALΛ = ⟨𝐴𝐿,𝐶𝐹, 𝜌𝑖𝑛𝑖𝑡 ⟩, we define:
• Covered transition system: 𝐶𝑇𝐴𝐿Λ = {(𝜌𝑖 , _𝑖 𝑗 , 𝜌 𝑗) ∈ 𝐶𝐹 |𝑚𝑖𝑔𝑟𝐴𝑙𝑔(𝐴𝐿, 𝜌𝑖 , 𝜌 𝑗) ≠ ∅}
• Totally covered transition system: 𝑇𝐶𝑇𝐴𝐿Λ = {(𝜌𝑖 , _𝑖 𝑗 , 𝜌 𝑗) ∈ 𝐶𝐹 | 𝑚𝑖𝑔𝑟𝐴𝑙𝑔(𝐴𝐿, 𝜌𝑖 , 𝜌 𝑗) =

𝐴𝑖 𝑗 ∧ 𝑡𝑜𝑡𝑎𝑙 (𝐴𝑖 𝑗 ,Δ𝑖 𝑗)}
where𝑚𝑖𝑔𝑟𝐴𝑙𝑔 corresponds to Algorithm 2, and predicate 𝑡𝑜𝑡𝑎𝑙 receives a set of adapters 𝐴 and a

diff Δ, and is defined as 𝑡𝑜𝑡𝑎𝑙 (𝐴,Δ) ≜ (𝐹+− =
⋃
𝑎𝑘 ∈𝐴 𝐹

+−
𝑘
) ∧ (𝐹 −+ = ⋃

𝑎𝑘 ∈𝐴 𝐹
−+
𝑘
).

The analysis of configuration transition system coverage can help detecting missing adapters by

uncovering migration transformations that are empty (𝐶𝐹 \𝐶𝑇𝐴𝐿Λ) or partial (𝐶𝐹 \𝑇𝐶𝑇𝐴𝐿Λ). Hence,
given a configuration 𝜌 , one can obtain which configurations 𝜌 𝑗 can only be reached from 𝜌 with

empty migrations: {𝜌 𝑗 | (𝜌, _, 𝜌 𝑗) ∈ 𝐶𝐹 \𝐶𝑇𝐴𝐿Λ }. Please note that, given a triggered language, its

totally covered system is a subset of the covered one: 𝑇𝐶𝑇𝐴𝐿Λ ⊆ 𝐶𝑇𝐴𝐿Λ ⊆ 𝐶𝐹 .

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Adaptive modelling languages 1:33

Example 6.8. The full (unrestricted) configuration transition system of our running example

has 82 656 transitions. Our seven adapters cover 60 672 transitions (73.4%), and totally cover

960. Conversely, 21 984 transitions apply empty migrations (26.6%). If we restrict to the four

configurations and five transitions in Figure 14(b), we can check that Design is reachable from

Analysis using an empty migration; Java and C++ are reachable from Design using covered migrations;

and Java and C++ are reachable from each other using totally covered migrations. Since Design

only adds features Methods, Comp, Aggr, and Navig to configuration Analysis, it makes sense for the

migration from Analysis to Design to be empty.

Next, we provide a way to analyse the coverage of feature changes by a set of adapters. It provides

a global view of the reachability space via non-empty migrations, which is more compact than the

previous analysis based on reachable configurations, since the number of configurations may be

exponential on the number of features. Specifically, for each feature 𝑓 , we collect the set of adapters

whose diff requires the feature activation (𝑐𝑜𝑣+− (𝑓)) or deactivation (𝑐𝑜𝑣−+ (𝑓)), and then calculate

the percentage of covered activations and deactivations.

Definition 6.9 (Feature coverage). Given an adaptive language 𝐴𝐿 = ⟨𝐿𝑃𝐿,𝐴⟩ and a feature 𝑓 , we

define the adapter coverage sets for 𝑓 as 𝑐𝑜𝑣+− (𝑓) = {𝑎 ∈ 𝐴 | 𝑓 ∈ 𝐹+−} and 𝑐𝑜𝑣−+ (𝑓) = {𝑎 ∈ 𝐴 | 𝑓 ∈
𝐹 −+}. The feature coverage of 𝐴𝐿 is then a percentage given by:∑

𝑓 ∈𝐹
(
𝑛𝑜𝑛𝐸𝑚𝑝𝑡𝑦 (𝑐𝑜𝑣+− (𝑓)) + 𝑛𝑜𝑛𝐸𝑚𝑝𝑡𝑦 (𝑐𝑜𝑣−+ (𝑓))

)
2 × |𝐹 | × 100.0

where 𝑛𝑜𝑛𝐸𝑚𝑝𝑡𝑦 (𝑆) = 1 if |𝑆 | > 0 and 0 otherwise.

Example 6.10. Our example has 12 selectable features, and so, 24 feature changes are possible (i.e.,

each feature can be individually selected or unselected). Our adapters cover 10 of these changes,

which yields a feature coverage of 41.7%. On inspection, we note that no adapter activates features

Methods, Decorations or their children Comp, Aggr, Navig, and Card. This is to be expected, since

adding or removing methods or association decorations has no impact on migrations.

7 ARCHITECTURE AND TOOL SUPPORT
We have implemented our approach to adaptive languages atop theMerlin tool [25, 30], which

allows defining LPLs (cf. Section 3.3). The new tool, calledMerlin-a, extendsMerlin to support

adaptive languages, including the definition of language adapters, their analysis and composition,

the synthesis of migration transformations, and the generation of adaptive modelling editors.

The website http://miso.es/tools/merlin-adaptive/ permits downloading the tool, and includes

installation and use instructions, as well as the case studies used in the evaluation of Section 8.

Merlin-a provides automation to build and use adaptive modelling languages using the process

depicted in Figure 18, which involves the next steps, to be performed by the language engineer:

(1) Define language variability. First, the language variability is designed as a feature diagram. For

this purpose, the language designer can use FeatureIDE [50].

(2) Design language syntax. As a second step, the abstract syntax of the LPL is defined via a 150MM.

This is just a regular Ecore meta-model, where the PCs are defined as annotations on the

meta-model elements. The notion of meta-model that the tool supports is more expressive than

the one in Definition 3.1, allowing cardinalities, inheritance and OCL constraints. Any Ecore

editor could be used to define the 150MM, but we recommend OCLinEcore
9
as it simplifies

editing OCL constraints and annotations.

9
https://wiki.eclipse.org/OCL/OCLinEcore

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

http://miso.es/tools/merlin-adaptive/
https://wiki.eclipse.org/OCL/OCLinEcore

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1:34 Juan de Lara and Esther Guerra

1. define
language
variability

Feature model

2. design
language
syntax

150% MM

PCs from

4. build
migration
adapters

3. identify
relevant
configs.

language
configurations

adapters and
rules

5. generate
adaptive
editor

6. customise
triggers

valid configurations of

adaptive editor
with custom hooks

adaptive tree
editor

migrate
between

builds models of language configurations

uses usesdefines
variants of

Fig. 18. Steps for generating an editor for an adaptive modelling language.

(3) Identify relevant configurations. The language designer specifies the subset of configurations
that are relevant for the language, or alternatively, selects all configurations. In the former case,

the individual configurations can be defined using FeatureIDE.

(4) Build migration adapters. The adapters to migrate between the relevant configurations are

created.Merlin-a provides a textual DSL for their specification, and relies on the transformation

language Henshin [5] to define the rules. At this stage, the language designer can use the

analysis methods described in Section 6 to analyse: (i) the correctness of the adapters, and

(ii) the coverage of the configurations of interest and the language features by the adapters.

Section 7.1 will provide further details on the DSL and the supported analyses, and Section 7.2

will display screenshots of their use within Merlin-a.

(5) Generate adaptive editor. At this point,Merlin-a can automatically generate a modelling editor

for the adaptive language. The editor permits creating models of the selected language variants,

and migrates the models when the language variant in use changes.

(6) Customise triggers. Optionally, the language engineer can customise the editor with hook

methods on GUI events, to trigger language reconfigurations. To facilitate regenerating the

editor (step 5), but still preserve the manually added code, this manual code is encapsulated

into event classes (e.g., OnEdit) with protected regions to prevent it from being overwritten.

This process does not need to be sequential, but may have iterations. For example, languages

with many variants are typically developed iteratively, adding one or a few variants and their

adapters in different iterations. As the following subsections will explain, our use of code generation

techniques allows for quick editor re-generation while preserving any manually added code.

In the remainder of this section, we describe the tool architecture (Section 7.1), the facilities

for defining adaptive languages (Section 7.2, steps 1–4), and those for generating and using the

adaptive modelling language editors (Section 7.3, steps 5–6).

7.1 Architecture
Figure 19 shows the architecture of Merlin-a, which is an Eclipse plugin. It uses the Eclipse

Modeling Framework (EMF) [68] as the underlying (meta-)modelling technology, Henshin [5] for

creating the adapter rules, FeatureIDE [50] for defining and handling the language variability via

feature models, and Xtext
10
to support specifying the adapters using a textual DSL.

Components 1 to 4 in Figure 19 support the definition of adaptive languages. Our tool relies

on FeatureIDE (label 1) to handle the language variability. Merlin-a provides an extension to

FeatureIDE that enables the definition of LPLs (label 2). Hence, in the first place, the language

10
http://www.eclipse.org/Xtext/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

http://www.eclipse.org/Xtext/

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Adaptive modelling languages 1:35

ADAPTEREDITOR FEATUREIDE
1

«imports»

«generates»

ADAPTER
ANALYSER

configs feature
model

MERLIN-A CORE
2

150 MM

HENSHIN
3

adapter
rules

4

adapters

«imports» «imports»

EMF

ADAPTIVE
LANGUAGE

GENERATOR

5JET
templates

«input»«input» «input»

language
engineer

language
user models

current
language
variant

ADAPTIVE
LANGUAGE

EDITOR

migration
transf. 6

MERLIN
CORE

ComposerECLIPSE

Fig. 19. Architecture of Merlin-a.

engineer needs to create a FeatureIDE project selecting theMerlin-a extension, define a feature

model, and specify the feature configurations corresponding to the allowed language variants.

Then, the engineer must define the 150MM with all language variants superimposed. The 150MM
is a regular Ecore meta-model, where the PCs are specified as annotations on the meta-model

elements. Merlin-a relies on Merlin to validate the correctness of the specified 150MM, both

syntactically (e.g., no language variant has inheritance cycles) and semantically (e.g., all PCs are

satisfiable, the OCL constraints in all variants are satisfiable). See [25, 30] for more details.

Next, the language engineer defines the adapter rules using Henshin (label 3), and the adapters

themselves using a dedicated textual DSL (label 4). Figure 20 shows the meta-model of this DSL,

whereby an AdapterModel has a name, stores the path of the ecore and Henshin files with the 150MM
and the rules, and comprises a collection of adapters. Each Adapter has a name, a set of rules, and a

configuration diff (context and delta). Section 7.2 provides more details about the editor.

AdapterModel

name: String
ecore: String
transformation: String

Adapter

name: String
rules: String[*]

ConfigDiff

ConfigDelta

ConfigContext

ConfigTuple

posSet : String[*]
negSet : String[*]

adapters
*

cfgDiff

delta

context

Fig. 20. Meta-model of the textual DSL for adapter definition.

Merlin-a integrates an analyser (label 4 of Figure 19) that reveals non-compatible rules and

the reasons for non-compatibility, as described in Section 6.1. In addition, the analyser reports on

the adapters that use each language feature. This report is divided into deactivated (+-), activated

(-+), positive (++) and negative context (--), depending on where the feature appears. This way, the

analysis can be used to understand the coverage of feature (de)activation by adapters, as described

in Section 6.2. If no adapter covers the activation of a feature, then a migration into a configuration

where the feature is activated will not create elements whose type is guarded by the feature.

Conversely, if no adapter covers the deactivation of a feature, then a migration into a configuration

where the feature is deactivated will not handle elements whose type is guarded by the feature.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1:36 Juan de Lara and Esther Guerra

By default, these elements will be deleted by the migration. If a feature is not covered, it does not

mean there is an error, but coverage serves to trace the language features explicitly considered by

the migrations.

As Section 7.3 details, our tooling also integrates a generator of adaptive editors (label 5 of

Figure 19). This is built atop the EMF generation facility for tree-based modelling editors. The

generated editors (label 6) support language reconfiguration and model migration.

7.2 Tool Support: Definition of Adaptive Languages
Figure 21 showsMerlin-a being used to define the adaptive language of the running example. The

panel with label 1 corresponds to the editor of the adapter definition DSL. The displayed listing

specifies the language name (AdaptiveClassDiagrams) in line 1, the ecore file with the 150MM in line

2, the Henshin file containing the rules in line 3, and then the adapters including their diff and the

name of their Henshin rules. The editor features code completion on possible rule names (those

defined in the Henshin file, cf. label 2) and feature names (those defined in the feature diagram, cf.

label 3). It also integrates validators for the diffs, e.g., checking their well-formedness.

1 2

3

4

5 6

Fig. 21. Merlin-a in use for specifying the Class Diagrams adaptive language.

The panel with label 2 displays the Henshin editor. It allows creating the migration rules, which

are typed by the 150MM. FeatureIDE provides an editor for the feature diagram (label 3), another to

create valid configurations, and tools to analyse the feature diagram. As the project explorer shows

(label 4), these artefacts are stored within a FeatureIDE project.

The view with label 5 provides coverage information. It displays a matrix where the rows are the

non-mandatory features, and the columns are possible uses of the feature within a diff (+-, -+, ++,

--). Each cell shows the adapters that use the feature. Finally, the view with label 6 displays errors

and warnings detected by the compatibility analysis of Definition 6.3.

7.3 Tool Support: Generation and Usage of Adaptive Language Editors
EMF provides built-in support to generate tree editors for Ecore-based languages by means of a

model-to-text template language called Java Emitter Templates (JET)
11
. In particular, EMF provides

11
https://projects.eclipse.org/projects/modeling.m2t.jet

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

https://projects.eclipse.org/projects/modeling.m2t.jet

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

Adaptive modelling languages 1:37

a set of predefined JET templates that generate Java code implementing the editor for a given

regular (i.e., non-adaptive) Ecore meta-model.

In Merlin-a, we have included a generator (label 5 in Figure 19) that overwrites those templates

to extend the generated tree editor with support for language adaptation. The generator is invoked

using a contextual menu. It receives a 150MM, an adapter specification, and a set of feature configu-

rations of interest, and synthesises a tree editor for the adaptive language together with migration

transformations between the language variants corresponding to the given configurations.

The language users can use the generated editor to build models in the selected language variant

(label 6 in Figure 19). The editor is an Eclipse plugin, and has a menu to select the language variant

in use. This selection triggers the migration of the current model to the new language version. The

editor dynamically inspects the current language variant and adapts its behaviour accordingly,

hiding the menus and fields for creating and editing objects and features unsupported in the current

language variant, and omitting the checking of the cardinality and OCL constraints absent from

the current configuration. The editor includes hook methods that are called upon certain events,

like saving or editing the model. The language designer can use these hooks to specify triggering

conditions for language reconfigurations, e.g., based on the analysis of the user editing actions or

the result of OCL queries evaluated on the model. Technically, we generate separate template hook

classes (OnEdit, OnSave) with a common interface (IHook). To activate a hook, the language designer

needs to fill in a method of these classes – which is generated empty – to perform actions when the

event occurs. The common IHook interface has default methods with useful functionality, which

can be called from the implementing classes. For example, it provides methods to execute OCL

queries – passed as Strings – on particular objects or resources. The hook classes have protected
regions that prevent overwriting the manually created code if the editor is regenerated.

Figure 22 displays some screenshots of the generated tree editor for the running example, where

no hook code has been manually added. Label 1 shows the model-creation wizard, which extends

the standard one with a combo-box to select the initial language configuration (Analysis in the

figure). Label 2 shows the tree editor, which is used in the standard way to create models of the

selected configuration. Our generator modifies the file name displayed in the top node of the

model (after platform:) to display the current language version (Analysis). When modelling, the

hooks are evaluated in the background and may trigger language reconfigurations. In addition,

the editor includes by default a contextual menu Adaptation that permits changing to a different

language configuration. When a language configuration is selected, the migration transformation is

executed and the model updated (label 3). As an example, the figure shows the adaptation depicted

in Figure 12 from Analysis to Java.

8 EVALUATION
Next, we evaluate the approach to answer the following research questions (RQs):

RQ1: How feasible is it to specify adaptive languages in practice?
RQ2: How efficient is the adaptation process at runtime?

To dig into RQ1, we compare the number of rules required by our approach, w.r.t. the number of

rules required by a naive approach where each migration transformation is specified separately

in an explicit way. Moreover, we analyse the reduction in the number of rules that our sequential

composition of adapters brings. Hence, we study these two follow-up RQs:

RQ1.1: What is the specification size reduction of using adapters w.r.t. a naive approach?
RQ1.2: What is the specification size reduction achieved by the sequential composition of
adapters?

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1:38 Juan de Lara and Esther Guerra

1 2

3

Fig. 22. Generated adaptive (tree-based) model editor for the running example.

To answer RQ2, we measure the adaptation time of models of increasing size, for migrations

between different variants of an adaptive language.

In the following, Sections 8.1 and 8.2 answer the RQs, and Section 8.3 discusses threats to validity.

8.1 RQ1: Specification Size of Adaptive Languages
8.1.1 Experiment design. To evaluate RQ1, we developed six case studies, available at https://miso.

es/tools/merlin-adaptive/examples.html. They are families of well-known notations, variants of

which have been reported in the literature, but never as adaptive languages.

• Adaptive class diagrams. This is the running example. It considers variants of class diagrams

with/without interfaces, associations and methods, as well as variants with multiple, single, and

no inheritance. The adaptation in this case is useful when using the language in different project

phases (e.g., analysis, design, detailed design) or within a learning scenario. For the adaptation,

we have designed adapters that bridge the different types of inheritance (using interfaces and

delegation when moving frommultiple to single inheritance, and interfaces are available), replace

associations by simple references and vice versa, and substitute interfaces by abstract classes

when the former are not available in a language variant.

• Adaptive Petri nets. The purpose of this adaptive language is to adapt the Petri net model

to the user needs, moving to variants with sophisticated primitives when requiring a more

expressive language, and to simpler variants when analysis capabilities are required. The language

considers Petri nets [52] with tokens represented either as objects or as an integer attribute; arcs

with/without weights; transitions with/without priority; variants with/without inhibitor, read

and reset arcs; variants with/without bounded places; and variants with/without hierarchy. We

have defined three sets of adapters. The first set moves from a complex to a simple variant, by

expressing one primitive (e.g., read arcs) in terms of patterns of simpler primitives (e.g., parallel

simple arcs in each direction). Hence, this set of adapters removes read arcs, weights from arcs,

inhibitor arcs, bounded places, and the net hierarchy. The second set of adapters replaces patterns

of a simple language variant by a primitive of a more sophisticated language variant. They detect

arc loops to create read arcs, and parallel arcs to create weighted arcs. The third adapter set

moves between alternative language realisations: tokens as objects or as attributes.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

https://miso.es/tools/merlin-adaptive/examples.html
https://miso.es/tools/merlin-adaptive/examples.html

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

Adaptive modelling languages 1:39

• Adaptive process modelling. We have built an adaptive process modelling language to fit different

modelling scenarios. The language has variability on the available gateway types (parallel split,

synchronisation, simple merge, exclusive choice, and multi-choice), the task types (hierarchical,

initial and final, where the two latter can be mandatory or optional), and the representation of

flows between elements either as intermediate objects or references. The adaptation capabilities

enable changing the language style (with/without mandatory initial and final states, with flows

represented as objects or relations) and the level of support for gateway types. Similar to the

Petri nets case, we have defined adapters into simpler language variants, which replace complex

gateways by patterns of primitives of simpler language variants.

• Adaptive relational databases. This adaptive language permits specifying database schemas, and

optionally, their content data. The language has variants with/without primary and foreign

keys; indices; and default values, unique values, and value auto-increment for columns. It also

considers variants with either a closed set of data types, or an open set of data types represented

as objects or attributes. The adapters bridge variants with open and closed data types. They also

infer whether a column can be null from the available data, or be declared as unique.

• Adaptive state machines. This adaptive language has variants with a choice of the following

features: transitions that are timed, have event triggers, or are immediate; guarded transitions

and actions; hierarchical states, concurrent states, and states with entry, exit or do actions;

pseudostates of types condition, (deep) history, and forks/joins; and executable machines. The

adaptiveness permits moving between language variants tailored to the expressive power required

at a certain moment. The defined adapters replace primitives by patterns: when exit actions are

not available for states, these are moved to the output transitions (and similar for entry actions);

condition pseudostates are replaced by standard transitions (concatenating the incoming and

outgoing transitions); immediate transitions are replaced either by timed or event transitions

depending on availability; and hierarchy is flattened when no longer available.

• Adaptive multi-level modelling.Multi-level modelling [27] permits modelling using any number

of meta-levels, and not just two (meta-model and model). This results in simpler models in some

scenarios [7]. Researchers have proposed different realisations of this approach [35], each with

their own meta-modelling facilities and variants of them. To allow their inter-operability, we

have designed an adaptive language which encompasses variants of the most common primitives

within those multi-level proposals, provides different degrees of flexibility, and enables moving

between variants depending on the modelling needs. For example, one may start using the

primitives of one tool (e.g., Melanee [6]) and then change to another (e.g., with leap potency, as in

MetaDepth [22]) when needed. At any point, the language can be adapted back (e.g., to Melanee),

so that the adapters will express the unavailable primitives in terms of the available ones. Overall,

the language allows choosing different degrees of conformance flexibility (e.g., cardinality checks,

objects with abstract type), mechanisms for information extension (e.g., inheritance between

objects, untyped objects and features), different flavours of potency (e.g., range [58], leap [26]),

and the possibility to have multiple classifiers for objects, abstract classifiers, or assigning levels to

models. The language adapters express abstract clabjects by using 0 potency; create appropriate

subclasses to emulate multi-typing when multiple classification is no longer available; calculate

model levels and element potency when those features become available; express leap potency

with normal potency; and create proper types for untyped elements if these are disabled.

8.1.2 Results. Table 1 reports some metrics on the structure of the defined adaptive languages.

The first column shows the language name; the next four columns report the size of the 150MM
in terms of the number of classes, attributes, references and PCs; and the last three columns

characterise the language variability by the number of features of the feature model (in parenthesis,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1:40 Juan de Lara and Esther Guerra

the number of non-mandatory ones, i.e., those that are selectable), alternative feature sets, and valid
configurations. Overall, the 150MM sizes range from 7 to 16 classes

12
, from 1 to 14 attributes, from

7 to 15 references, and from 14 to 19 PCs. The feature models have between 14 and 26 features,

leading to languages with 256 to 27 648 variants. Four adaptive languages have alternative feature

sets. The class diagrams language has 2 alternative sets (cf. Figure 6), and the other languages have

0, 1 or 3.

Table 1. Metrics for the case studies: Structure.

Size of 150MM Feature Model
Language Class Attrs. Refs. PCs Features Alternative Configs.

(selectable) feature sets
Class diagrams 7 13 14 16 17 (12) 2 288

Petri nets 7 6 15 18 14 (9) 1 256

Process modelling 11 1 7 14 21 (15) 3 1 920

Relational DDBB 9 12 14 19 16 (11) 1 576

State machines 16 12 7 19 21 (17) 0 12 288

Multi-level modelling 8 14 11 19 26 (19) 0 27 648

Table 2 focusses on the adaptiveness specifications of the languages. For each adaptive language,

the first three columns show the number of language adapters, the total number of defined rules

(in parenthesis, the average number of rules per adapter), and the feature coverage (percentage

of activated or deactivated individual (selectable) features for which there is an explicit adapter,

cf. Section 6.2). Then, the next two columns provide metrics on our mechanism for the sequential

composition of adapters, counting the total number of context fixers and completers that this

mechanism discovers (in parenthesis, the fixers and adapters that are unique, cf. Section 5). Finally,

the last five columns report the total number of possible migration transformations between

language variants (i.e., to go from each language variant to each other language variant), the

migration transformations that are unique as a result of Algorithm 2, the average number of

adapters per transformation, the average number of rules per transformation, and the total number

of rules in the unique transformations.

Table 2. Metrics for the case studies: Adaptiveness.

Language Adapters Seq. Composition Migration Transformations
Language Adapt. Rules Feature Fixers Complet. Possible Unique Average Average Total

(avg.) cover. (unique) (unique) adapters rules rules
Class diagrams 7 12 (1.7) 45.4% 3 (3) 2 (2) 82 656 22 1.4 3.0 66

Petri nets 10 18 (1.8) 61.1% 40 (4) 0 (0) 65 280 117 2.7 6.2 726

Process modelling 14 18 (1.3) 46.7% 4 064 (9) 0 (0) 3 684 480 2 609 5.4 13.4 34 961

Relational DDBB 6 11 (1.8) 31.8% 0 (0) 8 (2) 331 200 28 1.9 3.8 107

State machines 6 13 (2.2) 14.7% 0 (0) 0 (0) 150 982 656 139 3.3 7.2 1 001

Multi-level mod. 10 19 (1.9) 26.3% 0 (0) 0 (0) 764 384 256 319 4.0 5.5 1 755

The number of unique migration transformations is much lower than the total number of

possible migrations (which is the number of configuration pairs). Transformations between pairs of

configurations are identical if they select the same adapters. This is so if changes in some features,

or the fact that some features remain selected or unselected, are irrelevant for the migration task.

For instance, in our running example, it does not matter whether feature Aggr is selected or not, as

12
The table reports one extra class and four extra references for the adaptive class diagrams compared to Figure 7(a). It

corresponds to the root class that is customary in EMF meta-models, and the composition references this class defines.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

Adaptive modelling languages 1:41

migrations do not need to do anything special. Thus, migration transformations will be the same

between two pairs of configurations that only differ in the selection value of feature Aggr.

We can observe in Table 2 that all adaptive languages required a moderate number of adapters

(between 6 and 14) and rules (between 11 and 19), independently on the number of language

configurations. We used our toolMerlin-a to produce migration transformations between every

two configurations. In the first four case studies, our optimised algorithm for sequential adapter

composition generated between 2 and 9 unique context fixers or completers, which were reused

from 2 to 4 064 times. These high numbers for Process modelling (9 unique context fixers, reused 4 064

times) is explained because this adaptive language has the largest number of alternative sets (3), and

from the 4 languages with alternative sets, it has the highest number of configurations (1 920). This

way, our migration mechanism was able to bridge many pairs of language configurations, ranging

between 65 280 and more than 764 million. For this purpose, the algorithm generated between 22

and 2 609 unique transformations, by using between 1.4 and 5.4 adapters in average. In average,

these transformations contain between 3 and 13.4 rules.

8.1.3 Answering RQ1. Next, we answer RQ1 and its follow-up questions.

RQ1: How feasible is it to specify adaptive languages in practice? The effort required to specify both

the structure and adaptiveness of the adaptive languages is moderate. For the former, the overall

size of the 150MMs ranged from 33 to 54 elements (including classes, attributes, references and PCs).

Regarding adaptiveness, the language specifications had between 6 and 14 adapters, and between

11 and 19 rules.

RQ1.1: What is the specification size reduction of using adapters w.r.t. a naive approach? The effort

reduction of using adapters compared to the naive approach of defining each migration transfor-

mation by hand is considerable. For the case studies, the naive approach requires defining between

22 and 2 609 transformations, with an overall number of rules between 66 and 34 961. Instead, we

created between 6 and 14 adapters per language, and an overall number of rules between 11 and 19.

RQ1.2: What is the specification size reduction achieved by the sequential composition of adapters?
The composition mechanism created either context fixers or completers for the first four case

studies, which were the cases with alternative feature sets. In these cases, our approach saved the

construction of between 2 to 9 adapters. Defining those adapters manually would have meant an

increase between 66.7% and 85.7% on the number of adapters defined.

8.2 RQ2: Adaptation Efficiency at Runtime
8.2.1 Experiment design. To address this RQ, we measured the model migration time between

variants of the same adaptive language, for models of increasing size. Specifically, we considered the

adaptive class diagrams running example, and the five migrations between configurations Analysis,

Design, Java and C++ depicted in Figure 14(b). For each configuration, we created 10 random models

with 10, 50, 100, 200, 500 and 1 000 objects (10 models of each size). To ensure realism, we used

probability distributions for the number of objects per type (classes, attributes, methods, interfaces,

roles, associations), as reported in language usage studies for meta-models [8]. Additionally, 25% of

the classes were randomly assigned between 1 and 3 parent classes (only 1 if the language variant

did not support multiple inheritance, as is the case for Java). Similarly, 25% of the classes were

randomly set to implement between 1 to 3 interfaces, if permitted by the configuration.

The experiments were executed on a Windows 11 machine with Intel iCore 9 CPU and 32Gb of

RAM. To reduce possible effects of non-determinism (e.g., rule matches, operating system processes),

we repeated each execution 10 times, restarting the tool, and taking the median of the times [38].

The raw data are available at: https://miso.es/tools/merlin-adaptive/runtimeEval.html.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

https://miso.es/tools/merlin-adaptive/runtimeEval.html

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

1:42 Juan de Lara and Esther Guerra

8.2.2 Results. Table 3 shows the adaptation time, in milliseconds, for each migration and model size

(more precisely, the medians of the migration execution time for the median of the 10 executions

of the 10 models of each size). This time includes loading and executing the transformation, as

well as the model augmentation/restriction steps (cf. Definition 4.17). The time does not include

the generation of the migration transformations, as our implementation pre-computes and caches

these transformations for each configuration transition of interest. Figure 23 shows the results

graphically.

Table 3. Adaptation time (in ms) for models of increasing size of the adaptive class diagrams language.

Model size
Migration 10 50 100 200 500 1 000
Analysis-Design 4.75 2.75 2 3 3.5 4

Design-Java 5.75 9 15.75 108 2 937 39 170.75

Design-C++ 3.5 3 5.75 14 175 1 225.5

Java-C++ 2.25 2 2.5 2.75 3.25 3.75

C++-Java 4 11.5 12.75 22.75 110 654.75

1

10

100

1000

10000

10 50 100 200 500 1000

ad
ap

ta
ti

on
 ti

m
e

(m
s)

model size (# objects)
Analysis-Design Design-Java Design-Cpp Java-Cpp Cpp-Java

Fig. 23. Results of the experiment for RQ2 (vertical axis in logarithmic scale).

Overall, with the exception of two cases, the times are below 1.3 seconds. The Analysis-Design

migration uses an empty transformation, making it one of the quickest. Both Design-Java and Design-

C++ are non-totally covered migrations (cf. Example 6.8), and require converting full associations

into references. However, Design-Java is significantly more costly as it needs to convert frommultiple

to single inheritance as well. For instance, Design-Java takes almost 3 seconds for models with

500 objects. Finally, both migrations between configurations Java and C++ are totally covered

transformations (cf. Example 6.8). The Java-C++ migration is among the quickest ones, as it only

involves a straightforward bridge between single and multiple inheritance. Instead, C++-Java is

more time-consuming because it must convert from multiple to single inheritance.

8.2.3 Answering RQ2: How efficient is the adaptation process at runtime? In our experiment with

models containing up to 1 000 objects, most adaptations are fluid, typically taking only a few

milliseconds. The only exception is the Design-Java migration, where models of 500 objects have

delays of almost 3 seconds, and those with 1 000 objects can take up to 39 seconds. This long

adaptation time is due to the complex transformation required to emulate multiple inheritance with

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

Adaptive modelling languages 1:43

interfaces and delegation. This makes it highly sensitive to the number of inheritance relationships

in the model. In our experiment, 25% of the classes were set to have inheritance. Reducing this to

15% yields median execution times of 24.5 seconds for models of size 1 000, while increasing it to

30% yields a median of 54.5 seconds. We argue that such large models are unlikely in this domain.

Contrary to standard model-to-model transformations, designed to bridge likely very different

languages, our migration transformations bridge variants of the same language, which typically

results in fast adaptations.

8.3 Threats to Validity
Regarding internal validity, for RQ1, we created adapters between language features when this

made sense. We cannot claim that it is not possible to define further adapters for some of the case

studies, however, that would not change substantially the assessment on the feasibility of defining

adaptive languages, or the gains to specify migrations w.r.t. a naive approach.

Regarding construct validity, RQ1.1 and RQ1.2 assess specification size reduction by measuring

the decrease in the number of migration transformations and rules. However, these RQs do not

evaluate effort reduction due to the use of adapters. For instance, our approach has the overhead of

devising suitable adapters and their diffs, though this can be seen as a way to organise rules into

migration transformations, which any naive approach should do manually in one way or another.

Another possible overhead is related to testing the correctness of migrations. While we provide

some analyses for adapters, we currently lack specific facilities for testing migrations within an

adaptive language. Thus, while we argue that effort is correlated with specification size, only a

user study can confirm this hypothesis. For RQ2, we used random models of increasing size, using

probability distributions for the number of objects to emulate realistic models. Some migrations –

notably Design-Java – are sensitive to model features like the number of inheritance relationships.

We reported its effect, but perhaps other model characteristics may influence the execution time

of other migrations. To reduce the effects of non-determinism in the execution times, we run

each migration on each model 10 times, taking the median. Also for RQ2, our implementation

pre-computes the migration transformations between the configurations of interest. It can be

argued that other implementations may generate those migrations dynamically, in the adaptive

editor. In any case, this generation time has very low impact in our experiment, with a median of

110 milliseconds.

With respect to external validity, themain threat for RQ1 is the limited number of case studies (six).

To minimise this threat, we selected representative modelling languages targeting both structural

system descriptions (class diagrams, relational schemas, multi-level modelling) and behaviour

definition (Petri nets, process modelling, state machines). A related threat is the limited meta-model

size of the case studies (between 7 and 16 classes). We argue that the main issue with specification

scalability is not the size of the meta-model, but the size of the variability space (i.e., the number of

language configurations) which in our evaluation ranges from 256 to 27 640. We reckon that larger

meta-models may provide room for more variability, and new features may require additional

adapters to bridge models of the new language variants. Still, in our case studies, the cost of building

an adapter was relatively cheap, since each adapter required a low number of rules (between 1.3

and 2.2 in average). We hypothesise that the reason is that these transformations adapt models

within the same language. Hence, they do not need to bridge wildly different languages, as might

be the case for standard model-to-model transformations. While we expect that this is also the

case for larger meta-models, stronger results would be obtained by more case studies, which we

will tackle in future work. Similarly, the main external threat for RQ2 is the limited number of

migrations measured (five). To mitigate this threat, we selected a variety of transformations (empty,

covered, and totally covered).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

1:44 Juan de Lara and Esther Guerra

9 RELATEDWORK
Next, we revise related works on techniques to deal with families of modelling languages (Sec-

tion 9.1), flexible modelling (Section 9.2), specification of adaptive systems (Section 9.3), mechanisms

for model migration and transformation (Section 9.4), and configuration diffs (Section 9.5).

9.1 Families of Modelling Languages
Several researchers have recognised the usefulness of defining product lines of modelling languages

to enable language reuse [14, 24, 30, 33, 55, 80]. They typically rely on feature models to represent

the language variability, and use approaches either compositional (building the language out of

components) [14, 24, 33] or annotative (building the language by removing elements) [30, 55, 80].

We opted for an annotative approach to facilitate defining adapters, since the rules are typed by

the 150MM. Adaptive languages go beyond LPLs because they consider adaptation triggers and

model migration across language variants.

Transformational approaches to model variability, like delta-modelling [19], specify variants of a

core model by a set of deltas that describe modifications on this core model [31]. Delta-modelling

has been mainly applied to specify model variants [31]. Even though it can also be used to specify

meta-model variants [56], to support a notion akin to adaptive languages, it should be complemented

with corresponding migrations at the model level, and triggers for language reconfiguration.

Multi-level modelling [27] can also be used to define language families as specialisations of a

generic language. In [23], we combined a product-line approach with multi-level modelling to

enable the customisation of generic languages, which can be specialised via instantiation. However,

that approach does not consider model migrations or adaptation triggers.

Close to our motivation, Hedy [32] is a Python-based gradual programming language for children

education. It has five increasing levels of sophistication, to be used as programming expertise is

gained. Similarly, adaptive languages may define several language configurations to be used in a

learning process. All variants of Hedy are compiled into Python, but there is no transfer of programs

between levels. Instead, adaptive languages support model migration across language variants.

Related to the previous work, van der Storm and Hermans [75] investigate the definition of

textual gradual languages. Instead of building a parser for each language variant, they propose the

gradual extension of grammars with (and deprecation of) syntactic constructs in consecutive levels,

and syntax internationalisation. Our adaptive languages go beyond, since we consider migration

between language versions (which do not need to be considered as a sequence of levels) and trigger

mechanisms for language reconfigurations.

9.2 Flexible Modelling
Flexible modelling approaches [29] advocate the benefits of flexibility in modelling. They allow

customising the conformance relationship, which enables the creation of modelling languages

bottom-up [45, 85] or dealing with inconsistent models [29]. This makes modelling languages

adaptable to different usages, from informal discussion to precise modelling aiming at code genera-

tion. This goal is in common with our notion of adaptive languages. However, flexible modelling

approaches do not provide an explicit definition of language variants that offer users different

primitive sets.

Kite [29] and Dandelion [49] are two flexible modelling tools that support the definition of

process models governing the relaxations of the conformance checks to be made on a model w.r.t.

its meta-model. While this can be seen as a light form of adaptation, these tools do not consider an

explicit definition of language variants, or the migration of models between variants.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

Adaptive modelling languages 1:45

9.3 Modelling of Adaptive Languages and Systems
Self-adaptive systems [15, 42] modify their behaviour to achieve their goals. To do so, they exhibit a

MAPE-K control loop to monitor their state and context, analyse whether an adaptation is required,

choose the adaptation, and execute it. As described in Section 4.4, our triggered languages make this

loop explicit to govern the modelling language adaptation. However, even if sharing similarities,

many self-* features of autonomic computing, like self-healing or self-protection, do not apply in

our setting. Moreover, our setting involves one adaptive element (the language, with one control

loop) and not distributed networks of adaptive elements.

There is extensive work on modelling for adaptive systems [15, 16, 84]. The modelled systems fre-

quently perform their adaptations using a MAPE-K loop [42], which is explicit. From the modelling

perspective, research lines include the proposal of requirement languages able to cope with the

uncertainty of the adaptive systems [4, 81], or modelling languages to express adaptation strategies

and utility functions and analyse their consequences [17, 53]. Instead, in adaptive languages, the

system being adapted is the language itself. As Section 4.3 showed, our adaptation loop permits

designers of adaptive languages to include adaptation triggers based on knowledge about, e.g., the

modelling history, similar models, or language usage patterns.

Jouneaux et al. propose the notion of self-adaptive language [37] as a language that adapts its

run-time semantics depending on contextual conditions, to obtain some trade-off. For example, a

language that trades computation accuracy by execution time when the CPU load increases, or a

robotics language that trades robot displacement time by energy saving. Adaptivity is achieved by

incorporating feedback loops within the virtual machine [36], and prototype implementations are

evaluated using Truffle. The authors propose a research roadmap, arguing that adaptations could

also be supported at the language level by adding a language design feedback loop. They discuss

that such a language adaptation could be based on a fixed set of features (as we do), or on an open

set. The latter would allow adding new primitives to the language when discovering recurring

patterns on how it is used. They propose a reference framework, called L-MODA, that considers both

run-time and design-time feedback loops. Our notion of adaptive modelling language focuses on the

design-time feedback loop, offering concrete mechanisms, architecture and tooling for its realisation.

L-MODA envisions the utility of the design-time feedback loop for language evolution, such as

adding features to a language by inspecting its actual usage. Instead, our motivation is flexibility

of language usage. For this purpose, we provide a closed set of variants (with their adaptation

and migration mechanisms) adaptable to the language context of use (user background, device,

modelling aim, etc.). Adaptation at run-time is complementary to our design-time language/model

adaptation, and uses entirely different techniques and technologies. We plan to explore semantic

variability of modelling languages in future work, as well as open syntactic variability.

Metamorphic languages [1] are a proposal to support different shapes of a DSL, like internal,

external, or using fluent APIs. Instead, our adaptive languages enable language variants and

adaptation among these. We plan to study adapting the concrete syntax in future work.

9.4 Model Migration and Model Transformation
A key aspect of adaptive languages is the need to build migration transformations across variants.

Some dedicated transformation languages exist to facilitate migration, e.g., exploiting implicit

copying mechanisms [59, 60]. We emulate this by using the 150MM to type the models. Moreover,

while migration languages consider one migration between two meta-models, adaptive languages

need to consider migrations between a large set of variants.

Modifying a meta-model can cause its associated artefacts (models, transformations, code gen-

erators, editors) become obsolete and stop working [61]. To alleviate this problem, techniques to

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

1:46 Juan de Lara and Esther Guerra

semi-automatically co-evolve those artefacts have been proposed, mainly for the adaptation of

models after meta-model changes [18]. For example, Cicchetti et al. [18] produce model migration

transformations out of a meta-model and its evolved version. Our setting is more complex as it

involves many language variants. Thus, we propose the manual definition of adapters, and the

automated composition of migration transformations for specific source and target meta-models.

Model transformation product lines [25] equip a given LPL with a product line of in-place

transformations, which are built out of transformation fragments depending on PCs. Our migration

problem is more complex as it involves source and target meta-models, and hence the variability is

not only in the transformation source but also in the target.

Transformation approaches have also been applied to manipulate models with variability [63].

In such setting, the meta-model is fixed, and the model contains variability. Here, we deal with

the converse problem: the meta-model has variability, and we seek migrations between models.

Variability rules [70] have been proposed as a compact way to model similar rules. Instead, our

rules are standard, but transformations are composed by selecting appropriate rules from adapters.

Our mechanisms for selecting and composing adapters build suitable transformations between

two configurations. Automated chaining of transformations has been studied in [9, 10] for model-

to-model transformations. While they use meta-model coverage as criterion for composing trans-

formations, we use diffs to select the compatible adapters included in the transformations.

9.5 Diffs of Feature Model Configurations
Related to our approach to describe changes between feature configurations (diffs), in [79], the

problem of moving between two configurations is formalised as a SAT problem. Differencing of

feature models has been widely studied as well [2, 73], including the definition of consistency-

preserving configuration operators for efficient product line configuration [34]. However, we are

not aware of works dealing with diffs of configurations and their composition.

10 CONCLUSIONS AND FUTUREWORK
This paper has introduced the concept of adaptive modelling language, which comprises a family of

language variants and mechanisms for reconfiguring the language and its instance models across

variants. Adaptive languages enable a better fit to the user expertise, modelling process, or IDE. We

have presented tool support and an evaluation on six case studies, showing the feasibility of the

approach and its advantages w.r.t. specifying the migrations between language variants explicitly.

This paper has focused on the abstract syntax of languages, but the concrete syntax could be

adapted as well. Just like web pages adapt to the client – loading less content, special menus or

smaller images in mobile devices – the concrete syntax of a language should be adaptable. This

goes beyond to having graphical syntaxes with different levels of detail, but the adaptation of the

concrete and abstract syntax should be coordinated. Moreover, adaptive languages may exhibit

syntaxes of different nature, like graphical, textual, tabular or conversational [54].

An important ingredient of adaptive languages is the adaptation triggering mechanism. In

this respect, we plan to contribute a library of useful reconfiguration triggers that consider, e.g.,

recurring modelling errors, language usage, or the detection of patterns. We would also like to

experiment with the application of adaptive languages with implicit triggers in practice.

Our evaluation suggests that it is technically feasible to build adaptive languages with many

configurations. However, we identify some opportunities for enhancement. First, regarding expres-

siveness, our adapter definition language could be extended to specify overriding relations between

adapters diffs, in the style of [25], to indicate that a more general diff overrides a more specific diff,

or vice versa. Second, regarding analysability, it would be interesting to identify the adaptations

that lead to information loss (e.g., when moving to a class diagram language variant without

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

Adaptive modelling languages 1:47

cardinalities). Likewise, it is also worth exploring the combination of operational adapters (e.g.,

based on rules) and declarative adapters (e.g., based on OCL) which might be used in a bidirectional

way. Finally, we would like to investigate testing techniques for adapters.

ACKNOWLEDGMENTS
This work has been funded by the Spanish Ministry of Science with projects TED2021-129381B-C21,

PID2021-122270OB-I00, and RED2022-134647-T.

REFERENCES
[1] Mathieu Acher, Benoît Combemale, and Philippe Collet. 2014. Metamorphic domain-specific languages: A journey

into the shapes of a language. In Onward!@SPLASH. ACM, 243–253.

[2] Mathieu Acher, Patrick Heymans, Philippe Collet, Clément Quinton, Philippe Lahire, and Philippe Merle. 2012. Feature

model differences. In CAiSE (LNCS, Vol. 7328). Springer, 629–645.
[3] Lissette Almonte, Esther Guerra, Iván Cantador, and Juan de Lara. 2022. Recommender systems in model-driven

engineering: A systematic mapping review. Softw. Syst. Model. 21, 1 (2022), 249–280.
[4] Aradea, Iping Supriana, and Kridanto Surendro. 2023. ARAS: Adaptation requirements for adaptive systems. Autom.

Softw. Eng. 30, 1 (2023), 2.
[5] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and Gabriele Taentzer. 2010. Henshin: Advanced

concepts and tools for in-place EMF model transformations. In MoDELS (LNCS, Vol. 6394). Springer, 121–135.
[6] Colin Atkinson and Ralph Gerbig. 2016. Flexible deep modeling with Melanee. In Modellierung (LNI, Vol. 255). GI,

117–122.

[7] Colin Atkinson and Thomas Kühne. 2008. Reducing accidental complexity in domain models. Softw. Syst. Model. 7, 3
(2008), 345–359.

[8] Önder Babur, Eleni Constantinou, and Alexander Serebrenik. 2024. Language usage analysis for EMF metamodels on

GitHub. Empir. Softw. Eng. 29, 1 (2024), 23.
[9] Francesco Basciani, Mattia D’Emidio, Davide Di Ruscio, Daniele Frigioni, Ludovico Iovino, and Alfonso Pierantonio.

2020. Automated selection of optimal model transformation chains via shortest-path algorithms. IEEE Trans. Software
Eng. 46, 3 (2020), 251–279.

[10] Francesco Basciani, Daniele Di Pompeo, Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio. 2021. Integrating

semantic reasoning in information loss-based transformation chain rankers. In SAC. ACM, 1494–1503.

[11] Narasimha Bolloju and Felix S. K. Leung. 2006. Assisting novice analysts in developing quality conceptual models

with UML. Commun. ACM 49, 7 (2006), 108–112.

[12] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2017. Model-driven software engineering in practice, Second edition.
Morgan & Claypool Publishers, San Rafael, California (USA).

[13] Léa Brunschwig, Esther Guerra, and Juan de Lara. 2022. Modelling on mobile devices. Softw. Syst. Model. 21, 1 (2022),
179–205.

[14] Arvid Butting, Jerome Pfeiffer, Bernhard Rumpe, and Andreas Wortmann. 2020. A compositional framework for

systematic modeling language reuse. In MoDELS. ACM, 35–46.

[15] Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jesper Andersson, Basil Becker,

Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna Di Marzo Serugendo, Schahram Dustdar, Anthony Finkelstein,

Cristina Gacek, Kurt Geihs, Vincenzo Grassi, Gabor Karsai, Holger M. Kienle, Jeff Kramer, Marin Litoiu, Sam Malek,

Raffaela Mirandola, Hausi A. Müller, Sooyong Park, Mary Shaw, Matthias Tichy, Massimo Tivoli, Danny Weyns, and

Jon Whittle. 2009. Software engineering for self-adaptive systems: A research roadmap. In Software Engineering for
Self-Adaptive Systems [outcome of a Dagstuhl Seminar] (LNCS, Vol. 5525). Springer, 1–26.

[16] Betty H. C. Cheng, Pete Sawyer, Nelly Bencomo, and Jon Whittle. 2009. A goal-based modeling approach to develop

requirements of an adaptive system with environmental uncertainty. In MoDELS (LNCS, Vol. 5795). Springer, 468–483.
[17] Shang-Wen Cheng and David Garlan. 2012. Stitch: A language for architecture-based self-adaptation. J. Syst. Softw. 85,

12 (2012), 2860–2875.

[18] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso Pierantonio. 2008. Automating co-evolution in

model-driven engineering. In EDOC. IEEE Computer Society, 222–231.

[19] Dave Clarke, Michiel Helvensteijn, and Ina Schaefer. 2015. Abstract delta modelling. Math. Struct. Comput. Sci. 25, 3
(2015), 482–527.

[20] Loris D’Antoni and Margus Veanes. 2021. Automata modulo Theories. Commun. ACM 64, 5 (2021), 86–95.

[21] Juan de Lara, Roswitha Bardohl, Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. 2007. Attributed

graph transformation with node type inheritance. Theor. Comput. Sci. 376, 3 (2007), 139–163.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

1:48 Juan de Lara and Esther Guerra

[22] Juan de Lara and Esther Guerra. 2010. Deep meta-modelling with MetaDepth. In TOOLS (LNCS, Vol. 6141). Springer,
1–20.

[23] Juan de Lara and Esther Guerra. 2021. Language family engineering with product lines of multi-level models. Formal
Aspects Comput. 33, 6 (2021), 1173–1208.

[24] Juan de Lara, Esther Guerra, and Paolo Bottoni. 2022. Modular language product lines: a graph transformation

approach. In MoDELS. ACM, 334–344.

[25] Juan de Lara, Esther Guerra, Marsha Chechik, and Rick Salay. 2018. Model transformation product lines. In MoDELS.
ACM, 67–77.

[26] Juan de Lara, Esther Guerra, Ruth Cobos, and Jaime Moreno-Llorena. 2014. Extending deep meta-modelling for

practical model-driven engineering. Comput. J. 57, 1 (2014), 36–58.
[27] Juan de Lara, Esther Guerra, and Jesús Sánchez Cuadrado. 2014. When and how to use multilevel modelling. ACM

Trans. Softw. Eng. Methodol. 24, 2 (2014), 12:1–12:46.
[28] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. 2006. Fundamentals of algebraic graph transfor-

mation. Springer.
[29] Esther Guerra and Juan de Lara. 2018. On the quest for flexible modelling. In MoDELS. ACM, 23–33.

[30] Esther Guerra, Juan de Lara, Marsha Chechik, and Rick Salay. 2022. Property satisfiability analysis for product lines of

modelling languages. IEEE Trans. Software Eng. 48, 2 (2022), 397–416.
[31] Arne Haber, Katrin Hölldobler, Carsten Kolassa, Markus Look, Klaus Müller, Bernhard Rumpe, Ina Schaefer, and

Christoph Schulze. 2015. Systematic synthesis of delta modeling languages. Int. J. Softw. Tools Technol. Transf. 17, 5
(2015), 601–626.

[32] Felienne Hermans. 2020. Hedy: A gradual language for programming education. In ICER. ACM, 259–270.

[33] Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. 2018. Software language engineering in the large:

towards composing and deriving languages. Comput. Lang. Syst. Struct. 54 (2018), 386–405.
[34] José Miguel Horcas, Daniel Strüber, Alexandru Burdusel, Jabier Martinez, and Steffen Zschaler. 2023. We’re not gonna

break it! Consistency-preserving operators for efficient product line configuration. IEEE Trans. Software Eng. 49, 3
(2023), 1102–1117.

[35] Santiago P. Jácome-Guerrero and Juan de Lara. 2020. TOTEM: Reconciling multi-level modelling with standard

two-level modelling. Comput. Stand. Interfaces 69 (2020), 103390.
[36] Gwendal Jouneaux, Olivier Barais, Benoît Combemale, and Gunter Mussbacher. 2021. SEALS: A framework for

building self-adaptive virtual machines. In SLE. ACM, 150–163.

[37] Gwendal Jouneaux, Olivier Barais, Benoit Combemale, and Gunter Mussbacher. 2021. Towards self-adaptable languages.

In Onward!@SPLASH. ACM, 1–16.

[38] Tomas Kalibera, Lubomir Bulej, and Petr Tuma. 2005. Benchmark precision and random initial state. In SPECTS. SCS,
182–196.

[39] Kyo Kang, Sholom Cohen, James Hess, William Novak, and A. Peterson. 1990. Feature-oriented domain analysis (FODA)
feasibility study. Technical Report CMU/SEI-90-TR-021. Software Engineering Institute, Carnegie Mellon University,

Pittsburgh, PA.

[40] Nadine Kashmar, Mehdi Adda, and Mirna Atieh. 2020. From access control models to access control metamodels: A

survey. In FICC (LNNS, Vol. 70). Springer, 892–911.
[41] Steven Kelly and Juha-Pekka Tolvanen. 2008. Domain-specific modeling - Enabling full code generation. Wiley.

[42] Jeffrey O. Kephart and David M. Chess. 2003. The vision of autonomic computing. Computer 36, 1 (2003), 41–50.
[43] Hans-Jörg Kreowski, Sabine Kuske, and Grzegorz Rozenberg. 2008. Graph transformation units - An overview. In

Concurrency, Graphs and Models, Essays Dedicated to Ugo Montanari on the Occasion of His 65th Birthday (LNCS,
Vol. 5065). Springer, 57–75.

[44] Remo Lemma, Michele Lanza, and Andrea Mocci. 2015. CEL: Touching software modeling in essence. In SANER. IEEE
Computer Society, 439–448.

[45] Jesús J. López-Fernández, Jesús Sánchez Cuadrado, Esther Guerra, and Juan de Lara. 2015. Example-driven meta-model

development. Softw. Syst. Model. 14, 4 (2015), 1323–1347.
[46] Jochen Ludewig. 2003. Models in software engineering. Softw. Syst. Model. 2, 1 (2003), 5–14.
[47] Ivano Malavolta, Patricia Lago, Henry Muccini, Patrizio Pelliccione, and Antony Tang. 2013. What industry needs

from architectural languages: A survey. IEEE Trans. Software Eng. 39, 6 (2013), 869–891.
[48] Nicolas Mangano, Thomas D. LaToza, Marian Petre, and André van der Hoek. 2014. Supporting informal design with

interactive whiteboards. In CHI. ACM, 331–340.

[49] Francisco Martínez-Lasaca, Pablo Díez, Esther Guerra, and Juan de Lara. 2023. Engineering low-code modelling

environments with Dandelion. In MoDELS Companion. IEEE, 14–18.
[50] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich, and Gunter Saake. 2017. Mastering

software variability with FeatureIDE. Springer. See also https://featureide.github.io/.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

https://featureide.github.io/

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

Adaptive modelling languages 1:49

[51] Daniel L. Moody. 2009. The physics of notations: Toward a scientific basis for constructing visual notations in software

engineering. IEEE Trans. Software Eng. 35, 6 (2009), 756–779.
[52] T. Murata. 1989. Petri nets: Properties, analysis and applications. Proc. IEEE 77, 4 (1989), 541–580.

[53] Juliane Päßler, Maurice H. ter Beek, Ferruccio Damiani, Silvia Lizeth Tapia Tarifa, and Einar Broch Johnsen. 2023.

Formal modelling and analysis of a self-adaptive robotic system. In iFM (LNCS, Vol. 14300). Springer, 343–363.
[54] Sara Pérez-Soler, Mario González-Jiménez, Esther Guerra, and Juan de Lara. 2019. Towards conversational syntax for

domain-specific languages using chatbots. J. Object Technol. 18, 2 (2019), 5:1–21.
[55] Gilles Perrouin, Moussa Amrani, Mathieu Acher, Benoît Combemale, Axel Legay, and Pierre-Yves Schobbens. 2016.

Featured model types: Towards systematic reuse in modelling language engineering. In MiSE@ICSE. ACM, 1–7.

[56] Christopher Pietsch, Timo Kehrer, Udo Kelter, Dennis Reuling, and Manuel Ohrndorf. 2015. SiPL - A delta-based

modeling framework for software product line engineering. In ASE. IEEE Computer Society, 852–857.

[57] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. 2005. Software product line engineering: Foundations, principles
and techniques. Springer-Verlag, Berlin, Heidelberg.

[58] Alejandro Rodríguez, Fernando Macías, Francisco Durán, Adrian Rutle, and Uwe Wolter. 2023. Composition of

multilevel domain-specific modelling languages. J. Log. Algebraic Methods Program. 130 (2023), 100831.
[59] Louis M. Rose, Markus Herrmannsdoerfer, Steffen Mazanek, Pieter Van Gorp, Sebastian Buchwald, Tassilo Horn, Elina

Kalnina, Andreas Koch, Kevin Lano, Bernhard Schätz, and Manuel Wimmer. 2014. Graph and model transformation

tools for model migration - Empirical results from the transformation tool contest. Softw. Syst. Model. 13, 1 (2014),
323–359.

[60] Louis M. Rose, Dimitrios S. Kolovos, Richard F. Paige, Fiona A. C. Polack, and Simon M. Poulding. 2014. Epsilon Flock:

a model migration language. Softw. Syst. Model. 13, 2 (2014), 735–755.
[61] Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio. 2012. Coupled evolution in model-driven engineering.

IEEE Softw. 29, 6 (2012), 78–84.
[62] Davide Di Ruscio, Dimitrios S. Kolovos, Juan de Lara, Alfonso Pierantonio, Massimo Tisi, and Manuel Wimmer. 2022.

Low-code development and model-driven engineering: Two sides of the same coin? Softw. Syst. Model. 21, 2 (2022),
437–446.

[63] Rick Salay, Michalis Famelis, Julia Rubin, Alessio Di Sandro, and Marsha Chechik. 2014. Lifting model transformations

to product lines. In ICSE. ACM, 117–128.

[64] Donald Sannella and Andrzej Tarlecki. 2012. Foundations of algebraic specification and formal software development.
Springer.

[65] Ina Schaefer. 2010. Variability modelling for model-driven development of software product lines. In VaMoS (ICB-
Research Report, Vol. 37). Universität Duisburg-Essen, 85–92.

[66] Sirius. (last accessed in May 2024). https://www.eclipse.org/sirius/.

[67] Larissa Rocha Soares, Pierre-Yves Schobbens, Ivan do Carmo Machado, and Eduardo Santana de Almeida. 2018. Feature

interaction in software product line engineering: A systematic mapping study. Inf. Softw. Technol. 98 (2018), 44–58.
[68] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. 2008. EMF: Eclipse Modeling Framework, 2nd

Edition. Addison-Wesley Professional, Upper Saddle River, NJ.

[69] Harald Störrle. 2019. Modeling moods. In MoDELS. IEEE, 468–477.
[70] Daniel Strüber, Julia Rubin, Thorsten Arendt, Marsha Chechik, Gabriele Taentzer, and Jennifer Plöger. 2018. Variability-

based model transformation: Formal foundation and application. Formal Asp. Comput. 30, 1 (2018), 133–162.
[71] Xiaoyuan Su and Taghi M. Khoshgoftaar. 2009. A survey of collaborative filtering techniques. Adv. Artif. Intell. 2009

(2009), 421425:1–421425:19.

[72] Gabriele Taentzer and Arend Rensink. 2005. Ensuring structural constraints in graph-based models with type

inheritance. In FASE (LNCS, Vol. 3442). Springer, 64–79.
[73] Thomas Thüm, Don S. Batory, and Christian Kästner. 2009. Reasoning about edits to feature models. In ICSE. IEEE,

254–264.

[74] UML 2017. UML 2.5.1 OMG specification. http://www.omg.org/spec/UML/2.5.1/.

[75] Tijs van der Storm and Felienne Hermans. 2022. Gradual grammars: Syntax in levels and locales. In SLE. ACM,

134–147.

[76] Boban Vesin, Rodi Jolak, and Michel R. V. Chaudron. 2017. OctoUML: An environment for exploratory and collaborative

software design. In ICSE Companion Volume. IEEE Computer Society, 7–10.

[77] Michael von der Beeck. 1994. A comparison of statecharts variants. In Formal Techniques in Real-Time and Fault-Tolerant
Systems (LNCS, Vol. 863). Springer, 128–148.

[78] Guido Wachsmuth. 2007. Metamodel adaptation and model co-adaptation. In ECOOP (LNCS, Vol. 4609). Springer,
600–624.

[79] Jules White, Brian Dougherty, Douglas C. Schmidt, and David Benavides. 2009. Automated reasoning for multi-step

feature model configuration problems. In SPLC, Vol. 446. ACM, 11–20.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

https://www.eclipse.org/sirius/
http://www.omg.org/spec/UML/2.5.1/

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

1:50 Juan de Lara and Esther Guerra

[80] Jules White, James H. Hill, Jeff Gray, Sumant Tambe, Aniruddha S. Gokhale, and Douglas C. Schmidt. 2009. Improving

domain-specific language reuse with software product line techniques. IEEE Softw. 26, 4 (2009), 47–53.
[81] Jon Whittle, Peter Sawyer, Nelly Bencomo, Betty H. C. Cheng, and Jean-Michel Bruel. 2009. RELAX: Incorporating

uncertainty into the specification of self-adaptive systems. In RE. IEEE Computer Society, 79–88.

[82] Enes Yigitbas, Simon Gorissen, Nils Weidmann, and Gregor Engels. 2023. Design and evaluation of a collaborative

UML modeling environment in virtual reality. Softw. Syst. Model. 22, 5 (2023), 1397–1425.
[83] Zoe Zarwin, Marija Bjekovic, Jean-Marie Favre, Jean-Sébastien Sottet, and Henderik Alex Proper. 2014. Natural

modelling. J. Object Technol. 13, 3 (2014), 4: 1–36.
[84] Ji Zhang and Betty H. C. Cheng. 2006. Model-based development of dynamically adaptive software. In ICSE. ACM,

371–380.

[85] Athanasios Zolotas, Nicholas Matragkas, Sam Devlin, Dimitrios S. Kolovos, and Richard F. Paige. 2019. Type inference

in flexible model-driven engineering using classification algorithms. Softw. Syst. Model. 18, 1 (2019), 345–366.

A THEORY OF DIFFS, AND PROOFS
This appendix contains a theory of diffs as transformers of configurations, of diff composition, and

provides the proofs of the lemmas, propositions and theorems in the paper.

A.1 Diffs as transformers of configurations
Diffs can be used as transformers on configurations, as Definition A.1 shows.

Definition A.1 (Diff application). Let 𝐹𝑀 be a feature model, Δ = ⟨𝛿 = ⟨𝐹+−, 𝐹 −+⟩, 𝐶 = ⟨𝐹++, 𝐹 −−⟩⟩
be a wff diff, and 𝜌 ∈ 𝐶𝐹𝐺 (𝐹𝑀) be a configuration of 𝐹𝑀 with 𝐹+ and 𝐹 − its sets of selected and

unselected features. Diff Δ is applicable on 𝜌 , written 𝜌 |= Δ, if:

(1) the diff changes are applicable: (𝐹+− ⊆ 𝐹+) ∧ (𝐹 −+ ⊆ 𝐹 −)
(2) the diff context is satisfied: (𝐹++ ⊆ 𝐹+) ∧ (𝐹 −− ⊆ 𝐹 −)
(3) the post-state is consistent: Ψ[𝑡𝑟𝑢𝑒/((𝐹+ \ 𝐹+−) ∪ 𝐹 −+), 𝑓 𝑎𝑙𝑠𝑒/((𝐹 − \ 𝐹 −+) ∪ 𝐹+−)] = 𝑡𝑟𝑢𝑒

Given a wff diff Δ, and a configuration 𝜌 ∈ 𝐶𝐹𝐺 (𝐹𝑀) s.t. 𝜌 |= Δ, applying Δ to 𝜌 , written Δ(𝜌),
yields configuration 𝜌 ′ = ⟨(𝐹+ \ 𝐹+−) ∪ 𝐹 −+, (𝐹 − \ 𝐹 −+) ∪ 𝐹+−⟩.

Condition (1) in Definition A.1 states that for a diff Δ to be applicable to a configuration 𝜌 ,

the selected features of the configuration should contain the features changing to false, and the

unselected features should contain those changing to true. Condition (2) requires the context of the

diff to be satisfied: the configuration should select the features within the positive context (𝐹++),
and unselect those within the negative context (𝐹 −−). Finally, condition (3) requires the result of

swapping the features in 𝐹+− from true to false, and those in 𝐹 −+ from false to true, to be consistent

with the feature model. This ensures that the result from applying Δ to the configuration is also a

configuration, as the following lemma captures.

Lemma A.2 (Diff application correctness). Given a configuration 𝜌 ∈ 𝐶𝐹𝐺 (𝐹𝑀) and a wff
diff Δ s.t. 𝜌 |= Δ, then Δ(𝜌) ∈ 𝐶𝐹𝐺 (𝐹𝑀).

Proof. Trivially by condition (3) in Definition A.1, which states exactly the condition for Δ(𝜌)
to be a configuration of 𝐹𝑀 (cf. Definition 3.15). □

As an observation, the wff conditions for diffs in Definition 4.3 are no substitute for condition (3)

in Definition A.1. Instead, a diff whose pre-state or post-state is not wff is never applicable. This is

captured by the next proposition.

Proposition A.3 (non-wff diffs are not applicable). Given a feature model 𝐹𝑀 and a non-wff
diff Δ, then �𝜌 ∈ 𝐶𝐹𝐺 (𝐹𝑀) s.t. 𝜌 |= Δ.

Proof. Let us assume Δ’s pre-state is not wff. Then, according to Definition 4.3, Ψ[𝑡𝑟𝑢𝑒/(𝐹+− ∪
𝐹++), 𝑓 𝑎𝑙𝑠𝑒/(𝐹 −+∪𝐹 −−)] = 𝑓 𝑎𝑙𝑠𝑒 . But this means that there cannot be a configuration 𝜌 = ⟨𝐹+, 𝐹 −⟩

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

Adaptive modelling languages 1:51

that satisfies conditions (1) and (2) in Definition A.1, since if 𝐹+− ∪ 𝐹++ ⊆ 𝐹+ and 𝐹 −+ ∪ 𝐹 −− ⊆ 𝐹 − ,
then Ψ[𝑡𝑟𝑢𝑒/𝐹+, 𝑓 𝑎𝑙𝑠𝑒/𝐹 −] = 𝑓 𝑎𝑙𝑠𝑒 .
Now, let us assume Δ’s post-state is not wff. Then, according to Definition 4.3, Ψ[𝑡𝑟𝑢𝑒/(𝐹 −+ ∪

𝐹++), 𝑓 𝑎𝑙𝑠𝑒/(𝐹+− ∪ 𝐹 −−)] = 𝑓 𝑎𝑙𝑠𝑒 . However, given any 𝜌 ∈ 𝐶𝐹𝐺 (𝐹𝑀), the resulting configuration

Δ(𝜌) = ⟨(𝐹+ \ 𝐹+−) ∪ 𝐹 −+, (𝐹 − \ 𝐹 −+) ∪ 𝐹+−⟩ cannot satisfy condition (3) in Definition A.1. This is

so as 𝐹 −+ ∪ 𝐹++ ⊆ (𝐹+ \ 𝐹+−) ∪ 𝐹 −+ (since according to condition (2) in Definition A.1, 𝐹++ ⊆ 𝐹+;
and by Definition 4.1, 𝐹++ ∩ 𝐹+− = ∅) and 𝐹+− ∪ 𝐹 −− ⊆ (𝐹 − \ 𝐹 −+) ∪ 𝐹+− (since according to

condition (2) in Definition A.1, 𝐹 −− ⊆ 𝐹 − ; and by Definition 4.1, 𝐹 −− ∩ 𝐹 −+ = ∅). Therefore,
Ψ[𝑡𝑟𝑢𝑒/((𝐹+ \ 𝐹+−) ∪ 𝐹 −+), 𝑓 𝑎𝑙𝑠𝑒/((𝐹 − \ 𝐹 −+) ∪ 𝐹+−)] = 𝑓 𝑎𝑙𝑠𝑒 . □

Lemma A.4 (Configuration diffs are wff). Given 𝜌𝑖 , 𝜌 𝑗 ∈ 𝐶𝐹𝐺 (𝐹𝑀), their configuration diff
Δ𝑖 𝑗 , constructed as in Definition 4.5, is wff w.r.t. 𝐹𝑀 .

Proof. The pre-state (cf. Definition 4.3) is wff since Ψ is evaluated substituting a subset of 𝐹+𝑖 (i.e.,

(𝐹+𝑖 ∩𝐹 −𝑗)∪(𝐹+𝑖 ∩𝐹+𝑗)) by true, and a subset of 𝐹 −𝑖 ((𝐹 −𝑖 ∩𝐹+𝑗)∪(𝐹 −𝑖 ∩𝐹 −𝑗)) by false. This cannot yield false

because Ψ yields true when substituting the complete sets 𝐹+𝑖 and 𝐹 −𝑖 by true and false, respectively.

Similarly, the post-state is wff since Ψ is evaluated substituting (𝐹 −𝑖 ∩ 𝐹+𝑗) ∪ (𝐹+𝑖 ∩ 𝐹+𝑗) ⊆ 𝐹+𝑗 by true,

and (𝐹+𝑖 ∩ 𝐹 −𝑗) ∪ (𝐹 −𝑖 ∩ 𝐹 −𝑗) ⊆ 𝐹 −𝑗 by false, which cannot yield false. □

Configuration diffs are not only required to be wff, but they must also agree with the semantics

of diff application (cf. Definition A.1). This way, any configuration diff Δ𝑖 𝑗 must be applicable to 𝜌𝑖 ,

resulting in 𝜌 𝑗 , as the next lemma describes.

Lemma A.5 (Application of configuration diffs). Given 𝜌𝑖 , 𝜌 𝑗 ∈ 𝐶𝐹𝐺 (𝐹𝑀), then 𝜌𝑖 |= Δ𝑖 𝑗
and Δ𝑖 𝑗 (𝜌𝑖) = 𝜌 𝑗 .

Proof. We start checking that 𝜌𝑖 = ⟨𝐹+𝑖 , 𝐹 −𝑖 ⟩ |= Δ𝑖 𝑗 = ⟨𝛿𝑖 𝑗 = ⟨𝐹+𝑖 ∩ 𝐹 −𝑗 , 𝐹 −𝑖 ∩ 𝐹+𝑗 ⟩,𝐶𝑖 𝑗 = ⟨𝐹+𝑖 ∩
𝐹+𝑗 , 𝐹

−
𝑖 ∩ 𝐹 −𝑗 ⟩⟩ (cf. Definition A.1).

Conditions (1) and (2) of Definition A.1 are immediate, since we just need to show that (𝐹+𝑖 ∩𝐹 −𝑗) ⊆
𝐹+𝑖 and (𝐹 −𝑖 ∩ 𝐹+𝑗) ⊆ 𝐹 −𝑖 (for condition 1), and (𝐹+𝑖 ∩ 𝐹+𝑗) ⊆ 𝐹+𝑖 and (𝐹 −𝑖 ∩ 𝐹 −𝑗) ⊆ 𝐹 −𝑖 (for condition 2).

For condition (3) in Definition A.1, we use the fact that ⟨𝐹+𝑖 , 𝐹 −𝑖 ⟩ and ⟨𝐹+𝑗 , 𝐹 −𝑗 ⟩ are two partitions

of the set 𝐹 of features (cf. Figure 24). This means we can express 𝐹+𝑗 as (𝐹+𝑖 \𝐹 −𝑗) ∪ (𝐹 −𝑖 ∩𝐹+𝑗), which
can be rewritten into (𝐹+𝑖 \ 𝐹 −𝑗) ∪ 𝐹 −+ and then into (𝐹+𝑖 \ (𝐹+𝑖 ∩ 𝐹 −𝑗)) ∪ 𝐹 −+ and (𝐹+𝑖 \ 𝐹+−) ∪ 𝐹 −+.

FFF

Fi
+ Fi

- Fj
+ Fj

-

(a) (b)

Fi
- \ Fj

+

Fi
+ Fj

-

Fi
+ \ Fj

-

Fi
- Fj

+

(c)

Fig. 24. Representation of (a) 𝜌𝑖 = ⟨𝐹+
𝑖
, 𝐹−
𝑖
⟩, and (b) 𝜌 𝑗 = ⟨𝐹+

𝑗
, 𝐹−
𝑗
⟩, as partitions of set 𝐹 . (c) Expressing

𝜌 𝑗 = ⟨𝐹+𝑗 , 𝐹
−
𝑗
⟩ in terms of the intersections of partitions (a) and (b).

Similarly, we can express 𝐹 −𝑗 as (𝐹 −𝑖 \ 𝐹+𝑗) ∪ (𝐹+𝑖 ∩ 𝐹 −𝑗), which then can be rewritten into

(𝐹 −𝑖 \ 𝐹+𝑗) ∪ 𝐹+− and then into (𝐹 −𝑖 \ (𝐹 −𝑖 ∩ 𝐹+𝑗)) ∪ 𝐹+− and (𝐹 −𝑖 \ 𝐹 −+) ∪ 𝐹+− .
Since Ψ[𝑡𝑟𝑢𝑒/𝐹+𝑗 , 𝑓 𝑎𝑙𝑠𝑒/𝐹 −𝑗] = 𝑡𝑟𝑢𝑒 , we have that Ψ[𝑡𝑟𝑢𝑒/((𝐹+𝑖 \𝐹+−)∪𝐹 −+), 𝑓 𝑎𝑙𝑠𝑒/((𝐹 −𝑖 \𝐹 −+)∪

𝐹+−)] = 𝑡𝑟𝑢𝑒 , and so 𝜌𝑖 |= Δ𝑖 𝑗 . Moreover, we have already shown that 𝐹+𝑗 = (𝐹+𝑖 \ 𝐹+−) ∪ 𝐹 −+ and
𝐹 −𝑗 = (𝐹 −𝑖 \ 𝐹 −+) ∪ 𝐹+− , and therefore, Δ𝑖 𝑗 (𝜌𝑖) = 𝜌 𝑗 , as desired. □

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

1:52 Juan de Lara and Esther Guerra

A.2 Lemma 5.4: Wff diff composition
Proof. To show that Δ1;Δ2 is a diff, according to Definition 4.1, we need to prove that 𝐹+−

12
=

(𝐹+−
1
\𝐹 −+

2
)∪(𝐹+−

2
\𝐹 −+

1
), 𝐹 −+

12
= (𝐹 −+

1
\𝐹+−

2
)∪(𝐹 −+

2
\𝐹+−

1
), 𝐹++

12
= (𝐹++

1
\𝐹+−

2
)∪(𝐹++

2
\𝐹 −+

1
)∪(𝐹+−

1
∩𝐹 −+

2
)

and 𝐹 −−
12

= (𝐹 −−
1
\ 𝐹 −+

2
) ∪ (𝐹 −−

2
\ 𝐹+−

1
) ∪ (𝐹 −+

1
∩ 𝐹+−

2
) are disjoint. We proceed by parts.

Taking 𝐹+−
12

, we have that (𝐹+−
1
\ 𝐹 −+

2
) is disjoint with (𝐹 −+

1
\ 𝐹+−

2
), (𝐹++

1
\ 𝐹+−

2
), (𝐹 −−

1
\ 𝐹 −+

2
) and

(𝐹 −+
1
∩ 𝐹+−

2
) because Δ1 is a diff, and its four sets are disjoint, and therefore subsets of these four

sets are disjoint. Then, we need to prove that (𝐹+−
1
\ 𝐹 −+

2
) is disjoint with (𝐹 −+

2
\ 𝐹+−

1
), (𝐹++

2
\ 𝐹 −+

1
),

(𝐹 −−
2
\ 𝐹+−

1
) and (𝐹+−

1
∩ 𝐹 −+

2
). In the first case, it is disjoint since (𝐹+−

1
\ 𝐹 −+

2
) ∩ 𝐹 −+

2
= ∅, and

therefore, (𝐹+−
1
\ 𝐹 −+

2
) ∩ (𝐹 −+

2
\ 𝐹+−

1
) = ∅. In the second case, by Definition 5.1, we have that

(𝐹 −−
1
∪ 𝐹+−

1
) ∩ (𝐹++

2
∪ 𝐹+−

2
) = ∅, and therefore, (𝐹+−

1
\ 𝐹 −+

2
) ∩ (𝐹++

2
\ 𝐹 −+

1
) = ∅ as requested. For the

third case, we have that 𝐹+−
1
∩ (𝐹 −−

2
\ 𝐹+−

1
) = ∅, and therefore, (𝐹+−

1
\ 𝐹 −+

2
) ∩ (𝐹 −−

2
\ 𝐹+−

1
) = ∅ as

requested. Finally, (𝐹+−
1
\ 𝐹 −+

2
) is disjoint with (𝐹+−

1
∩ 𝐹 −+

2
) by the definition of set subtraction.

The disjointness of 𝐹 −+
12

, 𝐹++
12

and 𝐹 −−
12

with the others can be proved similarly.

Proving that if equations (1) and (2) are satisfied, then Δ1;Δ2 is a wff diff, is immediate. This is so

as equations (1) and (2) are exactly the requirements for Δ1;Δ2 to be wff. □

A.3 Diff composition correctness
Lemma A.6 states that applying a composite diff, and each diff in sequence, yield the same result.

Lemma A.6 (Diff composition correctness). Given a feature model 𝐹𝑀 , a configuration 𝜌 ∈
𝐶𝐹𝐺 (𝐹𝑀), and two diffs Δ1, Δ2 s.t. wffComposable(Δ1,Δ2) and 𝜌 |= Δ1;Δ2, then, Δ1;Δ2 (𝜌) =

Δ2 (Δ1 (𝜌)).

Proof. On the one hand, we have that Δ2 (Δ1 (𝜌)) = ((𝐹+ \ 𝐹+−1) ∪ 𝐹 −+1) \ 𝐹+−2 ∪ 𝐹 −+2 , which is

equal to (𝐹+ \ 𝐹+−
1
) \ 𝐹+−

2
∪ (𝐹 −+

1
\ 𝐹+−

2
) ∪ 𝐹 −+

2
.

On the other hand, we have Δ1;Δ2 (𝜌) = 𝐹+\((𝐹+−1 \𝐹 −+2)∪(𝐹+−2 \𝐹 −+1))∪(𝐹 −+1 \𝐹+−2)∪(𝐹 −+2 \𝐹+−1),
which is equal to (𝐹+ \ (𝐹+−

1
\ 𝐹 −+

2
)) \ (𝐹+−

2
\ 𝐹 −+

1
) ∪ (𝐹 −+

1
\ 𝐹+−

2
) ∪ (𝐹 −+

2
\ 𝐹+−

1
).

The term (𝐹 −+
1
\ 𝐹+−

2
) is in both expressions. In the second one, we can express (𝐹+ \ (𝐹+−

1
\

𝐹 −+
2
)) \ (𝐹+−

2
\ 𝐹 −+

1
) as (𝐹+ \ 𝐹+−

1
) \ 𝐹+−

2
∪ (𝐹+ ∩ 𝐹 −+

2
∩ 𝐹+−

1
) ∪ ((𝐹+ \ 𝐹+−

1
) ∩ (𝐹+−

2
∩ 𝐹 −+

1
)). The

term (𝐹+ \ 𝐹+−
1
) \ 𝐹+−

2
is now common in both expressions.

Now, we only need to show that 𝐹 −+
2

(from the first expression) is equal to (𝐹+ ∩ 𝐹 −+
2
∩ 𝐹+−

1
) ∪

((𝐹+ \ 𝐹+−
1
) ∩ 𝐹+−

2
∩ 𝐹 −+

1
) ∪ (𝐹 −+

2
\ 𝐹+−

1
). We have that (𝐹+ \ 𝐹+−

1
) ∩ (𝐹+−

2
∩ 𝐹 −+

1
) = ∅, since 𝐹+ and

𝐹 −+
1

are disjoint. Since 𝐹+−
1
⊆ 𝐹+, we have that 𝐹+ ∩ 𝐹 −+

2
∩ 𝐹+−

1
= 𝐹 −+

2
∩ 𝐹+−

1
. Therefore, we have

𝐹 −+
2

= 𝐹 −+
2
∩ 𝐹+−

1
∪ (𝐹 −+

2
\ 𝐹+−

1
), as required. □

A.4 Lemma 5.10: Composing completers
Proof. We must show Δ𝑎 ;Δ𝑏 ⊆ Δ𝑠𝑡 . For the delta, we have 𝛿𝑎𝑏 = ⟨(𝐹+−𝑎 \ 𝐹 −+

𝑏
) ∪ (𝐹+−

𝑏
\

𝐹 −+𝑎), (𝐹 −+𝑎 \ 𝐹+−𝑏) ∪ (𝐹
−+
𝑏
\ 𝐹+−𝑎)⟩. By the definition of completer, 𝛿𝑎𝑏 = ⟨(𝐹+−𝑎 \ 𝐹 −+𝑏) ∪ (𝐹

−+
𝑎 \

𝐹 −+𝑠𝑡) \ 𝐹 −+𝑎 , (𝐹 −+𝑎 \ (𝐹 −+𝑎 \ 𝐹 −+𝑠𝑡)) ∪ (𝐹 −+𝑏 \ 𝐹
+−
𝑎)⟩ = ⟨(𝐹+−𝑎 \ 𝐹 −+𝑏), (𝐹

−+
𝑎 ∩ 𝐹 −+𝑠𝑡) ∪ (𝐹 −+𝑏 \ 𝐹

+−
𝑎)⟩. Since

𝐹+−𝑎 ⊆ 𝐹+−𝑠𝑡 and 𝐹 −+
𝑏
⊆ 𝐹 −+𝑠𝑡 , we have 𝐹+−𝑎 \ 𝐹 −+𝑏 ⊆ 𝐹 −+𝑠𝑡 and (𝐹 −+𝑎 ∩ 𝐹 −+𝑠𝑡) ∪ (𝐹 −+𝑏 \ 𝐹

+−
𝑎) ⊆ 𝐹 −+𝑠𝑡 , as

required.

For the context, we have𝐶𝑎𝑏 = ⟨(𝐹++𝑎 \ 𝐹+−𝑏) ∪ (𝐹
++
𝑏
\ 𝐹 −+𝑎) ∪ (𝐹+−𝑎 ∩ 𝐹 −+𝑏), (𝐹

−−
𝑎 \ 𝐹 −+

𝑏
) ∪ (𝐹 −−

𝑏
\

𝐹+−𝑎) ∪ (𝐹 −+𝑎 ∩ 𝐹+−𝑏)⟩. We have 𝐹++
𝑎𝑏
⊆ 𝐹++𝑠𝑡 since (𝐹++𝑎 \ 𝐹+−𝑏) ⊆ 𝐹++𝑠𝑡 , (𝐹++𝑏 \ 𝐹

−+
𝑎) ⊆ 𝐹++𝑠𝑡 , and

(𝐹+−𝑎 ∩ 𝐹 −+𝑏) = ∅. Similarly, we have (𝐹 −−𝑎 \ 𝐹 −+
𝑏
) ⊆ 𝐹 −−𝑠𝑡 and (𝐹 −−

𝑏
\ 𝐹+−𝑎) ⊆ 𝐹 −−𝑠𝑡 . Since 𝐹 −+𝑎 ⊆ 𝐹 −𝑠 ,

and 𝐹+−
𝑏
⊆ 𝐹 −𝑡 , then 𝐹 −+𝑎 ∩ 𝐹+−𝑏 ⊆ 𝐹 −−𝑠𝑡 , and so, 𝐹++

𝑎𝑏
⊆ 𝐹 −−𝑠𝑡 as required. □

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

Adaptive modelling languages 1:53

A.5 Lemma 5.13: Composing context fixers
Proof. Since Δ®𝑎 and Δ𝑏 are inverse of each other, the diff Δ®𝑎 ;Δ𝑎 ;Δ𝑏 has the changes of Δ𝑎 ,

while Δ𝑏 fixes Δ𝑎’s unsatisfied context. We next prove the case of PositiveFixer, since the proof for
NegativeFixer is analogous.

First, we check that Δ®𝑎 and Δ𝑎 are composable according to Definition 5.1. For this, we need to

check that (𝐹 −−®𝑎 ∪ 𝐹+−®𝑎) ∩ (𝐹
++
𝑎 ∪ 𝐹+−𝑎) = ∅. This holds since 𝐹 −−®𝑎 = ∅, 𝐹+−®𝑎 = 𝐹 −+

𝑏
, 𝐹 −+
𝑏
∩ 𝐹++𝑎 = ∅

(since composable(Δ𝑎,Δ𝑏)), and 𝐹 −+𝑏 ∩ 𝐹
+−
𝑎 = ∅ (since predicate FixerApplicable requires the actions

of Δ𝑎 and Δ𝑏 to be disjoint). The proof of (𝐹++®𝑎 ∪ 𝐹
−+
®𝑎) ∩ (𝐹

−−
𝑎 ∪ 𝐹 −+𝑎) = ∅ (the second part of

Definition 5.1) is analogous.

Then, Δ®𝑎 ;Δ𝑎 = ⟨⟨(𝐹 −+
𝑏
\ 𝐹 −+𝑎) ∪ (𝐹+−𝑎 \ 𝐹+−𝑏), (𝐹

+−
𝑏
\ 𝐹+−𝑎) ∪ (𝐹 −+𝑎 \ 𝐹 −+𝑏)⟩, ⟨(∅ \ 𝐹

+−
𝑎) ∪ (𝐹++𝑎 \

𝐹+−
𝑏
) ∪ (𝐹 −+

𝑏
∩ 𝐹 −+𝑎), (∅ \ 𝐹 −+𝑎) ∪ (𝐹 −−𝑎 \ 𝐹 −+

𝑏
) ∪ (𝐹+−

𝑏
∩ 𝐹+−𝑎)⟩⟩. Simplifying, we have Δ®𝑎 ;Δ𝑎 =

⟨⟨𝐹 −+
𝑏
∪ 𝐹+−𝑎 , 𝐹+−

𝑏
∪ 𝐹 −+𝑎 ⟩, ⟨𝐹++𝑎 \ 𝐹+−𝑏 , 𝐹 −−𝑎 \ 𝐹 −+

𝑏
⟩⟩.

Then, Δ®𝑎 ;Δ𝑎 and Δ𝑏 are composable by Definition 5.1, which requires showing ((𝐹 −−𝑎 \ 𝐹 −+
𝑏
) ∪

(𝐹 −+
𝑏
∪ 𝐹+−𝑎)) ∩ (𝐹++𝑏 ∪ 𝐹

+−
𝑏
) = ∅. By cases, we have that: (1) (𝐹 −−𝑎 \ 𝐹 −+

𝑏
) ∩ 𝐹++

𝑏
= ∅, since

composable(Δ𝑎,Δ𝑏); (2) (𝐹 −−𝑎 \ 𝐹 −+𝑏) ∩ 𝐹
+−
𝑏

= ∅ for the same reason; (3) (𝐹 −+
𝑏
∪ 𝐹+−𝑎) ∩ 𝐹++𝑏 = ∅ since

𝐹 −+
𝑏

and 𝐹++
𝑏

are disjoint by Definition 4.1, and 𝐹+−𝑎 ∩ 𝐹++𝑏 = ∅ since composable(Δ𝑎,Δ𝑏); and (4)

(𝐹 −+
𝑏
∪ 𝐹+−𝑎) ∩ 𝐹+−𝑏 = ∅ for the same reason. The proof for the 2

𝑛𝑑
part of Definition 5.1 is analogous.

Then, the composed diff Δ®𝑎 ;Δ𝑎 ;Δ𝑏 is ⟨⟨((𝐹 −+
𝑏
∪ 𝐹+−𝑎) \ 𝐹 −+𝑏) ∪ (𝐹

+−
𝑏
\ (𝐹+−

𝑏
∪ 𝐹 −+𝑎)), ((𝐹+−𝑏 ∪

𝐹 −+𝑎) \ 𝐹+−𝑏) ∪ (𝐹
−+
𝑏
\ (𝐹 −+

𝑏
∪ 𝐹+−𝑎))⟩, ⟨(𝐹++𝑎 \ 𝐹+−𝑏) \ 𝐹

+−
𝑏
∪ (𝐹++

𝑏
\ (𝐹+−

𝑏
∪ 𝐹 −+𝑎)) ∪ ((𝐹 −+𝑏 ∪ 𝐹

+−
𝑎) ∩

𝐹 −+
𝑏
), (𝐹 −−𝑎 \ 𝐹 −+

𝑏
) \ 𝐹 −+

𝑏
∪ (𝐹 −−

𝑏
\ (𝐹 −+

𝑏
∪ 𝐹+−𝑎)) ∪ ((𝐹+−𝑏 ∪ 𝐹

−+
𝑎) ∩ 𝐹+−𝑏)⟩⟩. Simplifying, we have

Δ®𝑎 ;Δ𝑎 ;Δ𝑏 = ⟨⟨𝐹+−𝑎 , 𝐹 −+𝑎 ⟩, ⟨(𝐹++𝑎 \ 𝐹+−𝑏) ∪ (𝐹
++
𝑏
\ 𝐹 −+𝑎) ∪ 𝐹 −+𝑏 , (𝐹 −−𝑎 \ 𝐹 −+

𝑏
) ∪ (𝐹 −−

𝑏
\ 𝐹+−𝑎) ∪ 𝐹+−𝑏 ⟩⟩.

It remains to show that Δ®𝑎 ;Δ𝑎 ;Δ𝑏 ⊆ Δ𝑠𝑡 . This is the case since, on the one hand, 𝐹+−𝑎 ⊆ 𝐹+−𝑠𝑡 and

𝐹 −+𝑎 ⊆ 𝐹 −+𝑠𝑡 because FixerApplicable(Δ𝑎,Δ𝑏,Δ𝑠𝑡). On the other hand, the context is also satisfied.

First, 𝐹++𝑎 \ 𝐹+−𝑏 ⊆ 𝐹++𝑠𝑡 . Since PositiveFixer(Δ𝑎,Δ𝑏,Δ𝑠𝑡), we have (𝐹++𝑎 \ 𝐹++𝑠𝑡) ⊆ 𝐹+−𝑏 ⊆ 𝐹 −−𝑠𝑡 . This

means that 𝐹+−
𝑏
∩ 𝐹++𝑠𝑡 = ∅, and so (𝐹++𝑎 \ 𝐹+−𝑏) = 𝐹

++
𝑎 ∩ 𝐹++𝑠𝑡 ⊆ 𝐹++𝑠𝑡 . For the positive context, we also

need to show 𝐹++
𝑏
\ 𝐹 −+𝑎 ⊆ 𝐹++𝑠𝑡 (which holds by predicate FixerApplicable), and 𝐹 −+

𝑏
⊆ 𝐹++𝑠𝑡 (which

holds by predicate PositiveFixer). Regarding the negative context, we have (𝐹 −−𝑎 \ 𝐹 −+
𝑏
) ⊆ 𝐹 −−𝑠𝑡

(which holds by predicate PositiveFixer, which requires 𝐹 −−𝑎 ⊆ 𝐹 −−𝑠𝑡), (𝐹 −−
𝑏
\ 𝐹+−𝑎) ⊆ 𝐹 −−𝑠𝑡 (since

𝐹 −−
𝑏
⊆ 𝐹 −−𝑠𝑡 by predicate FixerApplicable), and 𝐹+−

𝑏
⊆ 𝐹 −−𝑠𝑡 (by predicate PositiveFixer). □

A.6 Lemma 6.5: Migration compatibility
Proof. We deal with each of the three cases:

(1) Δ ⊆ Δ𝑠𝑡 =⇒ 𝑐𝑜𝑚𝑝𝑎𝑡Δ𝑠𝑡
(𝑎)

Given a rule 𝑡𝑟 of adapter 𝑎, by Definition 6.3 of 𝑐𝑜𝑚𝑝𝑎𝑡Δ (𝑡𝑟), we have src-compatΔ (𝐿 \𝑙 (𝐾)), and so
∀𝑥 ∈ (𝐿\𝑙 (𝐾)) ·Φ(𝑡𝑦𝑝𝑒 (𝑥)) = false∨Φ(𝑡𝑦𝑝𝑒 (𝑥)) [true/(𝐹+−∪𝐹++), false/ (𝐹 −+∪𝐹 −−)] = true. Since
Δ ⊆ Δ𝑠𝑡 we have 𝐹

𝑋 ⊆ 𝐹𝑋𝑠𝑡 for 𝑋 ∈ {+−,−+, ++,−−}. This means that (𝐹+− ∪ 𝐹++) ⊆ (𝐹+−𝑠𝑡 ∪ 𝐹++𝑠𝑡)
and (𝐹 −+ ∪ 𝐹 −−) ⊆ (𝐹 −+𝑠𝑡 ∪ 𝐹 −−𝑠𝑡). Hence, given 𝑥 ∈ (𝐿 \ 𝑙 (𝐾)), either Φ(𝑡𝑦𝑝𝑒 (𝑥)) = false, or
else, substituting a larger set of features cannot change the valuation of Φ(𝑡𝑦𝑝𝑒 (𝑥)) [𝑡𝑟𝑢𝑒/(𝐹+−𝑠𝑡 ∪
𝐹++𝑠𝑡), 𝑓 𝑎𝑙𝑠𝑒/(𝐹 −+𝑠𝑡 ∪ 𝐹 −−𝑠𝑡)] from true to false, and hence, src-compatΔ𝑠𝑡

(𝐿 \ 𝑙 (𝐾)). A similar reasoning

follows for tar-compatΔ (𝑅 \ 𝑟 (𝐾)), compatΔ (𝐾), and compatΔ (𝑁𝑖).
(2) Δ ⊑𝑝𝑟𝑒 Δ𝑠𝑡 ∧ ¬𝑐𝑟𝑒𝑎𝑡𝑒 (𝐹++ \ 𝐹++𝑠𝑡 , 𝐹 −− \ 𝐹 −−𝑠𝑡 , 𝑎) =⇒ 𝑐𝑜𝑚𝑝𝑎𝑡Δ𝑠𝑡

(𝑎)
Since Δ ⊑𝑝𝑟𝑒 Δ𝑠𝑡 , we have 𝐹

𝑋 ⊆ 𝐹𝑋𝑠𝑡 for 𝑋 ∈ {+−,−+}, 𝐹++ ⊆ 𝐹++𝑠𝑡 ∪ 𝐹+−𝑠𝑡 , and 𝐹 −− ⊆ 𝐹 −−𝑠𝑡 ∪ 𝐹 −+𝑠𝑡 .

Like in the previous case, this means (𝐹+− ∪ 𝐹++) ⊆ (𝐹+−𝑠𝑡 ∪ 𝐹++𝑠𝑡) and (𝐹 −+ ∪ 𝐹 −−) ⊆ (𝐹 −+𝑠𝑡 ∪ 𝐹 −−𝑠𝑡).
Hence, for any rule 𝑡𝑟 of 𝑎, we have src-compatΔ𝑠𝑡

(𝐿\𝑙 (𝐾)), src-compatΔ𝑠𝑡
(𝐾) and src-compatΔ𝑠𝑡

(𝑁𝑖)
(for each NAC 𝑁𝑖). But this means that compatΔ𝑠𝑡

(𝐾) and compatΔ𝑠𝑡
(𝑁𝑖) (for each NAC 𝑁𝑖). Since

¬𝑐𝑟𝑒𝑎𝑡𝑒 (𝐹++\𝐹++𝑠𝑡 , 𝐹 −− \𝐹 −−𝑠𝑡 , 𝑎), then each element in 𝑅\𝑟 (𝐾) is not typed by 𝐹++\𝐹++𝑠𝑡 or 𝐹 −− \𝐹 −−𝑠𝑡 ,

hence tar-compatΔ𝑠𝑡
(𝑅 \ 𝑟 (𝐾)), and so 𝑐𝑜𝑚𝑝𝑎𝑡Δ𝑠𝑡

(𝑎) as required.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

1:54 Juan de Lara and Esther Guerra

(3) Δ ⊑𝑝𝑜𝑠𝑡 Δ𝑠𝑡 ∧ ¬𝑑𝑒𝑙𝑒𝑡𝑒 (𝐹++ \ 𝐹++𝑠𝑡 , 𝐹 −− \ 𝐹 −−𝑠𝑡 , 𝑎) =⇒ 𝑐𝑜𝑚𝑝𝑎𝑡Δ𝑠𝑡
(𝑎)

Since Δ ⊑𝑝𝑜𝑠𝑡 Δ𝑠𝑡 , we have 𝐹𝑋 ⊆ 𝐹𝑋𝑠𝑡 for 𝑋 ∈ {+−,−+}, 𝐹++ ⊆ 𝐹++𝑠𝑡 ∪ 𝐹 −+𝑠𝑡 and 𝐹 −− ⊆ 𝐹 −−𝑠𝑡 ∪ 𝐹+−𝑠𝑡 .

This means that (𝐹 −+ ∪ 𝐹++) ⊆ (𝐹 −+𝑠𝑡 ∪ 𝐹++𝑠𝑡) and (𝐹+− ∪ 𝐹 −−) ⊆ (𝐹+−𝑠𝑡 ∪ 𝐹 −−𝑠𝑡). Hence, for any rule

𝑡𝑟 of 𝑎, we have tar-compatΔ𝑠𝑡
(𝑅 \ 𝑟 (𝐾)), tar-compatΔ𝑠𝑡

(𝐾) and tar-compatΔ𝑠𝑡
(𝑁𝑖) (for each NAC

𝑁𝑖). But this also means that compatΔ (𝐾) and compatΔ (𝑁𝑖) (for each NAC 𝑁𝑖). Since ¬𝑑𝑒𝑙𝑒𝑡𝑒 (𝐹++ \
𝐹++𝑠𝑡 , 𝐹

−− \ 𝐹 −−𝑠𝑡 , 𝑎), then each element in 𝐿 \ 𝑙 (𝐾) is not typed by 𝐹++ \ 𝐹++𝑠𝑡 or 𝐹 −− \ 𝐹 −−𝑠𝑡 , and so,

src-compatΔ𝑠𝑡
(𝐿 \ 𝑙 (𝐾)), and therefore, 𝑐𝑜𝑚𝑝𝑎𝑡Δ𝑠𝑡

(𝑎) as required. □

A.7 Theorem 6.6: Extended migration compatibility
Proof. Given two configurations 𝜌𝑠 and 𝜌𝑡 , in a first step, Algorithm 2 selects adapters just like

in Definition 4.17. Therefore, by Lemma 6.5, those adapters are compatible with Δ𝑠𝑡 .
Then, the algorithm selects context fixers, which by Lemma 5.13, have a diff included in Δ𝑠𝑡 . By

Lemma 6.5, those adapters are compatible with Δ𝑠𝑡 . Similarly, the algorithm selects completers,

which by Lemma 5.10, have a diff included in Δ𝑠𝑡 , and therefore, they are compatible with Δ𝑠𝑡 .
Finally, the algorithm also selects soft completers, which are then concatenated with a context fixer.

By the properties of context fixers (Lemma 5.13), this yields adapters compatible with Δ𝑠𝑡 . □

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.

	Abstract
	1 Introduction
	2 Overview and Scenarios of Adaptive Modelling Languages
	2.1 Intuition and Usage Scenarios
	2.2 Overview

	3 Preliminaries
	3.1 Models and Meta-models
	3.2 Graph Transformation
	3.3 Language Product Lines

	4 Adaptive Modelling Languages
	4.1 Diffs and Configuration Diffs
	4.2 Language Adapters
	4.3 Adaptive Languages
	4.4 Adaptation Triggers

	5 Sequential Composition of Adapters
	6 Analysis
	6.1 Correctness of Adapters
	6.2 Migration Coverage and Configuration Reachability

	7 Architecture and Tool Support
	7.1 Architecture
	7.2 Tool Support: Definition of Adaptive Languages
	7.3 Tool Support: Generation and Usage of Adaptive Language Editors

	8 Evaluation
	8.1 RQ1: Specification Size of Adaptive Languages
	8.2 RQ2: Adaptation Efficiency at Runtime
	8.3 Threats to Validity

	9 Related Work
	9.1 Families of Modelling Languages
	9.2 Flexible Modelling
	9.3 Modelling of Adaptive Languages and Systems
	9.4 Model Migration and Model Transformation
	9.5 Diffs of Feature Model Configurations

	10 Conclusions and Future Work
	References
	A Theory of Diffs, and Proofs
	A.1 Diffs as transformers of configurations
	A.2 Lemma 5.4: Wff diff composition
	A.3 Diff composition correctness
	A.4 Lemma 5.10: Composing completers
	A.5 Lemma 5.13: Composing context fixers
	A.6 Lemma 6.5: Migration compatibility
	A.7 Theorem 6.6: Extended migration compatibility

