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Adaptive modelling languages:
Abstract syntax and model migration

JUAN DE LARA, Universidad Autónoma de Madrid, Spain

ESTHER GUERRA, Universidad Autónoma de Madrid, Spain

Modelling languages are heavily used in many disciplines, including software engineering. However, current

languages are rigid, since they do not get adapted to fit the users’ expertise, the modelling task, or the usage

platform. This may turn some languages unsuitable for a range of users (from unexperienced to experts), goals

(from informal discussion to precise specification) and platforms (from desktops to mobile phones). We claim

that making languages adaptive to the modelling scenario would alleviate these issues and help simplifying

recurring tasks such as language evolution or interoperability between the languages of a family.

In this paper, we propose the new notion of adaptive modelling language. This concept combines meta-

modelling and product lines to support variants of a given language, and encompasses contextual conditions

triggering language reconfigurations, and mechanisms for model migration across the language variants. The

paper presents a theory and its realisation atop the Eclipse Modeling Framework. Our tool includes an Eclipse

workbench to specify adaptive languages and produce Eclipse modelling editors with adaptation support. We

report on an evaluation demonstrating the advantages of using our framework to express migrations across

the variants of adaptive languages, which moreover have generally fast execution times.

CCS Concepts: • Software and its engineering→ Domain specific languages; Software design engineering.

Additional Key Words and Phrases: modelling language engineering, flexible modelling, model transformation,

graph transformation, model migration, software product lines.
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1 INTRODUCTION
Modelling is pervasive in software engineering [46] and essential in model-driven engineering

(MDE) [12]. Models are built using modelling languages, which can be either general-purpose, like

the UML [74], or domain-specific languages (DSLs) tailored for a domain and task [41].

Modelling can serve a variety of purposes, from informal discussions to precise software specifi-

cation for code generation or verification [29, 83]; it is performed by users with different expertise,

from novices to experts [11]; and it is supported on a variety of IDEs and devices, from computers

with keyboard and mouse, to smart mobile and virtual reality devices [13, 82], or interactive multi-

touch displays and whiteboards [48, 76]. However, most modelling languages are rigid, in the sense

that they cannot be adapted to the modelling task, the target user or the modelling platform. This

may hinder the language usage for a range of users or scenarios.

To alleviate the rigidity of current modelling languages, we propose the new notion of adaptive
modelling language. An adaptive language is flexible, since it permits choosing between variants of
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1:2 Juan de Lara and Esther Guerra

the language that can be a better fit to different usage scenarios. Moreover, since the modelling

needs may change over time, the language variant a model is being defined with can be modified

dynamically. The language variant can be explicitly chosen by the user, or reconfigurations may be

triggered when certain conditions specified by the language designer are met. The latter conditions

may pertain, e.g., the usage or not of certain language primitives, the selection of a modelling

phase in a process model, the level of expertise of the user (which can be either stated explicitly or

induced automatically), the device the modelling tool is running on, or patterns found in the model,

among others. Moreover, language variants are not isolated, but an adaptive language provides

interoperability between them by the automated migration of models.

We have realised these ideas on a framework for creating adaptive languages based on the

principles of MDE and software product lines [57]. Product lines make it possible to define highly

configurable languages with hundreds or thousands of variants in a compact way [30]. In such

a setting, a naive approach that creates migration transformations between each two language

variants becomes unfeasible. Therefore, our framework reduces this burden by incorporating

techniques to compose automatically those transformations out of small modules called adapters.
In this paper, we present both a theory and a practical implementation within Eclipse, and evaluate

the feasibility and advantages of our proposal based on six case studies.

Overall, this paper makes the following contributions: (i) the novel notion of adaptive modelling

language, along with application scenarios; (ii) a theoretical formulation that encompasses a product

line of modelling languages, language adapters that are composed on the fly to assemble migration

transformations between language variants, and flexible language adaptation trigger mechanisms;

(iii) techniques to analyse the compatibility and correctness of adapters; (iv) a practical implementa-
tion atop the Eclipse IDE; and (v) an evaluation that shows the benefits of expressing migrations

across a language family using our notion of adaptive language. In particular, the evaluation aims

at answering the following research questions (RQs):

RQ1: How feasible is it to specify adaptive languages in practice?
RQ2: How efficient is the adaptation process at runtime?

In turn, RQ1 is decomposed into the next follow-up RQs, which analyse the specification size

reduction achieved by the use of adapters for defining migrations across language variants:

RQ1.1: What is the specification size reduction of using adapters w.r.t. a naive approach?
RQ1.2: What is the specification size reduction achieved by the sequential composition of
adapters?

In the following, Section 2 overviews adaptive modelling languages and their usage scenarios.

Next, Section 3 gives background on meta-models, models, graph transformation, and language

product lines. Then, Section 4 defines a theory for adaptive modelling languages, with mechanisms

(called adapters) to reduce the effort needed to define migration transformations between language

variants. Sections 5 and 6 present techniques to compose and analyse adapters. Next, Section 7

describes tool support, and Section 8 evaluates our proposal. Finally, Section 9 compares with related

work, and Section 10 presents the conclusions and lines for future work. Appendix A provides

details of the theory, including proofs of the lemmas, propositions and theorems.

2 OVERVIEW AND SCENARIOS OF ADAPTIVE MODELLING LANGUAGES
This section provides an intuitive notion of adaptive modelling languages, describing scenarios

where they are useful (Section 2.1). Then, it overviews our approach to the definition and use of

adaptive modelling languages, explaining briefly its building blocks (Section 2.2).
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Adaptive modelling languages 1:3

2.1 Intuition and Usage Scenarios
A modelling language is made of abstract syntax (the primitives of the language, their properties

and relations), concrete syntax (how the primitives are rendered, typically graphically or textually),

and semantics (what models mean, often realised via code generators or simulators). These language

parts are typically fixed and unchanging. Instead, we define an adaptive modelling language as:

A language with variants, along with mechanisms to trigger dynamic adaptations between them
– based on the modelling context – and for automated model migration across the language
variants.

Supporting a coordinated use of variants of a language and automating the migration of models

across those variants is useful in several scenarios, like:

• Languages that adapt to the user. The cognitive fit principle for visual language design [51] states

that users with different expertise in a language can benefit from different language versions.

Beginners could use simple language variants, which become more complete as they learn. For

instance, novice users of UML could use simpler versions without composition, inheritance or

navigation decorators in associations, and experienced users could use more sophisticated UML

versions. This can be useful in education, where increasingly sophisticated language versions

(called gradual languages [32]) can guide the learning process
1
, or in lowcode platforms [62],

which need to support citizen developers with a diverse range of skills. While user adaptation is

a desirable language feature, most notations exhibit visual monolinguism, as they use a single

visual notation for all purposes [51]. Thus, the design of user-oriented language variants must

consider their concrete syntax representation, as well as their abstract syntax.

• Languages that adapt to the IDE. According to Moody [51], different representational media

for the modelling task may require the design of different language variants. For example,

devices with a reduced screen size (e.g., mobile devices [13]) or sketch-based interaction (e.g.,

digital whiteboards [48] or tablets [44]) may employ simple language variants, while traditional

computers with wide screens, mouse-based interaction, and high computational power can

use more complete languages. Likewise, different variants of a concrete syntax (e.g., tabular vs

graphical) could be used to maximise the information presented in reduced spaces.

• Languages that adapt to the process. In software engineering, early development phases benefit

from informal modelling as a vehicle for discussion and problem understanding. As a project

progresses, precise models may be needed to enable system analysis or code generation. To

transition between both operation modes, the discussion phase could rely on permissive variants

of a modelling language, and later phases could use more constrained variants [29].

Figure 1 shows an example of this scenario that will be used to illustrate our proposal throughout

the paper. In the figure, a modelling process goes through three stages: analysis, design and

detailed design. Each stage uses a different variant of class diagrams. The analysis phase employs

a simple variant without methods, compositions or aggregations. The design phase uses another

variant that considers these elements. Since the implementation language is Java, the detailed

design phase uses single inheritance and interfaces. The figure depicts that, whenever the phase

changes, a model adaptation occurs, which transforms the current model into the language

variant of the next phase.

• Language/model co-evolution. In this scenario [78], a language evolves into a new version, and the

existing models must be migrated to remain compatible with the new version. This is a special

case of adaptive languages where each language variant corresponds to a different language

1
The term gradual language was proposed in [32], where different versions of Python were created to help children in

learning programming.
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Analysis Design Detailed design 

Analysis 
Class Diagrams 

Design 
Class Diagrams 

Java  
Class Diagrams 

Class Diagrams 
Language Family 

M0 M’0 M1 M’1 

adapter1 adapter2 

variant D of 

Class Diagrams  
Adaptive Language 

modelling process 

model  
adaptations 

M2 

Fig. 1. Class diagrams as an adaptive language that adapts to the modelling phase.

version. This way, the model adaptation mechanisms of adaptive languages can be used for

co-evolving models.

• Language families. A language family is a group of related languages, and can be included within

the usage applications of adaptive languages. Examples of language families include the more

than 120 variations of architectural languages reported in [47], and the many variants of Petri

nets [52], access control languages [40] and symbolic automata [20]. An interesting scenario

here is to start modelling with a language variant of the family (e.g., black and white Petri nets),

and then switching to a more expressive variant as modelling progresses and new needs arise

(e.g., when the modeller needs to use inhibitor arcs).

All these scenarios require being able to migrate models between the language variants employed.

In Figure 1, the adaptive language provides facilities to migrate from the analysis to the design

language variant, and from the design to the detailed design variant. Even though this example

considers three variants only, an adaptive language may comprise many. Hence, mechanisms that

avoid the explicit creation of migration transformations between each language variant would be

most helpful. Our notion of adaptive language includes mechanisms – called adapters – to specify

the migration in “pieces”, which are combined depending on the source and target language variant.

Another issue is the adaptation trigger. In the simplest case, the user selects the new language

variant, causing the adaptation (i.e., the migration) of the current model to the new language variant.

In addition, we foresee scenarios where adaptation is triggered automatically based on the language

features (un-)used by the current user, or on the preferred language variants of like-minded users

(i.e., using collaborative filtering recommendation techniques [3, 71]). Our notion of adaptive

language considers a general triggering mechanism that can accommodate these scenarios.

This paper focuses on the abstract syntax of adaptive languages, as it is the basis for defining the

concrete syntax and semantics. However, adapting the concrete syntax is also meaningful to provide

more or less sophisticated visualisations depending on the screen size (e.g., to accommodate the

cognitive fit principle [51]), or even moving between graphical, textual, tabular, or conversational

syntaxes [54]. Similarly, adapting the semantics can also be of interest, e.g., to select between the

different semantics of Statecharts [77]. These two topics are left for future work.

Overall, the MDE community has done extensive work in language syntax and semantics, but

their pragmatics – how languages are used – is not so explored [69]. Adaptive modelling languages

aim at making pragmatics a first-class citizen in software language engineering.
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Adaptive modelling languages 1:5

2.2 Overview
Figure 2(a) shows the main ingredients of our approach. The specification of an adaptive language

is responsibility of a language engineer. It involves defining a language product line (label 1 in the

figure) and a set of language reconfigurations that include a set of model migration rules (label 2)

and triggers stating the circumstances for reconfiguration between language versions (label 3).

Abstract
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Language
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Variability
model
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Language
configuration A
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syntax A

Language
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«conforms to»
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conditions
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3.17

Language product 
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3.17
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3.11
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the feature model
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Adaptive language An LPL with a set of adapters 4.15

(a)       (b)

Def.

4.22Model with context, conforming 
to one configuration of the TAL

Contextual adaptive 
model

Fig. 2. (a) Schema of our approach to define and use adaptive modelling languages. (b) Key concepts.

A language product line is a compact specification of a set of language variants. As previously

stated, we focus on the abstract syntax of the language only. Thus, in our approach, a language

product line is made of: a meta-model specifying the abstract syntax of all language variants in an

overlapped way (so-called negative variability [65]), a variability model describing the features of

the allowed language variants (so-called language configurations), and conditions on the presence

or absence of the meta-model elements in each language configuration
2
. Section 3.3 will introduce

language product lines.

A reconfiguration from a source to a target language configuration is defined bymeans of adapters.

These are sets of transformation rules that specify model migration piecewise. As Sections 4.2 and 5

will show, adapters are defined based on the available language features, and then get automatically

selected and composed depending on the features of the source and target language configurations.

We use graph transformation [28] to express model transformations, but other approaches could

be used as well. In addition, we propose techniques for the language engineer to analyse the local

correctness and compatibility of adapters, and the reachability of configurations using meaningful

migration transformations (cf. Section 6).

Triggers are conditions evaluated on the current model or its context, specifying when an

adaptation into a new language variant should occur. Context models [13] may include information

2
Our approach can be easily extended to include a model-based definition of the concrete syntax of a language family (e.g.,

using Sirius odesign models [66]). Selecting a configuration would then produce the abstract and concrete syntax definitions

for the language variant. At runtime, a framework that interprets the model-based concrete syntax definitions (e.g., Sirius)

would enable replacing the concrete syntax based on the language variant. We will consider concrete syntax in future work.
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1:6 Juan de Lara and Esther Guerra

regarding the model construction history or the modelling activity (e.g., properties of the modelling

device or the current user, time of modelling, position of the device). Some adaptive languages may

also allow the user to freely select the desired target language variant, while ensuring that such a

language reconfiguration is allowed. Section 4.4 will explain triggers.

The bottom of Figure 2(a) depicts the usage schema of an adaptive language at run-time. A user is

editing a model with the language variant A, given by the configuration 𝜌𝐴 of the adaptive language

(label 4). The environment is monitoring the model and the context of interest (label 5). When a

reconfiguration trigger into the language variant B occurs (label 6), a migration transformation is

composed on the fly out of the defined adapters (label 7). This transformation is executed, so that

the model is migrated and the user can continue modelling using the language variant B.

As a reference for the reader, Figure 2(b) provides a brief description of the key concepts that

will be introduced throughout the paper, and a pointer to their formal definition.

3 PRELIMINARIES
This section provides some background for the notion of adaptive modelling language. Section 3.1

starts defining the concepts of meta-model, model and model mapping. Section 3.2 introduces graph

transformation, as we will use it to express migrations across language variants. Then, Section 3.3

presents language product lines, over which adaptive languages are defined.

3.1 Models and Meta-models
Our theory requires a notion of model and meta-model, for which we use a representation based

on graphs. For convenience, we use a slight simplification of the notion of E-Graph defined in [28]

to represent both models and meta-models.

Definition 3.1 (E-Graph). An E-Graph 𝐺 = ⟨𝑉 , 𝐷, 𝐸,𝐴, 𝑠𝑟𝑐, 𝑡𝑎𝑟, 𝑜𝑤𝑛𝑒𝑟, 𝑣𝑎𝑙⟩ consists of the sets:
• 𝑉 of graph vertices, 𝐷 of data values, 𝐸 of graph edges, and 𝐴 of attributes

and the functions:

• 𝑠𝑟𝑐 : 𝐸 → 𝑉 , 𝑡𝑎𝑟 : 𝐸 → 𝑉 providing a source and target vertex to each graph edge

• 𝑜𝑤𝑛𝑒𝑟 : 𝐴→ 𝑉 , 𝑣𝑎𝑙 : 𝐴→ 𝐷 providing an owner vertex and a value to each attribute

Remark 3.2. Given an E-Graph 𝐺 , we write 𝑉 , 𝐸, 𝐴 to denote its sets of vertices, edges and

attributes, when no confusion can arise. When considering several graphs (e.g.,𝑀 ,𝑀𝑀) then we

use subindices for these sets (e.g.,𝑀𝑉 ,𝑀𝐸 ,𝑀𝐴,𝑀𝑀𝑉 ,𝑀𝑀𝐸 ,𝑀𝑀𝐴).

Models can be encoded as E-Graphs by using the set 𝑉 to represent the objects, 𝐴 the attributes,

𝐷 the attribute values, and 𝐸 the links between objects. E-Graphs are often enriched with an algebra

over a data signature [64] that describes the attribute data types (string, integer, boolean). Such

graphs are called attributed graphs, and the set 𝐷 is then defined as the union of the carrier sets of

the algebra [28]. Meta-models can be encoded using the same structure, but in this case, attributes

specify a data type and do not hold values. This way, meta-models are attributed graphs over a

final signature, where the carrier set of each sort has just one element [28]. Richer meta-model

formalisations have been proposed, e.g., considering inheritance [21] or cardinalities [72]. Instead,

we opt for a simpler formulation as it serves better to illustrate our ideas.

Example 3.3. Figure 3(a) depicts a meta-model 𝑀𝑀 and a model 𝑀 as per Definition 3.1. The

meta-model 𝑀𝑀 contains one vertex Class with a reflexive edge parent and an attribute name of

type String (being String the only element of 𝑀𝑀𝐷 ). The model 𝑀 has two vertices (person and

emp) connected via an edge parent and giving values to attribute name (“Person” and “Employee”).

Figure 3(b) depicts the same meta-model and model using the UML notation, which we will use

from now on.
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Class String
name

owner val

parent

src tar

Meta-model MM

person “Person”
name

owner val

parent

tar

src

Model M

Graph vertex (V)

Data value (D)

Graph edge (E)

Attribute (A)

src, tar, owner, val

emp “Employee”
name

owner val

Legend

(a) (b)

Class

Meta-model MM

name: String

parent

person: Class

Model M

name=“Person”

:parent

emp: Class

name=“Employee”

E-Graphs

E-Graph Morphisms

Graph morphism

Fig. 3. A model𝑀 typed over meta-model𝑀𝑀 using (a) Definitions 3.1 and 3.4, and (b) the UML notation.

We use graph morphisms [28] to express relations between graphs, like the type relationship

between model𝑀 and meta-model𝑀𝑀 in Figure 3(a). A graph morphism is a tuple of commuting

functions mapping the sets 𝑉 , 𝐷 , 𝐸 and 𝐴 in both graphs.

Definition 3.4 (E-Graphmorphism). Given two E-Graphs𝐺𝑖 = ⟨𝑉𝑖 , 𝐷𝑖 , 𝐸𝑖 , 𝐴𝑖 , 𝑠𝑟𝑐𝑖 , 𝑡𝑎𝑟𝑖 , 𝑜𝑤𝑛𝑒𝑟𝑖 , 𝑣𝑎𝑙𝑖⟩
for 𝑖 ∈ {1, 2}, an E-Graph morphism 𝑓 : 𝐺1 → 𝐺2 = ⟨𝑓𝑉 , 𝑓𝐷 , 𝑓𝐸, 𝑓𝐴⟩ is made of a tuple of set func-

tions 𝑓𝑋 : 𝑋1 → 𝑋2 (for 𝑋 ∈ {𝑉 , 𝐷, 𝐸,𝐴}) commuting with functions 𝑠𝑟𝑐 , 𝑡𝑎𝑟 , 𝑜𝑤𝑛𝑒𝑟 , and 𝑣𝑎𝑙 , i.e.,

𝑓𝑉 ◦ 𝑠𝑟𝑐1 = 𝑠𝑟𝑐2 ◦ 𝑓𝐸 , 𝑓𝑉 ◦ 𝑡𝑎𝑟1 = 𝑡𝑎𝑟2 ◦ 𝑓𝐸 , 𝑓𝑉 ◦ 𝑜𝑤𝑛𝑒𝑟1 = 𝑜𝑤𝑛𝑒𝑟2 ◦ 𝑓𝐴, and 𝑓𝐷 ◦ 𝑣𝑎𝑙1 = 𝑣𝑎𝑙2 ◦ 𝑓𝐴.
Example 3.5. Figure 3(a) shows an E-Graph morphism 𝑓 : 𝑀 → 𝑀𝑀 , which maps person and

emp to Class (i.e., 𝑓𝑉 (person) = 𝑓𝑉 (emp) = Class). It is valid according to Definition 3.4 since all

functions commute. For example, the source vertex of parent in𝑀 is emp, which is mapped to Class

(i.e., 𝑓𝑉 (𝑠𝑟𝑐𝑀 (parent)) = Class); and commutatively, we get the same result by first obtaining the

mapping of edge parent in𝑀 , which is edge parent in𝑀𝑀 , and then taking the source vertex of this

latter edge (i.e., 𝑠𝑟𝑐𝑀𝑀 (𝑓𝐸 (parent)) = Class).

Given a meta-model 𝑀𝑀 , we define the set 𝑆𝐸𝑀 (𝑀𝑀) = {𝑀 | ∃𝑓 : 𝑀 → 𝑀𝑀} of all models

typed by𝑀𝑀 . We also say that𝑀 ∈ 𝑆𝐸𝑀 (𝑀𝑀) is a typed graph.

3.2 Graph Transformation
Changing the language variant in use entails the migration of the current model to the new variant.

We use graph transformation [28] for this task. This is a rule-based declarative transformation

approach with a formal basis. Next, we introduce the basic concepts that we will use in our proposal,

and refer to [28] for more details.

The theory of graph transformation works with graphs and morphisms (like those in Defini-

tions 3.1 and 3.4) and has been generalised to work with more abstract structures [28]. Conceptually,

rules have a left-hand side graph3 (LHS) describing a pattern to be found on a model, a right-hand
side graph (RHS) defining the changes to perform to the model, and an intermediate gluing graph
𝐾 with the common parts of the LHS and the RHS. In addition, rules can define a set of negative
application conditions (NACs) stating forbidden conditions on the model for the rule to be applicable.

Definition 3.6 (Graph transformation rule). A graph transformation rule 𝑡𝑟 = ⟨𝐿 𝑙←− 𝐾
𝑟−→

𝑅, 𝑁𝐴𝐶𝑆 = {𝐿 𝑛𝑖−→ 𝑁𝑖 }𝑖∈𝐼 ⟩ is made of:

3
In the paper, we use the terms graph and model interchangeably.
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• Three (typed) graphs 𝐿 (called the left-hand side, LHS), 𝐾 (called the gluing graph), and 𝑅

(called the right-hand side, RHS), with two injective morphisms 𝑙 and 𝑟 between them

• A set 𝑁𝐴𝐶𝑆 of negative application conditions made of a collection of graphs 𝑁𝑖 (for 𝑖 ∈ 𝐼 )
and injective morphisms 𝑛𝑖 from 𝐿 to each such graph

Example 3.7. The top of Figure 4 shows an example rule tr that creates a parent class named

Parent for two classes that lack a parent class. The morphisms 𝑙 and 𝑟 are defined by equality of

identifiers (e.g., morphism 𝑙 maps node c1 in graph 𝐾 to c1 in graph 𝐿). The rule has two NACs,

given by morphisms 𝑛0 : 𝐿 → 𝑁0 and 𝑛1 : 𝐿 → 𝑁1, where 𝑁0 and 𝑁1 are isomorphic. The figure

shows morphisms 𝑛0 and 𝑛1 explicitly as mappings, since they map differently c1 and c2. The NACs

forbid applying the rule if either Class identified by 𝐿 has a parent.

G

c1: Class c2: Class

c1: Class c2: Class

c: Class

name=“Parent”
L K

R

l r

b: Class

p: Class

N0 = N1
n0

H

m d h

f g

(1) (2)
c1 car
c2 bike

c1 car
c2 bike
c  c

c1: Class c2: Class

c1 car
c2 bike=

car: Class

name=“Car”

bike: Class

name=“Bike”

D

:parent :parent
:parent

ecar: Class

name=“ElectricCar”

:parent

car: Class

name=“Car”

bike: Class

name=“Bike”

ecar: Class

name=“ElectricCar”

:parent

car: Class

name=“Car”

bike: Class

name=“Bike”

ecar: Class

name=“ElectricCar”

:parent

c: Class

name=“Parent”

:parent :parent

c1 a
c2 b
n1

c1 b
c2 a

rule tr

a: Class

Fig. 4. Example rule (top) and rule application to a graph 𝐺 yielding graph 𝐻 .

A rule is applicable on a model if the model contains an occurrence (i.e., a match) of the LHS,
no occurrence of the NACs (i.e., the model does not include any of the graphs 𝑁𝑖 ), and the rule

application yields a valid model. The rule application deletes the elements present in the LHS but

not on the RHS (𝐿 \ 𝑙 (𝐾))4, and adds those present in the RHS but not in the LHS (𝑅 \ 𝑟 (𝐾)). The
resulting graph is valid if the match satisfies the dangling edge and the identification conditions.

The former states that if a node is deleted, all its incident and outgoing edges should be deleted as

well to avoid dangling edges without source or target. The identification condition states that if two

elements in the LHS are identified into a single element in the model (via a non-injective match),

then the rule does not specify contradictory actions for them (i.e., deleting one and preserving the

other) [28].

Definition 3.8 (Rule application [28]). Given a rule 𝑡𝑟 = ⟨𝐿 𝑙←− 𝐾 𝑟−→ 𝑅, 𝑁𝐴𝐶𝑆 = {𝐿 𝑛𝑖−→ 𝑁𝑖 }𝑖∈𝐼 ⟩
and a graph 𝐺 , 𝑡𝑟 is applicable on 𝐺 via the match morphism𝑚 : 𝐿 → 𝐺 , written 𝐺 |=𝑚 𝑡𝑟 , if:

• There is no injective morphism𝑚𝑖 : 𝑁𝑖 → 𝐺 from any negative application condition in

𝑁𝐴𝐶𝑆 , s.t. the triangle to the left of Figure 5 commutes (i.e., �𝑚𝑖 ·𝑚𝑖 ◦ 𝑛𝑖 =𝑚)

• Dangling edge condition: the nodes in 𝐿 whose image under𝑚 are the source or target of an

edge in 𝐺 that is not mapped by𝑚, are preserved by 𝑡𝑟 (cf. Definition 3.9 in [28])

• Identification condition: if two nodes or edges in 𝐿 have the same image under𝑚, they are

preserved by 𝑡𝑟 (cf. Definition 3.9 in [28])

4𝐿 \ 𝑙 (𝐾 ) are the elements (vertices and edges) belonging to 𝐿 that 𝑙 (𝐾 ) does not map.
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𝑁𝑖

|
𝑚𝑖 ((

=

𝐿
𝑛𝑖oo

𝑚

��

𝐿

𝑚

��
(1)

𝐾 𝑟 //𝑙oo

𝑑
��

𝑅

ℎ
��

(2)

𝐺 𝐺 𝐷 𝑓 //𝑔oo 𝐻

Fig. 5. Satisfaction of NACs (left). Rule application (right).

Given a rule 𝑡𝑟 , a graph 𝐺 , and a match𝑚 s.t. 𝐺 |=𝑚 𝑡𝑟 , then 𝑡𝑟 is applied to 𝐺 yielding graph

𝐻 , written 𝐺
𝑡𝑟,𝑚
=⇒ 𝐻 , by the double pushout diagram to the right of Figure 5, where (1) and (2) are

pushouts. We write 𝐺
𝑡𝑟 ∗
=⇒ 𝐻 for zero or more consecutive applications of 𝑡𝑟 , yielding graph 𝐻 .

A pushout [28] is a gluing construction that merges two graphs (e.g., 𝐷 , 𝑅) via a common

subgraph (e.g., 𝐷
𝑑← 𝐾

𝑟→ 𝑅). A rule application (cf. right of Figure 5) calculates first a pushout

complement graph 𝐷 , which is a graph that makes the square (1) a pushout. Intuitively, it is a graph

equal to𝐺 , but deprived of the elements that are in 𝐿 and not in 𝐾 (𝑚(𝐿 \ 𝑙 (𝐾))). A second pushout

(square (2)) adds to 𝐷 the elements in 𝑅 \ 𝑟 (𝐾), yielding graph 𝐻 .

Example 3.9. Figure 4 shows an example rule application. The rule is applied to graph 𝐺 , on a

match identifying c1 to car and c2 to bike. This is allowed since neither car nor bike have a parent
5
.

Instead, identifying c1 or c2 to ecar is not possible because ecar has a parent, which violates the

NACs. The rule does not delete anything (𝐷 is isomorphic to𝐺), but it creates a Class named Parent
connected to car and bike. The created elements are those belonging to 𝑅 \ 𝑟 (𝐾) (i.e., the node c

and the two edges). The pushout of square (2) performs this creation, merging graphs 𝑅 and 𝐷 via

the common elements in 𝐾 , to yield graph 𝐻 . In the rest of the paper, rules will omit graph 𝐾 and

morphisms 𝑙 , 𝑟 and 𝑛𝑖 , as they can be deduced by the equality of object identifiers in 𝐿, 𝑅 and 𝑁𝑖 .

Given a set 𝑅𝑆 of transformation rules and a graph 𝐺 , we use the predicate 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 (𝐺, 𝑅𝑆) ≜
∀𝑡𝑟𝑖 ∈ 𝑅𝑆, �𝑚 : 𝐿𝑖 → 𝐺 ·𝐺 |=𝑚 𝑡𝑟𝑖 to denote that no rule in 𝑅𝑆 is applicable to𝐺 . We write𝐺

𝑅𝑆∗
=⇒ 𝐻

for zero or more consecutive applications of the rules within 𝑅𝑆 starting from graph 𝐺 .

Our notion of transformation system requires the concept of trace of a derivation, defined next.

Definition 3.10 (Derivation trace). Given a set 𝑅𝑆 of rules, a graph 𝐺 , and a derivation 𝑑 : 𝐺
𝑡𝑟𝑖
=⇒

𝐺1...
𝑡𝑟𝑛
=⇒ 𝐺𝑛 , the function 𝑡𝑟𝑎𝑐𝑒 (𝑑) = 𝑡𝑟𝑖 ...𝑡𝑟𝑛 yields the sequence of rules applied within 𝑑 .

A graph transformation system is made of rules where 𝐿, 𝐾 , 𝑅 and 𝑁𝑖 are typed by a common

meta-model𝑀𝑀 . We consider transformation units [43] to control the rule execution order. These

consist of regular expressions over rules, which can include parenthesis for grouping, and use 𝑡𝑟 ∗

to denote 0 or more applications of the rule 𝑡𝑟 , 𝑡𝑟+ for 1 or more applications of 𝑡𝑟 , 𝑡𝑟0 + 𝑡𝑟1 for the
application of 𝑡𝑟0 or 𝑡𝑟1, and 𝑡𝑟0; 𝑡𝑟1 for the sequential application of 𝑡𝑟0 and 𝑡𝑟1. Given a regular

expression 𝐶 , we write 𝐿𝐴𝑁 (𝐶) to denote the language it defines.

Definition 3.11 (Graph transformation system). A graph transformation system𝐺𝑇𝑆 = ⟨𝑅𝑆,𝑀𝑀,𝐶⟩
contains a set 𝑅𝑆 of rules typed over meta-model𝑀𝑀 , and a regular expression 𝐶 over the rules in

𝑅𝑆 .

Finally, we define the semantics of a graph transformation system, which is given by all terminal

graphs produced by derivations whose trace belongs to the language of the regular expression.

5
Another valid injective match from 𝐿 to𝐺 exists, identifying c1 to bike and c2 to car, as well as two other non-injective

matches, identifying c1 and c2 to car, and c1 and c2 to bike.
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ClassDiagram

Methods

Classes

Inheritance

Single Multi No

Associations

Comp Aggr Navig Card

Interfaces

a={Multi, Cardinal}
d={Multi, Methods, Composit, Aggregat, Navigat, Cardinal}
Jd={Single,Methods, Composit, Aggregat, Navigat, Cardinal, Interfaces}

FM=( F = {ClassDiagram, Classes, Methods, Inheritance, Single, ...},
 = ClassDiagram  Classes  Associations  Inheritance  Style 

((Decorations  (Comp  Aggr  Navig  Card)) 
((SingleMulti No)  (SingleMulti No)  (SingleMulti No)) 
((Ref  FullAssoc)  (Ref  FullAssoc)) 
(InterfacesMethods)

(a)

(b)

Style Decorations

Ref FullAssoc

Cross tree constraints: (Interfaces Methods)

alternative
(exactly one)

or
(at least one)

mandatory optional

Fig. 6. Feature model for the class diagrams adaptive language represented using: (a) the feature diagram

notation, and (b) Definition 3.13.

Definition 3.12 (Application of graph transformation system). Given a graph transformation system

𝐺𝑇𝑆 = ⟨𝑅𝑆,𝑀𝑀,𝐶⟩, and a graph𝐺 typed over𝑀𝑀 , its semantics 𝑆𝐸𝑀𝐺 (𝐺𝑇𝑆) = {𝐻 | ∃𝑑 : 𝐺
𝑅𝑆∗
=⇒

𝐻 ∧ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 (𝐻, 𝑅𝑆) ∧ 𝑡𝑟𝑎𝑐𝑒 (𝑑) ∈ 𝐿𝐴𝑁 (𝐶)} consists of all terminal graphs 𝐻 produced by 0 or

more applications of the rules in 𝑅𝑆 , such that the trace of the derivation belongs to the language

of the regular expression 𝐶 .

3.3 Language Product Lines
As a first step to define an adaptive language, we build on works [30, 55] that propose combining

meta-models and software product lines to create families of modelling languages in a compact

way. This way, each variant of an adaptive language corresponds to a language of the family.

We define the variability space of an adaptive language by means of a feature model, which
represents all features an adaptive language may have and restricts how they can be combined.

While feature diagrams [39] are a popular notation for them, we use a formalisation to facilitate

the precise definition of adaptive language and related concepts in the next section.

Definition 3.13 (Feature model [30]). A feature model 𝐹𝑀 = (𝐹,Ψ) consists of a set of variables
𝐹 = {𝑓1, ..., 𝑓𝑛} called features, and a propositional formula Ψ over the variables in 𝐹 .

Example 3.14. Figure 6 shows the variability in the adaptive class diagrams language of our

running example, represented using the feature diagram notation in part (a), and Definition 3.13 in

part (b). The feature model allows choosing whether classes have methods; the supported kind of

inheritance (single, multiple or none); whether interfaces are supported; the style for associations

(unidirectional references or full associations); and the available decorations for association ends

(composition, aggregation, navigation, and cardinality). The cross-tree constraint ensures that

when interfaces are present in a language variant, so are methods.

A specific selection of features that is compatible with the feature model is called a configuration.

Definition 3.15 (Feature configuration). Given a feature model 𝐹𝑀 = (𝐹,Ψ), a configuration 𝜌 ⊆ 𝐹
is a partition of 𝐹 into two subsets of selected (𝐹+ = 𝜌) and unselected (𝐹 − = 𝐹 \ 𝜌) features that
satisfy Ψ, i.e., Ψ[𝑡𝑟𝑢𝑒/𝐹+, 𝑓 𝑎𝑙𝑠𝑒/𝐹 −] evaluates to true when each 𝑓 ∈ 𝐹+ is substituted by true, and

each 𝑓 ∈ 𝐹 − by false. We write 𝐶𝐹𝐺 (𝐹𝑀) for the set of all configurations of 𝐹𝑀 .
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Example 3.16. The feature model in Figure 6 admits 288 configurations. Three of them are

𝜌𝐴 = {Multi, FullAssoc, Decorations, Card}, 𝜌𝐷 = {Methods, Multi, FullAssoc, Decorations, Comp, Aggr,

Navig, Card}, and 𝜌 𝐽 = {Methods, Single, Ref, Interfaces, Decorations, Comp, Aggr, Navig, Card}. We

will use these configurations to obtain the analysis, design and Java variants of the class diagrams

adaptive language in our running example (cf. Figure 1). For simplicity, the configurations only list

the selected features with white background in Figure 6, since the shaded features (e.g., ClassDiagram,

Classes) are mandatory and must be selected in any configuration.

A language product line (LPL) [30] comprises a feature model and a so-called 150% meta-model

(150MM). The latter overlaps the meta-models of all language variants, and its elements attach a

boolean formula – called presence condition (PC) – stating the variants the element belongs to.

Definition 3.17 (Language product line). A language product line is a tuple 𝐿𝑃𝐿 = ⟨𝐹𝑀,𝑀𝑀,Φ⟩
consisting of:

• A feature model 𝐹𝑀 = (𝐹,Ψ)
• A meta-model𝑀𝑀 , called the 150% meta-model (150MM)

• A tuple Φ = ⟨Φ𝑉 ,Φ𝐸,Φ𝐴⟩ of functions Φ𝑋 : 𝑋 → Prop𝐹 (for 𝑋 ∈ {𝑉 , 𝐸,𝐴}) assigning
presence conditions (PCs) to the 150MM elements. Prop𝐹 is the set of all propositional

formulae over the features in 𝐹 , and Φ(𝑥) is called the PC of 𝑥6

such that the following conditions hold:

• The PC of each attribute 𝑎 ∈ 𝐴 must be stronger than that of its owning class: Φ(𝑎) ⇒
Φ(𝑜𝑤𝑛𝑒𝑟 (𝑎))
• The PC of each reference 𝑟 ∈ 𝐸 must be stronger than that of its source and target classes:

(Φ(𝑟 ) ⇒ Φ(𝑠𝑟𝑐 (𝑟 ))) ∧ (Φ(𝑟 ) ⇒ Φ(𝑡𝑎𝑟 (𝑟 )))

Example 3.18. Figure 7(a) shows the 150MM for the example. It displays the PCs between square

brackets, omitting those equal to true. For instance, the PC of class Interface is Interfaces. This PC is a

propositional formula that uses features (Interfaces) as variables. Hence, selecting feature Interfaces

makes this formula true, while not selecting it makes the formula false. In the figure, the PC of

Role is true so the figure does not show it. By convention, the figures assume that the PC of fields
(attributes and references) is conjoined with that of their owning class. For instance, the PC of

Interface.methods is Interfaces, the PC of Role.navig is Navig, and the one of Method.name is Methods ∨
Interfaces (i.e., Method.name will be present in any language variant that selects either Methods or

Interfaces). This simplifies the definition of the LPLs and ensures the required implication from the

PC of fields to the PC of their owner classes (e.g., Φ(Interface.name) ⇒ Φ(Interface)). Elements with

PC false (like reference Class.iface) are auxiliary elements used by the migration transformations (cf.

Section 4) but absent from any language variant. This avoids polluting the individual meta-models

of the language variants with these auxiliary elements. Finally, the figure shows cardinalities in

references, but since the notion of meta-model of Definition 3.1 does not consider them, these are

displayed for explanatory purposes only.

Given a configuration, we can derive a meta-model variant (i.e., a product) by removing from the

150MM the elements whose PC evaluates to false when substituting the features in their PC by

their value in the configuration.

Definition 3.19 (Derivation). Given 𝐿𝑃𝐿 = ⟨𝐹𝑀,𝑀𝑀 = ⟨𝑉 , 𝐷, 𝐸,𝐴, 𝑠𝑟𝑐, 𝑡𝑎𝑟, 𝑜𝑤𝑛𝑒𝑟, 𝑣𝑎𝑙⟩,Φ⟩ and a

configuration 𝜌 ∈ 𝐶𝐹𝐺 (𝐹𝑀), a meta-model product𝑀𝑀𝜌 = ⟨𝑉𝜌 , 𝐷, 𝐸𝜌 , 𝐴𝜌 , 𝑠𝑟𝑐𝜌 , 𝑡𝑎𝑟𝜌 , 𝑜𝑤𝑛𝑒𝑟𝜌 , 𝑣𝑎𝑙𝜌⟩
is derived by deleting from the 150MM those elements whose PC evaluates to false in configuration

6
For simplicity, given 𝑥 ∈ 𝑉 ∪ 𝐸 ∪𝐴, we use Φ(𝑥 ) (instead of, e.g., Φ𝑉 (𝑥 )) when no confusion can arise.
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methods

methods

2 roles

[false]

[Ref]

parents

[Multi]

[Single]

[Interfaces] realizes

[Methods]

Role

name: String
navig: boolean=true      [Navig]
isComp: boolean=false [Comp]
isAggr: boolean=false   [Aggr]
min: int=0                      [Card]
max: int=-1                    [Card]

playedBy

[Interfaces]
Interface

name: String

[Methods or Interfaces]
Method

name: String
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name: String
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name: String
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name: String
isAbstract: boolean

iface
*
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*

*

parent
0..1

*

*

*
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*
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playedBy
Attribute

name: String
type: String
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Class

name: String
isAbstract: boolean

*
attributes
*

(b)

Fig. 7. (a) 150% meta-model for the class diagrams adaptive language. (b) Meta-model productMM𝜌𝐴 .

𝜌 , i.e., 𝑋𝜌 = {𝑥 ∈ 𝑋 | Φ(𝑥) [𝑡𝑟𝑢𝑒/𝐹+, 𝑓 𝑎𝑙𝑠𝑒/𝐹 −] = 𝑡𝑟𝑢𝑒}, for 𝑋 ∈ {𝑉 , 𝐸,𝐴}, and restricting the

functions: 𝑠𝑟𝑐𝜌 = 𝑠𝑟𝑐 |𝐸𝜌 , 𝑡𝑎𝑟𝜌 = 𝑡𝑎𝑟 |𝐸𝜌 , 𝑜𝑤𝑛𝑒𝑟𝜌 = 𝑜𝑤𝑛𝑒𝑟 |𝐴𝜌
, 𝑣𝑎𝑙𝜌 = 𝑣𝑎𝑙 |𝐴𝜌

.

Example 3.20. Figure 7(b) shows the meta-model derived from the 150MM of Figure 7(a) using the

configuration 𝜌𝐴 = {Multi, FullAssoc, Decorations, Card} (i.e., the analysis class diagrams meta-model).

According to Definition 3.19, the derivation deletes all classes, attributes and references whose PC

evaluates to false for the given configuration. The derivation does not delete elements of 𝐷 , i.e.,

data types like String or int. The unused data types are simply ignored.

4 ADAPTIVE MODELLING LANGUAGES
This section builds on LPLs to introduce the new notion of adaptive modelling language. This
extends LPLs with support for model migration between the language variants of a family.

Amajor concern in this proposal is to avoid the explicit specification of migration transformations

between every two variants derivable from the LPL, since the cost may be prohibitive (e.g., the

running example would imply defining 288·287 = 82 656 transformations). To this aim, we provide

means to define smaller transformation pieces (called language adapters) that take care of the

migration tasks needed upon changing individual language features (or a small set of them). A

language adapter declares a set of feature differences (features changes and feature invariants),

plus a set of in-place transformation rules stating how models should be changed to accommodate

those diffs. This way, an adapter is directed to bridge the gap between a (typically reduced) set of

language features. When moving from a source to a target language configuration, their feature

diffs are identified, and a suitable migration transformation is constructed on the fly by combining

adapters compatible with such diffs. As we will see later, a transformation from 𝑀𝑀𝜌𝑠 to 𝑀𝑀𝜌𝑡

will include all adapters having a diff consistent with the configuration diff between 𝜌𝑡 and 𝜌𝑠 .

Next, Section 4.1 describes configuration diffs as a way to express changes in configurations.

Then, Section 4.2 uses them to build language adapters that permit modularising model migra-

tion transformations feature-wise. Section 4.3 defines adaptive languages as LPLs equipped with

language adapters that ensure the interoperability between language variants. Finally, Section 4.4

extends adaptive languages with adaptation triggers. For readability, part of the theory and the

proofs of the lemmas and propositions can be found in Appendix A.
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Adaptive modelling languages 1:13

4.1 Diffs and Configuration Diffs
We start defining diffs, which represent changes and invariants in the selection values of a set of

features. A diff is a tuple made of a difference 𝛿 (the features that modify their selection value) and

a context 𝐶 (the features that preserve their selection value).

Definition 4.1 (Diff). Given a feature model 𝐹𝑀 = ⟨𝐹,Ψ⟩, a diff Δ = ⟨𝛿,𝐶⟩ contains:
• A tuple 𝛿 = ⟨𝐹+−, 𝐹 −+⟩ called difference, with sets 𝐹+− ⊆ 𝐹 of features changing from

selected to unselected, and 𝐹 −+ ⊆ 𝐹 of features changing from unselected to selected

• A tuple𝐶 = ⟨𝐹++, 𝐹 −−⟩ called context, with sets 𝐹++ ⊆ 𝐹 of features remaining selected, and

𝐹 −− ⊆ 𝐹 of features remaining unselected

such that the four sets 𝐹+− , 𝐹 −+, 𝐹++, 𝐹 −− are disjoint.

The union of the feature sets within a diff is not required to yield the complete set of features 𝐹 ,

but diffs may describe just a few changes in a configuration, like (un)selecting one feature. These

are called partial diffs, and we use them to specify the conditions for including an adapter in a

migration transformation. In contrast, configuration diffs consider all features within a feature

model, and we use them to describe the difference between two configurations.

Example 4.2. The diff Δ1 = ⟨𝛿 = ⟨{Multi}, {Single}⟩,𝐶 = ⟨{Methods}, {}⟩⟩ states that Multi

changes to unselected, Single to selected, andMethods remains selected. The features not included in

the diff can change or retain their value. As shown in Figure 8(a), Δ1 is a partial diff as it uses a subset

of the features of the feature model, describing some feature changes and contextual conditions

that remain invariant. We will attach this type of diff to adapters. Instead, Δ𝐷𝐽 in Figure 8(b) is a

configuration diff
7
that captures how all features change or retain their value when moving from

𝜌𝐷 to 𝜌 𝐽 . We will define compatibility conditions between diffs that will enable selecting adapters

with diffs like Δ1 when assembling a migration transformation from 𝜌𝐷 to 𝜌 𝐽 .

Methods

Classes

Inheritance

Single Multi

Methods

Classes

Inheritance

Single Multi

1 =  ={Multi}, {Single}, 
           C={Methods},  

(a) (b)



’

ClassDiagram

Methods

Classes

Inheritance

Single Multi No

Associations

Comp Aggr Navig Card

Interfaces

Style Decorations

Ref

ClassDiagram

Methods

Classes

Inheritance

Single Multi No

Associations

Comp Aggr Navig Card

Interfaces

Style Decorations

Ref

DJ = ={Multi, FullAssoc}, {Single, Ref, Interfaces}, 
           C={Methods, Decorations, Comp, Aggr, Navig, Card}, {No} 

D

J

FullAssoc

FullAssoc

Fig. 8. (a) A partial diff Δ1 expressing a few changes and contextual conditions. (b) A configuration diff Δ𝐷𝐽
expressing the difference between 𝜌𝐷 and 𝜌 𝐽 . As Definition 4.7 will show, Δ1 is compatible with Δ𝐷𝐽 .

Not any diff is meaningful, but the features included in their difference and context need to

be compatible with the feature model. As the next definition states, in a well-formed (wff) diff,

7
For readability, configuration diffs like Δ𝐷𝐽 omit all mandatory features that are always selected, like ClassDiagram.
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the initially selected (𝐹+− ∪ 𝐹++) and unselected (𝐹 −+ ∪ 𝐹 −−) features, and the finally selected

(𝐹 −+ ∪ 𝐹++) and unselected (𝐹+− ∪ 𝐹 −−) features, need to be compatible with the feature model.

Definition 4.3 (Well-formed diff). A diff Δ is well-formed (wff) w.r.t. 𝐹𝑀 = ⟨𝐹,Ψ⟩ if:
(1) the pre-state (i.e., the initial feature values) is wff:

Ψ[𝑡𝑟𝑢𝑒/(𝐹+− ∪ 𝐹++), 𝑓 𝑎𝑙𝑠𝑒/(𝐹 −+ ∪ 𝐹 −−)] ≠ 𝑓 𝑎𝑙𝑠𝑒

(2) the post-state (i.e., the final feature values) is wff:

Ψ[𝑡𝑟𝑢𝑒/(𝐹 −+ ∪ 𝐹++), 𝑓 𝑎𝑙𝑠𝑒/(𝐹+− ∪ 𝐹 −−)] ≠ 𝑓 𝑎𝑙𝑠𝑒

Condition (1) in Definition 4.3 requires that, when taking the features that the diff assumes true

(𝐹+− , 𝐹++) and false (𝐹 −+, 𝐹 −−), there is no contradiction with the feature model. In our example,

a diff assuming both Multi and Single to be true would not be wff. Condition (2) states that the

features that become (or stay) true (𝐹 −+, 𝐹++) and false (𝐹+− , 𝐹 −−) after the diff application should

not be contradictory with the feature model. For example, a diff selecting Single (𝐹 −+) and assuming

that Multi stays selected (𝐹++) would not be wff.

Example 4.4. The diff Δ2 = ⟨𝛿 = ⟨{Multi, Single}, {}⟩,𝐶 = ⟨{}, {}⟩⟩ is not wff for the feature

model of the running example, since both Multi and Single cannot be true at the same time, so the

pre-state is not wff. Conversely, the diff Δ3 = ⟨𝛿 = ⟨{Multi}, {}⟩,𝐶 = ⟨{}, {}⟩⟩ is wff. Even if it does

not specify that either Single or No should become selected (since Multi is deselected), the changes

in Δ3 do not contradict the feature model.

Appendix A.1 shows that diffs can be used to transform configurations [28]. However, we are

rather interested in their use to express the difference between two configurations (a configuration
diff, cf. Definition 4.5), and then check if partial diffs are compatible with that difference (using

notions of diff inclusion and consistency, cf. Definition 4.7). Next, Definition 4.5 uses diffs to record

all feature values that are modified and preserved when moving from one configuration to another.

Definition 4.5 (Configuration diff). Given 𝜌𝑖 , 𝜌 𝑗 ∈ 𝐶𝐹𝐺 (𝐹𝑀), the configuration diff 𝜌 𝑗 − 𝜌𝑖 (which
records the feature changes and invariants when moving from 𝜌𝑖 to 𝜌 𝑗 ) is given by the diff Δ𝑖 𝑗 =
⟨𝛿𝑖 𝑗 = ⟨𝐹+𝑖 ∩ 𝐹 −𝑗 , 𝐹 −𝑖 ∩ 𝐹+𝑗 ⟩,𝐶𝑖 𝑗 = ⟨𝐹+𝑖 ∩ 𝐹+𝑗 , 𝐹 −𝑖 ∩ 𝐹 −𝑗 ⟩⟩.

Example 4.6. Given the configurations 𝜌𝐷 and 𝜌 𝐽 in Example 3.16, the configuration diff 𝜌 𝐽 − 𝜌𝐷 ,
which corresponds to moving from configuration 𝜌𝐷 to configuration 𝜌 𝐽 , is Δ𝐷𝐽 = ⟨⟨{Multi,

FullAssoc}, {Single, Ref, Interfaces}⟩, ⟨{Methods, Decorations, Comp, Aggr, Navig, Card}, {No}⟩⟩ (cf. Fig-
ure 8(b)). Hence, features Multi and FullAssoc change to unselected; Single, Ref and Interfaces change

to selected; and the others preserve their selection value.

Next, we define diff inclusion and consistency, which enable checking if a partial diff is com-

patible with another, “bigger” diff (like a configuration diff). Later, in Section 4.2, we will define

language adapters with diffs, and exploit the notion of diff consistency to compose full migration

transformations out of adapters.

Definition 4.7 (Diff inclusion and consistency). Given two diffs Δ = ⟨⟨𝐹+−, 𝐹 −+⟩, ⟨𝐹++, 𝐹 −−⟩⟩ and
Δ′ = ⟨⟨𝐹 ′+−, 𝐹 ′−+⟩, ⟨𝐹 ′++, 𝐹 ′−−⟩⟩, we say that:

• Δ is included in Δ′ (written Δ ⊆ Δ′) if 𝐹𝑋 ⊆ 𝐹 ′𝑋 , for 𝑋 = {+−,−+, ++,−−}
• Δ is pre-consistent with Δ′ (written Δ ⊑𝑝𝑟𝑒 Δ′) if 𝐹+− ⊆ 𝐹 ′+− , 𝐹 −+ ⊆ 𝐹 ′−+, 𝐹++ ⊆ (𝐹 ′++ ∪
𝐹 ′+−), and 𝐹 −− ⊆ (𝐹 ′−− ∪ 𝐹 ′−+)
• Δ is post-consistent with Δ′ (written Δ ⊑𝑝𝑜𝑠𝑡 Δ′) if 𝐹+− ⊆ 𝐹 ′+− , 𝐹 −+ ⊆ 𝐹 ′−+, 𝐹++ ⊆ (𝐹 ′++ ∪
𝐹 ′−+), and 𝐹 −− ⊆ (𝐹 ′−− ∪ 𝐹 ′+−)
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Diff inclusion requires the feature sets in Δ to be included in those of Δ′. Diff consistency is more

permissive as the context may be satisfied in the pre- or post-states. That is, the delta features of Δ
must be included in those of Δ′, but the context of Δ can either be guaranteed by the context of Δ′

or be satisfied at the initial (for pre-consistency) or final (for post-consistency) configurations. If

Δ ⊆ Δ′, then Δ ⊑𝑝𝑟𝑒 Δ′ and Δ ⊑𝑝𝑜𝑠𝑡 Δ′.

Example 4.8. In our example, Δ1 = ⟨⟨{Multi}, {Single}⟩, ⟨{Methods}, {}⟩⟩, and Δ𝐷𝐽 = ⟨⟨{Multi,

FullAssoc}, {Single, Ref, Interfaces}⟩, ⟨{Methods, Decorations, Comp, Aggr, Navig, Card}, {No}⟩⟩ (cf. Fig-
ure 8). Then, Δ1 ⊆ Δ𝐷𝐽 , since every set in Δ1 is included in the corresponding set of Δ𝐷𝐽 . On the

contrary, Δ = ⟨⟨{Multi}, {Single}⟩, ⟨{Ref}, {}⟩⟩ ⊈ Δ𝐷𝐽 , since Ref is not in the positive context of Δ𝐷𝐽 .
However, Δ ⊑𝑝𝑜𝑠𝑡 Δ𝐷𝐽 , since Ref ∈ 𝐹 −+

𝐷𝐽
.

4.2 Language Adapters
A language adapter associates a graph transformation system to a diff. Intuitively, the transformation

encodes how to adapt a model when the language variant changes according to the diff. Adapters

typically manage changes in a single language feature, or a reduced set of them. This way, they

enable defining migration transformations feature-wise.

Definition 4.9 (Language adapter). Given a language product line 𝐿𝑃𝐿 = ⟨𝐹𝑀,𝑀𝑀,Φ⟩, a language
adapter 𝑎 = ⟨Δ,𝐺𝑇𝑆⟩ is made of a diff Δ over 𝐹𝑀 , and a graph transformation system 𝐺𝑇𝑆 =

⟨𝑅𝑆,𝑀𝑀,𝐶⟩.

Remark 4.10. The rules in 𝑅𝑆 are typed over the 150MM of the LPL, so they can use any element

of the language, including the auxiliary ones.

Example 4.11. Figure 9 shows three language adapters for the running example. Their rules are

typed over the 150MM in Figure 7(a). Adapter InhByDelegation transforms from multiple to single

inheritance when the feature Ref remains selected, as specified by the adapter diff Δ. The adapter
has two rules: multiBySingle and inhByRef. The adapter’s regular expression 𝐶 specifies that these

rules are to be applied randomly as long as possible. The first rule changes a link parents (used for

multiple inheritance) by a link parent, provided that the child class has no other parents (checked

by the NACs). Instead, if the child class already has a parent, then the second rule substitutes the

link parents by a reference. This rule also creates an auxiliary link iface, which other adapters may

process (in particular, adapter InhByDelegationInterface). As Definition 4.17 will show, after applying

all suitable adapters to a model, a subsequent step removes from the model all elements that do not

belong to the target language meta-model (e.g., link iface, or attributes tar.min and tar.max if the

target configuration does not select feature Card). This way, by setting values that can be removed

if not needed, a single rule can address several similar cases.

Adapter InhByDelegationInterface is to be used when moving from Multi to Single inheritance, and

features Interfaces and Methods remain selected (positive context of the diff). It comprises two rules

to be applied randomly as long as possible. The first one creates an Interface for each class pointed

by an iface link, if the interface does not exist yet (ensured by the NAC). The second rule creates

suitable Method objects in the interface and the source class of the iface link. The rules do not need

to delete the iface links, but this is deferred to the final deletion step mentioned above.

Finally, adapter AssocByRef transforms full associations into references. It declares two rules to

be randomly applied as long as possible: addNavigRole, which creates a reference for each navigable

association role, and removeNonNavigRole, which deletes non-navigable roles. The rules do not

delete the Association objects, but the final deletion step will take care of that. Note that the adapter’s

Δ does not include feature Navig in its positive context, even though the rules make use of attribute
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Fig. 9. Three language adapters for the running example (cf. feature model and 150MM in Figures 6 and 7(a)).

navig. This is allowed since rules are typed by the 150MM. Moreover, as Definition 4.17 will show,

any model adaptation will start by making it conform to the 150MM, adding any missing fields with

their default value (e.g., adding navig with value false to the Role objects if they lack this attribute).

This avoids having two sets of rules, for the cases that the Navig feature is or is not selected.

Next, we define a set of predicates (𝑐𝑟𝑒𝑎𝑡𝑒 , 𝑑𝑒𝑙𝑒𝑡𝑒 , 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒 , 𝑓 𝑜𝑟𝑏𝑖𝑑 , 𝑟𝑒𝑎𝑑) characterising the

actions that a rule performs on the objects of types activated by a set of selected (𝐹𝑆+) and unselected
(𝐹𝑆−) features. For example, a rule 𝑡𝑟 satisfies predicate 𝑐𝑟𝑒𝑎𝑡𝑒 (𝐹𝑆+, 𝐹𝑆−, 𝑡𝑟 ) if the rule creates an
object 𝑜 whose type 𝑡𝑦𝑝𝑒 (𝑜) has a PC that: (1) uses some of the features in 𝐹𝑆+ or 𝐹𝑆− , and (2)

is satisfied when substituting the features in 𝐹𝑆+ by true, and those in 𝐹𝑆− by false. Similarly, 𝑡𝑟

satisfies 𝑓 𝑜𝑟𝑏𝑖𝑑 , if any of its NACs contains an object of a type activated by the predicate features.

Definition 4.17 and Algorithm 2 employ these predicates to choose the adapters used to build

migration transformations, e.g., to avoid selecting those that create elements whose type is not

present in the target configuration, and those that delete elements whose type is not present in the

source configuration.
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Definition 4.12 (Rule-feature interaction). Given two disjoint feature sets 𝐹𝑆+ and 𝐹𝑆− , and a rule

𝑡𝑟 = ⟨𝐿 𝑙←− 𝐾 𝑟−→ 𝑅, 𝑁𝐴𝐶𝑆 = {𝐿 𝑛𝑖−→ 𝑁𝑖 }𝑖∈𝐼 ⟩, we define the following predicates
8
:

𝑐𝑟𝑒𝑎𝑡𝑒 (𝐹𝑆+, 𝐹𝑆−, 𝑡𝑟 ) ≜ ∃𝑥 ∈ (𝑅 \ 𝑟 (𝐾)) · 𝐴𝑐𝑡𝑖𝑣𝑒𝑇𝑦𝑝𝑒 (𝑡𝑦𝑝𝑒 (𝑥), 𝐹𝑆+, 𝐹𝑆−)
𝑑𝑒𝑙𝑒𝑡𝑒 (𝐹𝑆+, 𝐹𝑆−, 𝑡𝑟 ) ≜ ∃𝑥 ∈ (𝐿 \ 𝑙 (𝐾)) · 𝐴𝑐𝑡𝑖𝑣𝑒𝑇𝑦𝑝𝑒 (𝑡𝑦𝑝𝑒 (𝑥), 𝐹𝑆+, 𝐹𝑆−)

𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒 (𝐹𝑆+, 𝐹𝑆−, 𝑡𝑟 ) ≜ ∃𝑥 ∈ 𝐾 · 𝐴𝑐𝑡𝑖𝑣𝑒𝑇𝑦𝑝𝑒 (𝑡𝑦𝑝𝑒 (𝑥), 𝐹𝑆+, 𝐹𝑆−)
𝑓 𝑜𝑟𝑏𝑖𝑑 (𝐹𝑆+, 𝐹𝑆−, 𝑡𝑟 ) ≜ ∃𝑛𝑖 : 𝐿 → 𝑁𝑖 , ∃𝑥 ∈ (𝑁𝑖 \ 𝑛𝑖 (𝐿)) · 𝐴𝑐𝑡𝑖𝑣𝑒𝑇𝑦𝑝𝑒 (𝑡𝑦𝑝𝑒 (𝑥), 𝐹𝑆+, 𝐹𝑆−)
𝑟𝑒𝑎𝑑 (𝐹𝑆+, 𝐹𝑆−, 𝑡𝑟 ) ≜ 𝑑𝑒𝑙𝑒𝑡𝑒 (𝐹𝑆+, 𝐹𝑆−, 𝑡𝑟 ) ∨ 𝑝𝑟𝑒𝑠𝑒𝑟𝑣𝑒 (𝐹𝑆+, 𝐹𝑆−, 𝑡𝑟 ) ∨ 𝑓 𝑜𝑟𝑏𝑖𝑑 (𝐹𝑆+, 𝐹𝑆−, 𝑡𝑟 )

with

𝐴𝑐𝑡𝑖𝑣𝑒𝑇𝑦𝑝𝑒 (𝑡, 𝐹𝑆+, 𝐹𝑆−) ≜ 𝑇𝑒𝑟𝑚𝑂𝑓 (𝐹𝑆+ ∪ 𝐹𝑆−,Φ(𝑡)) ∧ Φ(𝑡) [𝑡𝑟𝑢𝑒/𝐹𝑆+, 𝑓 𝑎𝑙𝑠𝑒/𝐹𝑆−] = 𝑡𝑟𝑢𝑒

where 𝑇𝑒𝑟𝑚𝑂𝑓 (𝐹,Φ) holds if the formula Φ uses some of the literals in the set 𝐹 .

In the definition, predicate 𝐴𝑐𝑡𝑖𝑣𝑒𝑇𝑦𝑝𝑒 (𝑡, 𝐹𝑆+, 𝐹𝑆−) holds if the PC of type 𝑡 is true and uses

some feature in the sets 𝐹𝑆+ or 𝐹𝑆− . Next, we generalise some of these predicates for adapters.

Definition 4.13 (Adapter-feature interaction). Given two disjoint sets 𝐹𝑆+ and 𝐹𝑆− of features,
and an adapter 𝑎 = ⟨Δ,𝐺𝑇𝑆⟩, we define the following predicates:

𝑐𝑟𝑒𝑎𝑡𝑒 (𝐹𝑆+, 𝐹𝑆−, 𝑎) ≜ ∃𝑡𝑟 ∈ 𝑅𝑆 · 𝑐𝑟𝑒𝑎𝑡𝑒 (𝐹𝑆+, 𝐹𝑆−, 𝑡𝑟 )
𝑑𝑒𝑙𝑒𝑡𝑒 (𝐹𝑆+, 𝐹𝑆−, 𝑎) ≜ ∃𝑡𝑟 ∈ 𝑅𝑆 · 𝑑𝑒𝑙𝑒𝑡𝑒 (𝐹𝑆+, 𝐹𝑆−, 𝑡𝑟 )
𝑟𝑒𝑎𝑑 (𝐹𝑆+, 𝐹𝑆−, 𝑎) ≜ ∃𝑡𝑟 ∈ 𝑅𝑆 · 𝑟𝑒𝑎𝑑 (𝐹𝑆+, 𝐹𝑆−, 𝑡𝑟 )

Example 4.14. Rule inhByRef in Figure 9 creates a Role object and links of type iface, playedBy and

references. Hence, predicate 𝑐𝑟𝑒𝑎𝑡𝑒 ({Ref}, {}, inhByRef) is true, since the PC of references is Ref, and

this PC evaluates to true. On the contrary, predicate 𝑑𝑒𝑙𝑒𝑡𝑒 ({Ref}, {}, inhByRef) is false as the rule
does not delete elements of types whose PC includes feature Ref. At the adapter level, predicate

𝑐𝑟𝑒𝑎𝑡𝑒 ({Ref}, {}, InhByDelegation) is true, but 𝑑𝑒𝑙𝑒𝑡𝑒 evaluated with the same parameters is false.

4.3 Adaptive Languages
An adaptive modelling language is defined as a language product line plus a set of language adapters.

Definition 4.15 (Adaptive modelling language). An adaptive modelling language 𝐴𝐿 = ⟨𝐿𝑃𝐿,𝐴⟩ is
made of a language product line 𝐿𝑃𝐿 and a set 𝐴 of language adapters over 𝐿𝑃𝐿.

Example 4.16. Our example adaptive language comprises the LPL made of the feature model

in Figure 6 and the 150MM in Figure 7(a), and the seven language adapters in Figures 9 and 10.

In Figure 10, adapter SingleToMulti replaces single by multiple inheritance, and so, its only rule

swaps link parent by parents. Adapter SingleToNo replaces single by no inheritance, and its diff Δ
requires Ref in its positive context (𝐹++). It has just one rule that swaps link parent by a reference.

Adapter RefByAssoc replaces references by full associations. It has two rules that create Association

objects, one handling the case of classes connected via opposite references, and the other handling

unidirectional references. Finally, adapter InterfacesToNo deals with the case of deselecting the

Interfaces feature, and assumes both Multi and Methods. It has two rules, one creating an abstract

class for each interface, and the other copying the interface methods to the created class.

Next, Definition 4.17 describes the process for migrating a model from a source to a target

language variant. First, the model – typed by the source language variant – is retyped to the 150MM.

8
In the following, given a graph𝐺 , we use 𝑥 ∈ 𝐺 as a shortcut for 𝑥 ∈ (𝐺𝑉 ∪𝐺𝐸 ∪𝐺𝐴 ) .
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adapter SingleToMulti
=={Single}, {Multi}, C={}, {}
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Fig. 10. Remaining adapters for the running example (cf. feature model and 150MM in Figures 6 and 7(a)).

With our notion of meta-model and typing (cf. Section 3.1), a valid model of any language variant is

also a valid model of the 150MM. However, to fit in with the usual notion of conformance of objects

to their types – which requires objects to have as many attributes as specified in their type – objects

are added the non-instantiated attributes from their types, using their default values. If no default

value is specified, they take the default value of their datatype (0 for numbers, false for Boolean,

or the empty String). Then, in a second step, a graph transformation system is automatically

assembled out of the adapters consistent with the language reconfiguration, taking their rules and

the star-iterated sum of their regular expressions (i.e., the adapters are applied in random order,

until none is applicable anymore). This transformation is applied to the model. Finally, in a third

step, the elements not typed by the meta-model of the target language variant are removed from

the migrated model.

Definition 4.17 (Migration between language variants). Given 𝐴𝐿 = ⟨⟨𝐹𝑀,𝑀𝑀,Φ⟩, 𝐴⟩ and two

different configurations 𝜌𝑠 , 𝜌𝑡 ∈ 𝐶𝐹𝐺 (𝐹𝑀), the migration of a model𝑀𝑠 conforming to𝑀𝑀𝜌𝑠 into

a model𝑀𝑡 conforming to𝑀𝑀𝜌𝑡 proceeds in three steps (cf. Figure 11):

(1) Model augmentation:𝑀𝑠 is retyped w.r.t.𝑀𝑀 . Every object 𝑜 ∈ 𝑀𝑠𝑉 is completed with new

attributes typed by the attributes in 𝑡𝑦𝑝𝑒 (𝑜) (if not already defined), using their default

values. This yields model𝑀 ′𝑠 .
(2) Model transformation: The set of adapters consistent with Δ𝑠𝑡 is collected (cf. Definition 4.7):

𝐴𝐷 = {𝑎𝑘 ∈ 𝐴 | Δ𝑘 ⊆ Δ𝑠𝑡∨
(Δ𝑘 ⊑𝑝𝑟𝑒 Δ𝑠𝑡 ∧ ¬𝑐𝑟𝑒𝑎𝑡𝑒 (𝐹++𝑘 \ 𝐹

++
𝑠𝑡 , 𝐹

−−
𝑘
\ 𝐹 −−𝑠𝑡 , 𝑎𝑘 ))∨

(Δ𝑘 ⊑𝑝𝑜𝑠𝑡 Δ𝑠𝑡 ∧ ¬𝑑𝑒𝑙𝑒𝑡𝑒 (𝐹++𝑘 \ 𝐹
++
𝑠𝑡 , 𝐹

−−
𝑘
\ 𝐹 −−𝑠𝑡 , 𝑎𝑘 ))}

This set is used to build the graph transformation system:

𝐺𝑇𝑆𝑠𝑡 = ⟨
⋃

𝑎𝑘 ∈𝐴𝐷
𝑅𝑆𝑘 , 𝑀𝑀, (

∑︁
𝑎𝑘 ∈𝐴𝐷

𝐶𝑘 )∗⟩

𝐺𝑇𝑆𝑠𝑡 is applied on model𝑀 ′𝑠 , which yields model𝑀 ′𝑡 ∈ 𝑆𝐸𝑀𝑀 ′𝑠 (𝐺𝑇𝑆𝑠𝑡 ).
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(3) Model restriction:𝑀 ′𝑡 is deleted the elements typed by𝑀𝑀 \𝑀𝑀𝜌𝑡 , yielding model𝑀𝑡 .

𝑀𝑀

𝑀𝑀𝜌𝑠

' �

55jjjjjjjjjjjjjjj
𝑀𝑀𝜌𝑡

7 W

iiTTTTTTTTTTTTTTT

𝑀𝑠
� � //

OO�
�

::v
v

v
v

v
v

v
v

v
v

𝑀 ′𝑠
𝐺𝑇𝑆𝑠𝑡 +3

(1)

DD

















(2)

𝑀 ′𝑡

(3)

ZZ4
4
4
4
4
4
4

𝑀𝑡
? _oo

OO�
�

ddH
H
H
H
H
H
H
H
H
H

Fig. 11. Model migration scheme from𝑀𝑀𝜌𝑠 to𝑀𝑀𝜌𝑡 .

Step 2 in Definition 4.17 collects all adapters whose diff is included in Δ𝑠𝑡 , all pre-consistent
adapters that do not create elements activated by the adapters’ context but not by Δ𝑠𝑡 ’s context, and
all post-consistent adapters that do not delete elements activated by the adapters’ context but not

by Δ𝑠𝑡 ’s context. This precludes selecting pre-consistent adapters creating elements of non-existent

types in the target language variant (they would be removed in the third step of the migration), as

well as post-consistent adapters deleting elements of non-existent types in the source variant.

Example 4.18. Figure 12 shows the migration of a model𝑀𝑠 from configuration 𝜌𝐴 to configura-

tion 𝜌 𝐽 (defined in Example 3.16). The first step (augmentation) retypes𝑀𝑠 w.r.t.𝑀𝑀 (i.e., w.r.t. the

150MM of the LPL). This produces a model𝑀 ′𝑠 , in which the two Role objects are added attributes

navig, isComp and isAggr, to make them conform to class Role in MM (labels 1 and 2 in the figure).

The second step (transformation) creates a transformation system containing the rules of the

adapters consistent with the language reconfiguration. The consistent adapters are InhByDelegation,

AssocByRef and InhByDelegationInterface (cf. Figure 9). The first one removes multiple inheritance, the

second converts full associations into references, and the third uses the auxiliary iface links created

by InhByDelegation to add interfaces to the classes from which multiple inheritance is removed.

Adapter AssocByRef is selected because its diff is included in Δ𝐴𝐽 = ⟨⟨{Multi, FullAssoc}, {Single,
Ref, Interfaces, Methods, Comp, Aggr, Navig}⟩, ⟨{Decorations, Card}, {No}⟩⟩. Adapter InhByDelegation
is selected because it is post-consistent with Δ𝐴𝐽 (its context requires Ref, which is available in

𝜌 𝐽 but not in 𝜌𝐴), and does not delete elements with PC Ref. Similarly, InhByDelegationInterface

is post-consistent with Δ𝐴𝐽 (its context requires Interfaces and Methods, only available in 𝜌 𝐽 ) and

does not delete elements with PC Interfaces or Methods. The regular expression of the resulting

transformation system is the iterated sum of the regular expressions of the three adapters, which is

equivalent to randomly applying the rules of the adapters for as long as possible.

Figure 12 applies the transformation system over model𝑀 ′𝑠 to yield model𝑀 ′𝑡 , which is terminal

(no rules can be applied to it). The figure shows this transformation in two steps. The first one

depicts the execution of rules multiBySingle and inhByRef, both from adapter InhByDelegation. The

rules replace the links parents by links parent and iface, and create a Role object (labels 3 and 4 in the

figure). Next, the transformation executes rules addNavigRole (twice) and createInterface. The first

rule adds roles r1 and r2 to object c1, and the second rule creates an interface. Since the rules are

applied randomly, other rule execution orders than the one in the example are possible.

The last step (restriction) removes from model𝑀 ′𝑡 the elements whose type does not belong to

𝑀𝑀𝑡 (i.e., the iface link and the Association object). The result is model𝑀𝑡 , which is typed by𝑀𝑀𝜌 𝐽 .

4.4 Adaptation Triggers
Triggered adaptive languages extend adaptive languages with triggers that unleash a change in the

language variant in use, and migrate the current model accordingly. Triggers may consider not
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Fig. 12. Migrating a model from𝑀𝑀𝜌𝐴 to𝑀𝑀𝜌 𝐽 .

only the model, but also contextual information such as user actions performed at modelling-time,

or conditions about the modelling environment. For example, Figure 1 assumes the existence of

a process model, and the user explicitly triggers the transition to the next phase by clicking on

a button of the modelling IDE. Other scenarios may trigger language reconfigurations upon the

occurrence of certain conditions in the model (e.g., expressed in OCL), the repetition of certain

user errors, or the use of devices with different screen sizes, among many other possibilities.

Figure 13(a) depicts the working scheme of our approach, which involves three ingredients:

• A triggered adaptive language, which consists of an adaptive language, plus a state transition

system whose states are configurations of the adaptive language. The triggered language may

transition from one configuration to another when certain events (from a set Λ of relevant

language events) occur.
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• A contextual adaptive model that enriches models with a context and the current language

configuration. The context captures relevant information for the modelling experience, and is

represented as a sequence of timed events.

• Adaptation triggers, which are generated by a function called 𝑒𝑣𝑎𝑙 . The function receives a timed

event from the context, and the current model and language configuration. Then, if appropriate,

it generates a trigger that causes a reconfiguration of the adaptive language.
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Fig. 13. (a) Working scheme of triggered adaptive modelling languages. (b) Adaptation MAPE-K loop.

As depicted in Figure 13(a), the user interacts with the model𝑀 (label 1). The context captures

this interaction via a sequence of timed events, and may produce other events that consider

further elements besides the model. When any of these events occurs, function 𝑒𝑣𝑎𝑙 (the adaptation

trigger, label 2) evaluates whether the event is relevant for the current model state and language

configuration. If so, the function forwards a new event _ to the triggered adaptive language

(label 3). The language’s configuration transition system determines whether, given the language

configuration in use and the received event _, a language reconfiguration should occur. In such a

case, the new language configuration is stored in the contextual adaptive model (label 4), and the

model𝑀 is migrated to become conformant with the new configuration (labels 5 and 6).

This way, similar to many self-adaptive [15] and autonomous software systems [42], triggered

adaptive languages manage their adaptation using a MAPE-K (Monitor-Analyze-Plan-Execute over

a shared Knowledge) loop, but tailored to languages as follows (cf. Figure 13(b)):

• Monitor: Triggered adaptive modelling languages monitor the context for relevant events. These

events may include actions like saving or editing the model (to analyse constraints on it), explicit

validation requests, or the explicit selection of language reconfigurations.

• Analysis: The function 𝑒𝑣𝑎𝑙 analyses the context event and the current model state and language

configuration, and then forwards a reconfiguration event to the triggered adaptive language.

• Plan: The configuration transition system plans the target language variant to adapt to, based on

the reconfiguration event produced by the 𝑒𝑣𝑎𝑙 function, and the current language configuration.

• Execute: The language is adapted to the new variant, and the model is migrated to this variant.

• Knowledge: This is the definition of the triggered adaptive language, comprising the 150MM, the

feature model, the adapters, and the configuration transition system.

We start defining a triggered adaptive modelling language as an adaptive language equipped with

a configuration transition relation (a transition system over the set of all configurations, labelled

over a set Λ of possible language events) and an initial configuration.
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Definition 4.19 (Triggered adaptive modelling language). Given a set Λ of language events, a

triggered adaptive modelling language over Λ is a tuple TALΛ = ⟨𝐴𝐿,𝐶𝐹, 𝜌𝑖𝑛𝑖𝑡 ⟩ made of:

• An adaptive modelling language 𝐴𝐿 = ⟨𝐿𝑃𝐿 = ⟨𝐹𝑀,𝑀𝑀,Φ⟩, 𝐴⟩ as in Definition 4.15

• A configuration transition system𝐶𝐹 ⊆ 𝐶𝐹𝐺 (𝐹𝑀) ×Λ×𝐶𝐹𝐺 (𝐹𝑀), which is a deterministic

labelled transition system having the language configurations as states and labels over Λ.
Being deterministic, for every 𝜌𝑠 ∈ 𝐶𝐹𝐺 (𝐹𝑀) and for every _ ∈ Λ, there is at most one

𝜌𝑡 ∈ 𝐶𝐹𝐺 (𝐹𝑀) s.t. (𝜌𝑠 , _, 𝜌𝑡 ) ∈ 𝐶𝐹
• An initial configuration 𝜌𝑖𝑛𝑖𝑡 ∈ 𝐶𝐹𝐺 (𝐹𝑀)

Example 4.20. Without any restriction, the full variability space of the triggered adaptive language

of our running example would yield a transition system with 288 language configurations as states,

and 82 656 transitions between them. The set Λ of language events contains all tuples ⟨𝜌𝑖 , 𝜌 𝑗 ⟩, with
{𝜌𝑖 , 𝜌 𝑗 } ⊆ 𝐶𝐹𝐺 (𝐹𝑀). Hence, 𝐶𝐹 = {⟨𝜌𝑖 , ⟨𝜌𝑖 , 𝜌 𝑗 ⟩, 𝜌 𝑗 ⟩ | 𝜌𝑖 ≠ 𝜌 𝑗 ∧ {𝜌𝑖 , 𝜌 𝑗 } ⊆ 𝐶𝐹𝐺 (𝐹𝑀)}. The initial
configuration 𝜌𝑖𝑛𝑖𝑡 is set to be 𝜌𝐴 (cf. Example 3.16).

Remark 4.21. A triggered adaptive language may omit transitions between some language vari-

ants. For instance, in educational applications, the language designer may not allow reconfigurations

into language variants that are simpler than the current one. Hence, in practice, the variability

space of interest may be much smaller than the space of all possible configurations (e.g., Figure 1

comprises just three language variants and two transitions). Thus, there is no need to define adapters

from one language configuration to another that is not reachable in the transition system.

Next, we define contextual adaptive models, which store the current language configuration 𝜌

and an instance model of the current meta-model 𝑀𝑀𝜌 . They are embedded in a context where
the modelling activity aspects relevant for language reconfiguration purposes are represented as

a sequence of timed events. For example, in a language that adapts to the IDE, the context may

populate events when the screen size changes; in a language adaptive to a modelling process, the

context may inform about the current phase; and in a language that adapts to the user knowledge,

the context may store static background information about the user (e.g., years of modelling

experience) or infer the expertise dynamically by counting the user errors when creating the model.

Definition 4.22 (Contextual adaptive model). Given a triggered adaptive language 𝑇𝐴𝐿Λ and a set

𝐸 of context events, a contextual adaptive model 𝐴𝑀𝐸 = ⟨𝜌,𝑀, 𝑡𝑦𝑝𝑒 : 𝑀 → 𝑀𝑀𝜌 , 𝑐𝑡𝑥, 𝑡⟩ is made of:

• A configuration 𝜌 ∈ 𝐶𝐹𝐺 (𝐹𝑀), called the current configuration
• A model𝑀 typed over𝑀𝑀𝜌 via morphism type
• A sequence 𝑐𝑡𝑥 ∈ (𝐸 × R)∗ ({⊥𝑒 } × R) of all relevant past and future context events, where

⊥𝑒 ∉ 𝐸 is the final event, and the second component (R) is the timestamp

• The current time 𝑡

Remark 4.23. The sequence 𝑐𝑡𝑥 contains a (potentially infinite) succession of timestamped events

from 𝐸, ending in a final event ⊥𝑒 . We use 𝑐𝑡𝑥 (𝑖) to refer to its i-th element.

Example 4.24. Figure 14(a) shows a contextual adaptive model for our running example. It

contains the current configuration 𝜌 , a model typed by𝑀𝑀𝜌 , the current time 𝑡 , and a sequence 𝑐𝑡𝑥

of context events. The current configuration corresponds to 𝜌𝐷 , which configures the class diagram

language for the design phase. The process model in Figure 14(b) specifies the possible project

phases and how to transition between them. We assume that the modelling IDE generates the

events in the process model transitions (i.e., toDesign, toJava, toC++, Java2C++, C++2Java) when the

user selects the next modelling phase. This means that, effectively, the transition system of interest

for our example (cf. Definition 4.19) comprises four language variants and five reconfigurations.
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Fig. 14. (a) Example of contextual adaptive model. (b) Process model that is used as context.

The last component is the adaptation trigger. A function 𝑒𝑣𝑎𝑙 produces the triggers based on the

occurrence of context events, the current model, and the current configuration. If the context event

is deemed relevant, the function returns a language event _ ∈ Λ of the triggered adaptive language;

otherwise, the function returns an event ⊥Λ that does not belong to the language and is ignored.

Definition 4.25 (Adaptation trigger). Given a triggered adaptive modelling language 𝑇𝐴𝐿Λ, and

a contextual adaptive model 𝐴𝑀𝐸 , an adaptation trigger is a function 𝑒𝑣𝑎𝑙 : 𝐸 × R ×𝐶𝐹𝐺 (𝐹𝑀) ×
𝑆𝐸𝑀 (𝑀𝑀) → Λ ∪ {⊥Λ}. The input of the function is an event 𝑒 ∈ 𝐸, the current time 𝑡 ∈ R, the
current configuration 𝜌 ∈ 𝐶𝐹𝐺 (𝐹𝑀), and the current model 𝑀 ∈ 𝑆𝐸𝑀 (𝑀𝑀). The output of the
function can be either a language event _ ∈ Λ or an event ⊥Λ ∉ Λ.

Example 4.26. The adaptation trigger of our example uses the set 𝐸 = {toDesign, toJava, toC++,
Java2C++, C++2Java}. Its function 𝑒𝑣𝑎𝑙 , defined below, translates events pertinent to the context (in

this case a process model) into language events of the triggered adaptive language:

𝑒𝑣𝑎𝑙 (𝑒, 𝑡, 𝜌, 𝑀) =



⟨𝜌𝐴, 𝜌𝐷⟩ if 𝑒 = 𝑡𝑜𝐷𝑒𝑠𝑖𝑔𝑛

⟨𝜌𝐷 , 𝜌 𝐽 ⟩ if 𝑒 = 𝑡𝑜 𝐽𝑎𝑣𝑎

⟨𝜌𝐷 , 𝜌𝐶⟩ if 𝑒 = toC++
⟨𝜌 𝐽 , 𝜌𝐶⟩ if 𝑒 = Java2C++
⟨𝜌𝐶 , 𝜌 𝐽 ⟩ if 𝑒 = C++2Java
⊥Λ otherwise

where 𝜌𝐶 is a configuration like 𝜌 𝐽 (for Java, cf. Example 3.16), but enabling multiple inheritance.

Algorithm 1 implements the MAPE-K feedback loop that adapts a contextual adaptive model

when context events occur. The algorithm receives as input a triggered adaptive language 𝑇𝐴𝐿Λ,

an adaptation trigger 𝑒𝑣𝑎𝑙 , and a contextual adaptive model 𝐴𝑀𝐸 . The latter may have been just

initialised (with the empty model, the initial configuration 𝜌𝑖𝑛𝑖𝑡 of𝑇𝐴𝐿Λ, and the current time 0) or

be an existing model previously saved.

The algorithm modifies the input model as follows. Line 1 sets 𝑖 (an index over the context events)

to the first event with a timestamp equal to or greater than the current time 𝑡 of the model. For

models just created, the current time is 0, hence 𝑖 is set to 0. Line 2 selects the next context event in

the sequence (produced by an editing command or any other means). Lines 3–7 iteratively process

the context events in the sequence while they are not final. Specifically, line 4 calls function 𝑒𝑣𝑎𝑙 ,

which returns a language event in Λ if the context event is relevant in the current configuration,

and checks if the language’s configuration transition system has a transition from the current
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Algorithm 1 Adaptation of contextual adaptive models upon the occurrence of context events

Input: 𝑇𝐴𝐿Λ = ⟨𝐴𝐿,𝐶𝐹, 𝜌𝑖𝑛𝑖𝑡 ⟩ ⊲ Triggered adaptive language as in Def. 4.19

Input: 𝑒𝑣𝑎𝑙 : 𝐸 × R ×𝐶𝐹𝐺 (𝐹𝑀) × 𝑆𝐸𝑀 (𝑀𝑀) → Λ ∪ {⊥} ⊲ Adaptation trigger as in Def. 4.25

Input: 𝐴𝑀𝐸 = ⟨𝜌,𝑀, 𝑡𝑦𝑝𝑒 : 𝑀 → 𝑀𝑀𝜌 , 𝑐𝑡𝑥, 𝑡⟩ ⊲ Contextual adaptive model as in Def. 4.22

1: 𝑖 ←𝑚𝑖𝑛{ 𝑗 | ⟨𝜖, 𝑡 ′⟩ = 𝑐𝑡𝑥 ( 𝑗) ∧ 𝑡 ′ ≥ 𝑡} ⊲ search the next event to be processed

2: ⟨𝜖, 𝑡⟩ ← ctx(i)

3: while 𝜖 ≠ ⊥𝑒 do
4: if ∃⟨𝜌, 𝑒𝑣𝑎𝑙 (𝜖, 𝑡, 𝜌, 𝑀), 𝜌 ′⟩ ∈ 𝐶𝐹 then
5: 𝐴𝑀𝐸 ← ⟨𝜌 ′, 𝑀 ′, 𝑡𝑦𝑝𝑒′ : 𝑀 ′ → 𝑀𝑀𝜌 ′ , 𝑐𝑡𝑥, 𝑡⟩ ⊲ with𝑀 ′, 𝑡𝑦𝑝𝑒′ as in Def. 4.17

6: 𝑖 ← 𝑖 + 1
7: ⟨𝜖, 𝑡⟩ ← ctx(i)

8: return 𝐴𝑀𝐸

configuration labelled with that language event. If so, line 5 performs a language reconfiguration

into 𝜌 ′ (the target configuration of the identified transition), migrating the model as described in

Definition 4.17, so that it becomes typed over𝑀𝑀𝜌 ′ .

Our approach makes it possible to use the same triggered adaptive language with different

contexts and adaptation triggers. This enables scenarios where the user explicitly selects a language

reconfiguration (e.g., via a process model, as in the running example), or where reconfigurations

are automatically applied when some conditions are met (e.g., evaluating OCL expressions on the

current model when it is saved, whose satisfaction can trigger different language events).

5 SEQUENTIAL COMPOSITION OF ADAPTERS
Definition 4.17 assembles migration transformations out of adapters that tackle orthogonal language

features (e.g., inheritance and associations in Figure 9). Still, further mechanisms are needed to avoid

the combinatorial nature of feature interactions. In product lines, a feature interaction occurs when

the behaviour of a feature is influenced by the presence of another one [67]. This section presents

an optimisation to reduce the number of adapters required in an adaptive language definition,

which is especially useful to tackle feature interactions within the language family.

In Figure 9, the adapter InhByDelegation deletes multiple inheritance assuming references. This

assumption is needed because the adapter rules create references. However, if a language reconfig-

uration needs to delete multiple inheritance when the source and target configurations use full

associations, then the language engineer would have to create another adapter for that case. The

new adapter would tackle the change from Multi to Single inheritance assuming feature FullAssoc.

Its rules would be like those of InhByDelegation, but creating full associations instead of references.

Figure 15 shows part of the example feature diagram, and represents the adapters as arrows

indicating the feature changes they bridge. It can be noticed that, instead of defining another adapter

to bridge Multi to Single when FullAssoc, it would be possible to apply InhByDelegation and then

RefByAssoc (which replaces the created references by associations). This feature interaction happens

because there are two mandatory, alternative feature sets (Inheritance and Style), and an adapter

bridging two features of the first set needs to create elements of the second set. This sequential

composition of adapters can also reduce the number of adapters needed to bridge features within

an alternative set. For example, as Figure 15 shows, there is no need to define an adapter from Multi

to No, but it suffices to apply first InhByDelegation and then SingleToNo.

This section extends the second step in Definition 4.17 (which collects the adapters compatible

with a configuration diff) to select adapters that can be composed sequentially in a meaningful way,
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Fig. 15. Feature interactions between language adapters.

covering feature changes that individual adapters do not cover. For this purpose, we start defining

the sequential composition of diffs. Two diffs Δ1 and Δ2 can be composed if the post-state of Δ1 is

coherent with the pre-state of Δ2. For instance, a feature that changes to unselected in Δ1 cannot

change to unselected also in Δ2, nor be assumed selected by Δ2. The delta of the composed diff is the

union of the changes of the first and second diffs, excluding the changes undone by the second diff

and those that are synchronised. The context is the union of both contexts, excluding the features

that the delta of the other diff changes, and including the features that the deltas synchronise (e.g.,

the features changed from + to − by Δ1 and from − to + by Δ2 are added to 𝐹++
12
).

Definition 5.1 (Sequential composition of diffs). Given diffs Δ1 and Δ2 s.t.

(𝐹 −−
1
∪ 𝐹+−

1
) ∩ (𝐹++

2
∪ 𝐹+−

2
) = ∅ and (𝐹++

1
∪ 𝐹 −+

1
) ∩ (𝐹 −−

2
∪ 𝐹 −+

2
) = ∅

their sequential composition is given by

Δ1;Δ2 =⟨𝛿12 = ⟨(𝐹+−1 \ 𝐹 −+2 ) ∪ (𝐹+−2 \ 𝐹 −+1 ), (𝐹 −+1 \ 𝐹+−2 ) ∪ (𝐹 −+2 \ 𝐹+−1 )⟩,
𝐶12 = ⟨(𝐹++1 \ 𝐹+−2 ) ∪ (𝐹++2 \ 𝐹 −+1 ) ∪ (𝐹+−1 ∩ 𝐹 −+2 ), (𝐹 −−1 \ 𝐹 −+

2
) ∪ (𝐹 −−

2
\ 𝐹+−

1
) ∪ (𝐹 −+

1
∩ 𝐹+−

2
)⟩⟩

Remark 5.2. We use predicate composable(Δ1,Δ2) to denote that diffs Δ1 and Δ2 can be composed

according to Definition 5.1.

Example 5.3. Given diffs Δ1 = ⟨𝛿1 = ⟨{Multi}, {Single}⟩,𝐶1 = ⟨{Ref}, {}⟩⟩ and Δ2 = ⟨𝛿2 =

⟨{Single}, {No}⟩,𝐶2 = ⟨{}, {Methods}⟩⟩, their sequential composition is Δ1;Δ2 = ⟨𝛿12 = ⟨{Multi},
{No}⟩,𝐶12 = ⟨{Ref}, {Single, Methods}⟩⟩. The first diff changes from Multi to Single, and the second

changes from Single to No, so their composition changes from Multi to No. As for the context, the

resulting diff contains the union of the positive and negative contexts of the two diffs. In addition,

Single is added to the negative context because it belongs to 𝐹 −+
1
∩ 𝐹+−

2
.

The next lemma states that the sequential composition of two diffs yields a diff, and gives the

conditions to obtain a wff diff out of the sequential composition of two diffs.

Lemma 5.4 (Wff diff composition). Given diffs Δ1 and Δ2 s.t. composable(Δ1,Δ2):
• Δ1;Δ2 is a diff
• If equations (1) and (2) below are satisfied, then Δ1;Δ2 is a wff diff

Ψ[𝑡𝑟𝑢𝑒/(𝐹+−
1
\ 𝐹 −+

2
) ∪ (𝐹+−

2
\ 𝐹 −+

1
) ∪ (𝐹++

1
\ 𝐹+−

2
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2
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1
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1
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2
),
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2
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2
\ 𝐹+−

1
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1
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2
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2
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1
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1
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2
)] ≠ 𝑓 𝑎𝑙𝑠𝑒

(1)

Ψ[𝑡𝑟𝑢𝑒/(𝐹 −+
1
\ 𝐹+−

2
) ∪ (𝐹 −+

2
\ 𝐹+−

1
) ∪ (𝐹++

1
\ 𝐹+−

2
) ∪ (𝐹++

2
\ 𝐹 −+

1
) ∪ (𝐹+−

1
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2
),

𝑓 𝑎𝑙𝑠𝑒/(𝐹+−
1
\ 𝐹 −+

2
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2
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1
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1
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2
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2
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1
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1
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2
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(2)
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Remark 5.5. If equations (1) and (2) in Lemma 5.4 are satisfied, then both Δ1 and Δ2 are wff.

However, the converse is not true in general. We use predicate wffComposable(Δ1,Δ2) to denote

that diffs Δ1 and Δ2 are composable, and their composition is wff according to Lemma 5.4.

In Appendix A.3, we show that applying a composite diff yields the same result as applying each

diff in sequence. Now, we define adapter composition. Given two adapters a and b whose diffs can
be composed into a wff diff (i.e., wffComposable(Δ𝑎,Δ𝑏)), their composition yields an adapter a; b
with diff Δ𝑎 ;Δ𝑏 , containing the rules of both adapters, and whose regular expression concatenates

the regular expressions of both adapters.

Definition 5.6 (Adapter composition). Given an adaptive language 𝐴𝐿 = ⟨𝐿𝑃𝐿,𝐴⟩, and two

adapters 𝑎, 𝑏 ∈ 𝐴 s.t. wffComposable(Δ𝑎,Δ𝑏), the composition of 𝑎 and 𝑏 yields the adapter 𝑎;𝑏 =

⟨Δ𝑎 ;Δ𝑏,𝐺𝑇𝑆 = ⟨𝑀𝑀,𝑅𝑆𝑎 ∪ 𝑅𝑆𝑏,𝐶𝑎 ;𝐶𝑏⟩⟩.

Example 5.7. Composing adapters InhByDelegation (with diff ⟨⟨{Multi}, {Single}⟩, ⟨{Ref}, {}⟩⟩)
and SingleToNo (with diff ⟨⟨{Single}, {No}⟩, ⟨{Ref}, {}⟩⟩) yields adapter InhByDelegation; SingleToNo
with diff ⟨⟨{Multi}, {No}⟩, ⟨{Ref}, {Single}⟩⟩, the rules of both adapters, and the regular expression

(multiBySingle+inhByRef)∗; (singleByRef)∗. This expression executes first the rules of the first adapter

as long as possible, followed by the rules of the second adapter. This phased execution is needed

since rule multiBySingle creates parent links, which rule singleByRef of the second adapter deletes.

Hence, the concatenation of the adapters’ regular expressions avoids interferences between rules

working on the same element types.

Definition 5.6 defines adapter composition for adaptive languages. The composition for triggered

adaptive languages works the same way, by applying this definition to the adapters of the adaptive

language within the triggered language. Note also that the sequential composition of adapters

(using “;” in regular expressions) is complementary to their parallel composition in the migration

transformation built in step 2 of Definition 4.17 (using “+” and star-iteration in regular expressions).

We could now modify the migration process in Definition 4.17 by searching sequential adapter

compositions that bridge feature changes for which no specific adapter exists. However, this search

can be expensive. Instead, we propose two adapter composition patterns able to solve the problems

identified in Figure 15: context fixers, which handle dependencies between two alternative feature

sets (e.g., Inheritance and Style), and completers, which bridge features in the same alternative set

for which no adapter exists (e.g., Multi and No). As we will see later, these patterns are enough to

organise transformations around pivot features, avoiding the creation of similar adapters.

Completers. A completer for a diff Δ𝑎 within a diff Δ𝑠𝑡 is a diff Δ𝑏 such that the sequential

composition Δ𝑎 ;Δ𝑏 yields a diff compatible with Δ𝑠𝑡 . We distinguish completers from soft completers.
The latter yield a diff that may not be compatible with the context of Δ𝑠𝑡 , however, they are still

useful because that context may be fixed with a context fixer (explained later).

Definition 5.8 (Completer). Given three diffsΔ𝑠𝑡 ,Δ𝑎 andΔ𝑏 , we define the predicates SoftCompleter
and Completer as follows:

SoftCompleter(Δ𝑎,Δ𝑏,Δ𝑠𝑡 ) ≜ wffComposable(Δ𝑎,Δ𝑏)∧
(𝐹+−𝑎 ⊆ 𝐹+−𝑠𝑡 ) ∧ (𝐹 −−𝑎 ⊆ 𝐹 −−𝑠𝑡 )∧
(𝐹 −+𝑎 \ 𝐹 −+𝑠𝑡 = 𝐹+−

𝑏
) ∧ (𝐹 −+

𝑏
⊆ 𝐹 −+𝑠𝑡 ) (Δ𝑏 deactivates Δ𝑎 ’s extra activations)

Completer(Δ𝑎,Δ𝑏,Δ𝑠𝑡 ) ≜ SoftCompleter(Δ𝑎,Δ𝑏,Δ𝑠𝑡 )∧
(𝐹++𝑎 ⊆ 𝐹++𝑠𝑡 ) ∧ (𝐹++𝑏 ⊆ 𝐹

++
𝑠𝑡 ) ∧ (𝐹 −−𝑏 ⊆ 𝐹 −−𝑠𝑡 ) (contexts are compatible with Δ𝑠𝑡 )

We say that Δ𝑏 is a (soft) completer for Δ𝑎 within Δ𝑠𝑡 .
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Example 5.9. Figure 16 shows a completer for Δ𝑎 (which moves from Multi to Single) within Δ𝑠𝑡
(which changes feature No from unselected to selected). The first column displays whether each

feature is initially selected (+) or not (-), and the subsequent columns depict the result of applying a

diff. The completer Δ𝑏 moves from Single to No, and is both a completer and a soft completer. Taking

this into account, there is no need to build an adapter to move from Multi to No, but instead, we

can sequentially compose an adapter whose diff goes from Multi to Single, with an adapter whose

diff is the completer Δ𝑏 .

Multi

Single

No

Inheritance

s

+-

-+

a b
t

-+

+-

Fig. 16. Composing a diff Δ𝑎 with a completer Δ𝑏 to go from configuration 𝜌𝑠 to 𝜌𝑡 .

The next lemma states that completers do their job, that is, composing them yields a compatible

diff with the given Δ𝑠𝑡 .

Lemma 5.10 (Composing completers). Given diffs Δ𝑠𝑡 , Δ𝑎 and Δ𝑏 s.t. Completer(Δ𝑎,Δ𝑏, Δ𝑠𝑡 ),
then Δ𝑎 ;Δ𝑏 ⊆ Δ𝑠𝑡 .

Context fixers. A context fixer for a diff Δ𝑎 within a diff Δ𝑠𝑡 is a diff Δ𝑏 that repairs the context
of Δ𝑎 to make the resulting context of the sequential composition Δ𝑎 ;Δ𝑏 compatible with that of

Δ𝑠𝑡 . For this notion, we define a predicate ContextFixer, and three auxiliary ones: FixerApplicable,
PositiveFixer and NegativeFixer. FixerApplicable checks if the delta of Δ𝑠𝑡 includes Δ𝑎 , the context
of Δ𝑠𝑡 includes Δ𝑏 , and the deltas of Δ𝑎 and Δ𝑏 are independent. PositiveFixer checks if Δ𝑏 can fix

the positive context of Δ𝑎 , i.e., unselects the features that Δ𝑎 assumes positively but Δ𝑠𝑡 does not.
Conversely, NegativeFixer checks that Δ𝑏 can fix the negative context of Δ𝑎 .

Definition 5.11 (Context fixer). Given diffs Δ𝑠𝑡 , Δ𝑎 and Δ𝑏 , predicate ContextFixer is defined as:

ContextFixer(Δ𝑎,Δ𝑏,Δ𝑠𝑡 ) ≜FixerApplicable(Δ𝑎,Δ𝑏,Δ𝑠𝑡 )∧
(PositiveFixer(Δ𝑎,Δ𝑏,Δ𝑠𝑡 ) ∨ NegativeFixer(Δ𝑎,Δ𝑏,Δ𝑠𝑡 ))

with:

FixerApplicable(Δ𝑎,Δ𝑏,Δ𝑠𝑡 ) ≜wffComposable(Δ𝑎,Δ𝑏)∧
(𝐹+−𝑎 ∪ 𝐹 −+𝑎 ) ∩ (𝐹+−𝑏 ∪ 𝐹

−+
𝑏
) = ∅ ∧ (delta of Δ𝑎 and Δ𝑏 are independent)

𝐹+−𝑎 ⊆ 𝐹+−𝑠𝑡 ∧ 𝐹 −+𝑎 ⊆ 𝐹 −+𝑠𝑡 ∧ (delta of Δ𝑎 is included in Δ𝑠𝑡 )

𝐹++
𝑏
⊆ 𝐹++𝑠𝑡 ∧ 𝐹 −−𝑏 ⊆ 𝐹 −−𝑠𝑡 (context of Δ𝑏 is included in Δ𝑠𝑡 )

PositiveFixer(Δ𝑎,Δ𝑏,Δ𝑠𝑡 ) ≜𝐹 −−𝑎 ⊆ 𝐹 −−𝑠𝑡 ∧ (negative context of Δ𝑎 is included in Δ𝑠𝑡 )

(𝐹++𝑎 \ 𝐹++𝑠𝑡 ) ⊆ 𝐹+−𝑏 ⊆ 𝐹 −−𝑠𝑡 ∧ (Δ𝑏 deactivates Δ𝑎 ’s extra positive context)

𝐹 −+
𝑏
⊆ 𝐹++𝑠𝑡 (Δ𝑏 ’s activations are compatible with required positive context)

NegativeFixer(Δ𝑎,Δ𝑏,Δ𝑠𝑡 ) ≜𝐹++𝑎 ⊆ 𝐹++𝑠𝑡 ∧ (positive context of Δ𝑎 is included in Δ𝑠𝑡 )

(𝐹 −−𝑎 \ 𝐹 −−𝑠𝑡 ) ⊆ 𝐹 −+𝑏 ⊆ 𝐹++𝑠𝑡 ∧ (Δ𝑏 activates Δ𝑎 ’s extra negative context)

𝐹+−
𝑏
⊆ 𝐹 −−𝑠𝑡 (Δ𝑏 ’s deactivations are compatible with required negative context)
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We say that Δ𝑏 is a context fixer for Δ𝑎 within Δ𝑠𝑡 .

Example 5.12. Given diffs Δ𝑠𝑡 = ⟨⟨{Multi}, {Single}⟩, ⟨{FullAssoc, Interfaces, Methods}, {Ref}⟩⟩,
Δ𝑎 = ⟨⟨{Multi}, {Single}⟩, ⟨{Ref}, {}⟩⟩, and Δ𝑏 = ⟨⟨{Ref}, {FullAssoc}⟩, ⟨{}, {}⟩⟩, we have that Δ𝑏 is a
context fixer for Δ𝑎 within Δ𝑠𝑡 . This is so as: (i) Δ𝑎 and Δ𝑏 can be composed (wffComposable(Δ𝑎,Δ𝑏));
(ii) the changes of Δ𝑎 and Δ𝑏 are disjoint; (iii) the delta of Δ𝑎 is included in the delta of Δ𝑠𝑡 ; (iv) the
context of Δ𝑏 is included in the context of Δ𝑠𝑡 (and so FixerApplicable(Δ𝑎,Δ𝑏,Δ𝑠𝑡 )); (v) the negative
context of Δ𝑎 is included in the negative context of Δ𝑠𝑡 ; (vi) the positive context of Δ𝑎 that Δ𝑠𝑡 does
not guarantee (Ref) is exactly 𝐹+−

𝑏
, which is compatible with Δ𝑠𝑡 ’s negative context; and (vii) 𝐹 −+

𝑏

activates a feature (FullAssoc) in the positive context of Δ𝑠𝑡 (and so PositiveFixer(Δ𝑎,Δ𝑏,Δ𝑠𝑡 )).
In this example, the composition Δ𝑎 ;Δ𝑏 yields ⟨⟨{Multi, Ref}, {Single, FullAssoc}⟩, ⟨{}, {}⟩⟩, which

unselects Multi and Ref, and selects Single and FullAssoc. However, Δ𝑎 ;Δ𝑏 ⊈ Δ𝑠𝑡 , since {Multi,

Ref} ⊈ {Multi}, and {Single, FullAssoc} ⊈ {Single}. This is to be expected, since we are trying to

apply Δ𝑎 in an initial situation where the positive context of Δ𝑠𝑡 (FullAssoc) is violated by Δ𝑎 (which
assumes Ref). Thus, an implicit diff injector Δ®𝑎 of the form ⟨⟨{FullAssoc}, {Ref}⟩, ⟨{}, {}⟩⟩ is needed.
Figure 17 illustrates this situation, where Δ𝑎 is not applicable to 𝜌𝑠 since 𝜌𝑠 does not have Ref

initially selected. Hence, Δ𝑎 is pre-composed with an implicit injector Δ®𝑎 , and post-composed with

the context fixer Δ𝑏 . Overall, Δ𝑏 reverses the actions of Δ®𝑎 , but fixes the context of Δ𝑎 .

Multi

Single

No

Ref

FullAssoc

Inheritance

Style

s a

+-

-+

++-+

+-

a b
t

+-

-+

Fig. 17. Composing a diff Δ𝑎 with its context fixer Δ𝑏 and its implicit injector Δ®𝑎 .

The following lemma states the usefulness of context fixers, and introduces implicit injectors. A

context fixer Δ𝑏 for a diff Δ𝑎 within Δ𝑠𝑡 repairs the contextual expectations of Δ𝑎 , so that, when
pre-concatenated with the implicit injector Δ®𝑎 , we have Δ®𝑎 ;Δ𝑎 ;Δ𝑏 ⊆ Δ𝑠𝑡 .

Lemma 5.13 (Composing context fixers). Given diffsΔ𝑠𝑡 ,Δ𝑎 andΔ𝑏 s.t. ContextFixer(Δ𝑎,Δ𝑏,Δ𝑠𝑡 ),
then Δ®𝑎 = ⟨⟨𝐹 −+𝑏 , 𝐹+−

𝑏
⟩, ⟨{}, {}⟩⟩ is the implicit diff injector of Δ𝑎 .

At this point, we need a mechanism for finding adapters whose diffs are context fixers for the diffs

of other adapters. Given adapters 𝑎 and 𝑏, and a diff Δ𝑠𝑡 s.t. Δ𝑏 is a context fixer for Δ𝑎 within Δ𝑠𝑡 ,
we use the notation ®𝑎 = (Δ®𝑎,𝐺𝑇𝑆 = ⟨𝑀𝑀, {}, 𝜖⟩) for the empty injector adapter, which has Δ®𝑎 as
diff, and a graph transformation system without rules. In practice, we use an empty injector adapter

when the first adapter 𝑎 does not read elements of types activated by the features in 𝐹++𝑎 \ 𝐹++𝑠𝑡 (for

positive context fixers) or 𝐹 −−𝑎 \𝐹 −−𝑠𝑡 (for negative ones). However, the adapter 𝑎 is allowed to create

elements of such types, since the second adapter 𝑏 will take care of them. In our example, given

adapter InhByDelegation and its context fixer RefByAssoc, we can use an empty injector adapter, since

InhByDelegation creates references links, which have PC Ref (which is in 𝐹++𝑎 \ 𝐹++𝑠𝑡 ). On the contrary,

if the adapter 𝑎 does not create, but reads or deletes elements of types activated by features in the
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unsatisfied context, then an empty injector is not enough, but it is necessary to find and apply

an existing adapter 𝑐 (with same diff as the implicit adapter) instead. This is so, as adapter 𝑐 will

introduce the elements activated by features in 𝐹++𝑎 \ 𝐹++𝑠𝑡 , so that adapter 𝑎 can use them.

Algorithm 2 (migrAlg) uses completers and context fixers to provide an optimised version of the

procedure to select suitable adapters for model migrations (step 2 in Definition 4.17). The algorithm

receives an adaptive language and two (source and target) configurations as input, and returns the

set of adapters to use in the migration transformation between both configurations as output. First

(lines 1–3), the algorithm selects the set 𝐴𝐷 of all adapters consistent with the diff of the source

and target configurations, just like in Definition 4.17. It also stores the features deactivated (𝑈 +−)
and activated (𝑈 −+) by Δ𝑠𝑡 , but which are not covered by the selected adapters (lines 4–5). Next,

a loop traverses each adapter 𝑎 not selected yet (lines 6–15). The loop first checks if all feature

changes are covered (𝑈 +− and𝑈 −+ are empty), in which case, the algorithm returns the current

set 𝐴𝐷 of selected adapters (line 7). Otherwise, the loop searches for context fixers (lines 8–10),
completers (lines 11–12) and soft completers that can be fixed (lines 13–15).

Algorithm 2 Extended migration generation using context fixers and completers (migrAlg)

Input: 𝐴𝐿 = ⟨𝐿𝑃𝐿 = ⟨𝐹𝑀,𝑀𝑀,Φ⟩, 𝐴⟩ ⊲ Adaptive language as in Def. 4.15

Input: 𝜌𝑠 , 𝜌𝑡 ∈ 𝐶𝐹𝐺 (𝐹𝑀) ⊲ Two configurations of FM
Output: Set(Adapter) ⊲ Set of adapters for migrating from 𝜌𝑠 to 𝜌𝑡
1: 𝐴𝐷 = {𝑎𝑘 ∈ 𝐴 | Δ𝑘 ⊆ Δ𝑠𝑡∨
2: (Δ𝑘 ⊑𝑝𝑟𝑒 Δ𝑠𝑡 ∧ ¬𝑐𝑟𝑒𝑎𝑡𝑒 (𝐹++𝑘 \ 𝐹

++
𝑠𝑡 , 𝐹

−−
𝑘
\ 𝐹−−𝑠𝑡 , 𝑎𝑘 ))∨

3: (Δ𝑘 ⊑𝑝𝑜𝑠𝑡 Δ𝑠𝑡 ∧ ¬𝑑𝑒𝑙𝑒𝑡𝑒 (𝐹++𝑘 \ 𝐹
++
𝑠𝑡 , 𝐹

−−
𝑘
\ 𝐹−−𝑠𝑡 , 𝑎𝑘 ))} ⊲ As in Def. 4.17

4: 𝑈 +− = 𝐹+−𝑠𝑡 \
⋃
𝑎𝑘 ∈𝐴𝐷 𝐹

+−
𝑘

⊲ Remaining + to - changes

5: 𝑈 −+ = 𝐹−+𝑠𝑡 \
⋃
𝑎𝑘 ∈𝐴𝐷 𝐹

−+
𝑘

⊲ Remaining - to + changes

6: for (𝑎 ∈ 𝐴 \𝐴𝐷) do
7: if (𝑈 +− = ∅ ∧𝑈 −+ = ∅) then return 𝐴𝐷
8: else if (𝐹+−𝑎 ⊆ 𝑈 +− ∧ 𝐹−+𝑎 ⊆ 𝑈 −+∧ ⊲ Looks for context fixers

9: ∃𝑏 ∈ 𝐴 \𝐴𝐷 · ContextFixer(Δ𝑎,Δ𝑏 ,Δ𝑠𝑡 ) ∧
10: (inj=getInjector(a, b, Δ𝑠𝑡 )) ≠ 𝑛𝑢𝑙𝑙 ) then Update(inj;a;b)

11: else if (𝐹+−𝑎 ⊆ 𝑈 +− ∧ 𝐹−−𝑎 ⊆ 𝐹−−𝑠𝑡 ∧ 𝐹−+𝑎 ⊈ 𝑈 −+∧ ⊲ Looks for completers

12: ∃𝑏 ∈ 𝐴 \𝐴𝐷 · Completer(Δ𝑎,Δ𝑏 ,Δ𝑠𝑡 )) then Update(a;b)

13: else if (∃𝑏 ∈ 𝐴 \𝐴𝐷 · SoftCompleter(Δ𝑎,Δ𝑏 ,Δ𝑠𝑡 )∧ ⊲ Looks for soft completers

14: ∃𝑐 ∈ 𝐴 \𝐴𝐷 · ContextFixer(Δ𝑎 ;Δ𝑏 ,Δ𝑐 ,Δ𝑠𝑡 )∧
15: (inj=getInjector(a;b, c, Δ𝑠𝑡 )) ≠ 𝑛𝑢𝑙𝑙 ) then Update(inj;a;b;c)

16: return AD

17: function getInjector(𝑎, 𝑏 : 𝐴𝑑𝑎𝑝𝑡𝑒𝑟,Δ : 𝐷𝑖 𝑓 𝑓 ) : 𝐴𝑑𝑎𝑝𝑡𝑒𝑟

18: if (¬read(𝐹++𝑎 \ 𝐹++, 𝐹−−𝑎 \ 𝐹−− , a)) then return (⟨⟨𝐹−+
𝑏
, 𝐹+−
𝑏
⟩, ⟨{}, {}⟩⟩, ⟨𝑀𝑀, {}, 𝜖⟩)

19: if (∃𝑐 ∈ 𝐴𝐷 · (𝐹+−𝑐 = 𝐹−+
𝑏
) ∧ (𝐹−+𝑐 = 𝐹+−

𝑏
) ∧ (𝐹++

𝑏
= 𝐹−−

𝑏
= ∅)) then return c

20: else return null

21: function Update(𝑎 : 𝐴𝑑𝑎𝑝𝑡𝑒𝑟 ) : 𝑣𝑜𝑖𝑑

22: 𝐴𝐷 = 𝐴𝐷 ∪ {𝑎}
23: 𝑈 +− = 𝑈 +− \ 𝐹+−𝑎
24: 𝑈 −+ = 𝑈 −+ \ 𝐹−+𝑎

To check for context fixers, if the delta of the considered adapter 𝑎 fits within 𝑈 +− and𝑈 −+ (line
8), there is a context fixer for it (line 9), and there is a suitable injector adapter (line 10), then the

sequential composition of the injector, the adapter and the context fixer is added to the current

adapter set 𝐴𝐷 , and the uncovered activated and deactivated features are updated (function Update
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in lines 21–24). Function getInjector is used to check for suitable injectors (lines 17–20). The function

returns an empty injector if the adapter does not read context elements (line 18, checked using

predicate 𝑟𝑒𝑎𝑑 in Definition 4.13); otherwise, it returns an existing adapter with the same diff as

the implicit injector (line 19), or null if none exists (line 20).

To check for completers, if the considered adapter 𝑎 only fails in the activation 𝐹 −+𝑎 (line 11)

and there is a completer for it (line 12), then the sequential composition of the adapter and the

completer is added to the current adapter set 𝐴𝐷 , and the uncovered activated and deactivated

features are updated (line 12). If no completer exists, but a soft completer (line 13) for which there

is a context fixer (line 14) and an injector (line 15), then the composed adapter is added to the

adapter set 𝐴𝐷 , and the uncovered features are updated as before (line 15). Overall, the algorithm

complexity is cubic on the number of adapters.

Remark 5.14. The algorithm checks for adapter compositions of length two (for context fixers

and completers) or three (for soft completers). While this could be generalised to find longer com-

positions, it is enough to deal with feature interactions, and permits organising the transformations

conceptually around “pivot features”. A pivot feature is a feature in an alternative set of a feature

diagram that: (a) has adapters to migrate to all other features in the same alternative set, and (b) the

adapters of other alternative sets use the feature for their migrations. In our example, Ref is a pivot

feature within Style since there are adapters to transform from Ref to FullAssoc, and the adapters

handling the Inheritance alternative set use Ref. This permits context-fixing those adapters, if needed,

with the adapter transforming from Ref to FullAssoc. However, the limitation on the composition

length forces to organise the transformations within an alternative set in two steps. For example,

in Figure 15, No is reachable from Multi in two steps. In general, this is always possible by choosing

a pivot feature that is reachable, and can reach, all other features in one transformation step. In our

example, Single is a pivot feature within Inheritance (there is no adapter from No to Single, but this is

because there are no inheritance relationships to migrate).

Example 5.15. Given configurations 𝜌𝑠 = {Multi, FullAssoc} and 𝜌𝑡 = {No, FullAssoc}, lines 1–5 of
Algorithm 2 build sets 𝐴𝐷 = {}, 𝑈 +− = {Multi}, and 𝑈 −+ = {No}. Lines 8–12 do not find context

fixers or completers. Lines 13–15 find a soft completer (SingleToNo) for adapter InhByDelegation. It

is a soft completer because, even though the positive context of none of the adapters is satisfied

(since they require Ref), line 14 finds a context fixer (AssocByRef). Adapters InhByDelegation and

SingleToNo create references (with PC Ref), but do not read them, so ¬𝑟𝑒𝑎𝑑 ({Ref}, {}, InhByDelegation)
and ¬𝑟𝑒𝑎𝑑 ({Ref}, {}, SingleToNo). Therefore, method getInjector returns an empty injector inj in line

18, and the composition inj; InhByDelegation; SingleToNo; AssocByRef is added to 𝐴𝐷 . At this point,

𝑈 +− and𝑈 −+ are empty and the algorithm returns 𝐴𝐷 .

Overall, without Algorithm 2, the language engineer would need to manually define five adapters

more: versions of InhByDelegation and SingleToNo assuming FullAssoc, a version of InterfacesToNo for

single inheritance, an adapter from Multi to No assuming Ref, and a similar one assuming FullAssoc.

Instead, our algorithm synthesises those adapters by composition of other adapters.

6 ANALYSIS
Next, we present analyses to check the correctness of adapters (Section 6.1); to measure the coverage

of the set of possible migrations by the defined adapters (Section 6.2); and to assert whether a

configuration is reachable from another one via non-empty migrations (Section 6.2).

6.1 Correctness of Adapters
Our migration transformation scheme yields models that are syntactically well-typed, since the

model elements that are not typed by𝑀𝑀𝑡 are removed in the last migration step (cf. Definition 4.17).
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Nonetheless, the language designer may create rules that use elements of types that do not belong

to all language configurations where the rule is applicable. As discussed in Example 4.11, these rules

are syntactically correct as they are typed over the 150MM. However, this may indicate a design

error in the rule or in the adapter’s diff. This section presents an analysis technique to detect these

cases. We start defining the compatibility of model elements and models w.r.t. a diff (Definition 6.1),

and then use this notion to define the compatibility at the rule level (Definition 6.3).

Definition 6.1 (Diff-model compatibility). Given a language product line 𝐿𝑃𝐿 = ⟨𝐹𝑀,𝑀𝑀,Φ⟩, a
diff Δ over 𝐹𝑀 , a model𝑀 typed by𝑀𝑀 via morphism 𝑡𝑦𝑝𝑒 , and an element 𝑥 ∈ 𝑀 , we say that:

• 𝑥 is source-compatible with Δ, written src-compatΔ (𝑥,𝑀), if:
Φ(𝑡𝑦𝑝𝑒 (𝑥)) = false ∨ Φ(𝑡𝑦𝑝𝑒 (𝑥)) [true/(𝐹+− ∪ 𝐹++), false/(𝐹 −+ ∪ 𝐹 −−)] = true
• 𝑥 is target-compatible with Δ, written tar-compatΔ (𝑥,𝑀), if:
Φ(𝑡𝑦𝑝𝑒 (𝑥)) = false ∨ Φ(𝑡𝑦𝑝𝑒 (𝑥)) [true/(𝐹 −+ ∪ 𝐹++), false/(𝐹+− ∪ 𝐹 −−)] = true
• 𝑥 is compatible with Δ, written compatΔ (𝑥,𝑀), if: src-compatΔ (𝑥,𝑀)∨tar-compatΔ (𝑥,𝑀)
• 𝑀 is source-compatible with Δ, written src-compatΔ (𝑀), if: ∀𝑥 ∈ 𝑀 ·src-compatΔ (𝑥,𝑀)
• 𝑀 is target-compatible with Δ, written tar-compatΔ (𝑀), if: ∀𝑥 ∈ 𝑀 ·tar-compatΔ (𝑥,𝑀)
• 𝑀 is compatible with Δ, written compatΔ (𝑀), if: ∀𝑥 ∈ 𝑀 ·compatΔ (𝑥,𝑀)

Remark 6.2. Definition 6.1 admits elements whose type’s PC is false. This allows considering

the case of auxiliary elements in meta-models, as is the case of the iface reference in our example,

which is an auxiliary element for the transformation.

A model𝑀 source-compatible with Δ is ensured to be well-typed w.r.t. any meta-model derivable

by any configuration in which Δ is applicable. Conversely, a target-compatible model𝑀 is well-

typed w.r.t. any meta-model derivable by any configuration that may result from applying Δ. A
compatible model𝑀 can have elements typed by meta-models of the source or target configurations.

Next, we define compatibility for rules and adapters. A rule compatible with a diff Δ has NACs

whose elements are compatible with either the source or target configurations, may delete elements

from the source configuration, preserves elements of any of the source or target configurations, and

may create elements of the target configuration. An adapter is compatible with Δ, if all its rules are.

Definition 6.3 (Rule and adapter compatibility). Given an adaptive language 𝐴𝐿 = ⟨𝐿𝑃𝐿,𝐴⟩, an
adapter 𝑎 ∈ 𝐴, and a rule 𝑡𝑟 = ⟨𝐿 𝑙←− 𝐾 𝑟−→ 𝑅, 𝑁𝐴𝐶𝑆 = {𝐿 𝑛𝑖−→ 𝑁𝑖 }𝑖∈𝐼 ⟩ of 𝑎, we say that 𝑡𝑟 is

compatible with a diff Δ, written 𝑐𝑜𝑚𝑝𝑎𝑡Δ (𝑡𝑟 ), if:
(∀𝑛𝑖 : 𝐿 → 𝑁𝑖 ∈ 𝑁𝐴𝐶𝑆 · compatΔ (𝑁𝑖 ))∧
src-compatΔ (𝐿 \ 𝑙 (𝐾)) ∧ compatΔ (𝐾) ∧ tar-compatΔ (𝑅 \ 𝑟 (𝐾))

The adapter 𝑎 is compatible with a diff Δ′, written 𝑐𝑜𝑚𝑝𝑎𝑡Δ′ (𝑎), iff ∀𝑡𝑟 ∈ 𝑅𝑆 · 𝑐𝑜𝑚𝑝𝑎𝑡Δ′ (𝑡𝑟 ).
If a rule’s 𝐾 (which contains the preserved elements) is not compatible with Δ, then it may not

be applicable in every configuration compatible with Δ (since the rule expects elements that cannot

be present in the source or target configurations). If a rule’s NAC 𝑁𝑖 is not compatible with Δ, then
it will always succeed (becoming useless), since 𝑁𝑖 will never be present in the model. For the

same reasoning, the elements deleted by the rule (𝐿 \ 𝑙 (𝐾)) should be source-compatible, and the

elements created by the rule (𝑅 \ 𝑟 (𝐾)) should be target-compatible.

Example 6.4. Consider rule multiBySingle in Figure 9, defined by adapter InhByDelegation with

Δ = ⟨⟨{Multi}, {Single}⟩, ⟨{Ref}, {}⟩⟩. The rule preserves objects p and c, of type Class, which has

PC true, and so compatΔ (𝐾). The rule forbids elements with types Class and parent. The latter has

PC Single, which evaluates to true in target configurations, and so compatΔ (𝑁𝑖 ). The rule deletes a
parents reference (present in source configurations), and so, src-compatΔ (𝐿 \ 𝑙 (𝐾)). Finally, the rule
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creates a parent reference (present in target configurations), and so, tar-compatΔ (𝑅 \ 𝑟 (𝐾)). Hence,
overall, we have compatΔ(multiBySingle).

Our compatibility notion is a heuristic to rule out errors, but a non-compatible rule may still be the

intention of the language engineer. For instance, in Figure 9, rule inhByRef of adapter InhByDelegation

creates a Role object and gives value to its attributes navig (with PC Navig), min and max (with PC

Card), isComp (with PC Comp) and isAggr (with PC Aggr). Hence, we have ¬tar-compatΔ (𝑅 \ 𝑟 (𝐾)).
However, the rule is as intended, because giving value to these attributes avoids creating additional

rules for cases where those features are individually selected. Instead, if these features are not

selected, the last step of the migration will delete the corresponding attribute.

Next, we characterise the global correctness of our migration procedure, based on the local

correctness of the adapters (compatibility with its Δ). The next lemma states that, if an adapter is

compatible with its diff Δ, then it will be compatible with any diff Δ𝑠𝑡 that makes the adapter be

selected by the migration transformation of Definition 4.17.

Lemma 6.5 (Migration compatibility). Let 𝐴𝐿 = ⟨𝐿𝑃𝐿,𝐴⟩ be an adaptive language; 𝜌𝑠 , 𝜌𝑡 ∈
𝐶𝐹𝐺 (𝐹𝑀) be two configurations; and 𝑎 = ⟨Δ,𝐺𝑇𝑆⟩ ∈ 𝐴 be an adapter of 𝐿𝑃𝐿 s.t. 𝑐𝑜𝑚𝑝𝑎𝑡Δ (𝑎). Then:

Δ ⊆ Δ𝑠𝑡 =⇒ 𝑐𝑜𝑚𝑝𝑎𝑡Δ𝑠𝑡
(𝑎)

Δ ⊑𝑝𝑟𝑒 Δ𝑠𝑡 ∧ ¬𝑐𝑟𝑒𝑎𝑡𝑒 (𝐹++ \ 𝐹++𝑠𝑡 , 𝐹 −− \ 𝐹 −−𝑠𝑡 , 𝑎) =⇒ 𝑐𝑜𝑚𝑝𝑎𝑡Δ𝑠𝑡
(𝑎)

Δ ⊑𝑝𝑜𝑠𝑡 Δ𝑠𝑡 ∧ ¬𝑑𝑒𝑙𝑒𝑡𝑒 (𝐹++ \ 𝐹++𝑠𝑡 , 𝐹 −− \ 𝐹 −−𝑠𝑡 , 𝑎) =⇒ 𝑐𝑜𝑚𝑝𝑎𝑡Δ𝑠𝑡
(𝑎)

Finally, Theorem 6.6 states that, if each adapter is compatible with its diff, then it is compatible

with the diff of any source and target configurations over which it is selected by Algorithm 2.

Theorem 6.6 (Extended migration compatibility). Let𝐴𝐿 = ⟨𝐿𝑃𝐿,𝐴⟩ be an adaptive language
s.t. ∀𝑎𝑘 ∈ 𝐴 · 𝑐𝑜𝑚𝑝𝑎𝑡Δ𝑘

(𝑎); and 𝜌𝑠 , 𝜌𝑡 ∈ 𝐶𝐹𝐺 (𝐹𝑀) be two configurations. Then, any adapter 𝑎𝑖
returned by Algorithm 2 for 𝜌𝑠 and 𝜌𝑡 is compatible with Δ𝑠𝑡 (i.e., 𝑐𝑜𝑚𝑝𝑎𝑡Δ𝑠𝑡

(𝑎𝑖 )).

6.2 Migration Coverage and Configuration Reachability
Our migration approach can bridge any two language configurations even if the transformation

between them lacks adapters, due to the initial model augmentation and final model restriction

steps (cf. Definition 4.17). However, given a triggered adaptive language, it is important to under-

stand which transitions within a configuration transition system 𝐶𝐹 use non-empty migration

transformations (called covered transition system), and which ones use adapters that altogether

cover all feature changes between their source and target configurations (called totally covered).

Definition 6.7 (Configuration transition system coverage). Given a triggered adaptive language

TALΛ = ⟨𝐴𝐿,𝐶𝐹, 𝜌𝑖𝑛𝑖𝑡 ⟩, we define:
• Covered transition system: 𝐶𝑇𝐴𝐿Λ = {(𝜌𝑖 , _𝑖 𝑗 , 𝜌 𝑗 ) ∈ 𝐶𝐹 |𝑚𝑖𝑔𝑟𝐴𝑙𝑔(𝐴𝐿, 𝜌𝑖 , 𝜌 𝑗 ) ≠ ∅}
• Totally covered transition system: 𝑇𝐶𝑇𝐴𝐿Λ = {(𝜌𝑖 , _𝑖 𝑗 , 𝜌 𝑗 ) ∈ 𝐶𝐹 | 𝑚𝑖𝑔𝑟𝐴𝑙𝑔(𝐴𝐿, 𝜌𝑖 , 𝜌 𝑗 ) =

𝐴𝑖 𝑗 ∧ 𝑡𝑜𝑡𝑎𝑙 (𝐴𝑖 𝑗 ,Δ𝑖 𝑗 )}
where𝑚𝑖𝑔𝑟𝐴𝑙𝑔 corresponds to Algorithm 2, and predicate 𝑡𝑜𝑡𝑎𝑙 receives a set of adapters 𝐴 and a

diff Δ, and is defined as 𝑡𝑜𝑡𝑎𝑙 (𝐴,Δ) ≜ (𝐹+− =
⋃
𝑎𝑘 ∈𝐴 𝐹

+−
𝑘
) ∧ (𝐹 −+ = ⋃

𝑎𝑘 ∈𝐴 𝐹
−+
𝑘
).

The analysis of configuration transition system coverage can help detecting missing adapters by

uncovering migration transformations that are empty (𝐶𝐹 \𝐶𝑇𝐴𝐿Λ ) or partial (𝐶𝐹 \𝑇𝐶𝑇𝐴𝐿Λ ). Hence,
given a configuration 𝜌 , one can obtain which configurations 𝜌 𝑗 can only be reached from 𝜌 with

empty migrations: {𝜌 𝑗 | (𝜌, _, 𝜌 𝑗 ) ∈ 𝐶𝐹 \𝐶𝑇𝐴𝐿Λ }. Please note that, given a triggered language, its

totally covered system is a subset of the covered one: 𝑇𝐶𝑇𝐴𝐿Λ ⊆ 𝐶𝑇𝐴𝐿Λ ⊆ 𝐶𝐹 .
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Example 6.8. The full (unrestricted) configuration transition system of our running example

has 82 656 transitions. Our seven adapters cover 60 672 transitions (73.4%), and totally cover

960. Conversely, 21 984 transitions apply empty migrations (26.6%). If we restrict to the four

configurations and five transitions in Figure 14(b), we can check that Design is reachable from

Analysis using an empty migration; Java and C++ are reachable from Design using covered migrations;

and Java and C++ are reachable from each other using totally covered migrations. Since Design

only adds features Methods, Comp, Aggr, and Navig to configuration Analysis, it makes sense for the

migration from Analysis to Design to be empty.

Next, we provide a way to analyse the coverage of feature changes by a set of adapters. It provides

a global view of the reachability space via non-empty migrations, which is more compact than the

previous analysis based on reachable configurations, since the number of configurations may be

exponential on the number of features. Specifically, for each feature 𝑓 , we collect the set of adapters

whose diff requires the feature activation (𝑐𝑜𝑣+− (𝑓 )) or deactivation (𝑐𝑜𝑣−+ (𝑓 )), and then calculate

the percentage of covered activations and deactivations.

Definition 6.9 (Feature coverage). Given an adaptive language 𝐴𝐿 = ⟨𝐿𝑃𝐿,𝐴⟩ and a feature 𝑓 , we

define the adapter coverage sets for 𝑓 as 𝑐𝑜𝑣+− (𝑓 ) = {𝑎 ∈ 𝐴 | 𝑓 ∈ 𝐹+−} and 𝑐𝑜𝑣−+ (𝑓 ) = {𝑎 ∈ 𝐴 | 𝑓 ∈
𝐹 −+}. The feature coverage of 𝐴𝐿 is then a percentage given by:∑

𝑓 ∈𝐹
(
𝑛𝑜𝑛𝐸𝑚𝑝𝑡𝑦 (𝑐𝑜𝑣+− (𝑓 )) + 𝑛𝑜𝑛𝐸𝑚𝑝𝑡𝑦 (𝑐𝑜𝑣−+ (𝑓 ))

)
2 × |𝐹 | × 100.0

where 𝑛𝑜𝑛𝐸𝑚𝑝𝑡𝑦 (𝑆) = 1 if |𝑆 | > 0 and 0 otherwise.

Example 6.10. Our example has 12 selectable features, and so, 24 feature changes are possible (i.e.,

each feature can be individually selected or unselected). Our adapters cover 10 of these changes,

which yields a feature coverage of 41.7%. On inspection, we note that no adapter activates features

Methods, Decorations or their children Comp, Aggr, Navig, and Card. This is to be expected, since

adding or removing methods or association decorations has no impact on migrations.

7 ARCHITECTURE AND TOOL SUPPORT
We have implemented our approach to adaptive languages atop theMerlin tool [25, 30], which

allows defining LPLs (cf. Section 3.3). The new tool, calledMerlin-a, extendsMerlin to support

adaptive languages, including the definition of language adapters, their analysis and composition,

the synthesis of migration transformations, and the generation of adaptive modelling editors.

The website http://miso.es/tools/merlin-adaptive/ permits downloading the tool, and includes

installation and use instructions, as well as the case studies used in the evaluation of Section 8.

Merlin-a provides automation to build and use adaptive modelling languages using the process

depicted in Figure 18, which involves the next steps, to be performed by the language engineer:

(1) Define language variability. First, the language variability is designed as a feature diagram. For

this purpose, the language designer can use FeatureIDE [50].

(2) Design language syntax. As a second step, the abstract syntax of the LPL is defined via a 150MM.

This is just a regular Ecore meta-model, where the PCs are defined as annotations on the

meta-model elements. The notion of meta-model that the tool supports is more expressive than

the one in Definition 3.1, allowing cardinalities, inheritance and OCL constraints. Any Ecore

editor could be used to define the 150MM, but we recommend OCLinEcore
9
as it simplifies

editing OCL constraints and annotations.

9
https://wiki.eclipse.org/OCL/OCLinEcore
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Fig. 18. Steps for generating an editor for an adaptive modelling language.

(3) Identify relevant configurations. The language designer specifies the subset of configurations
that are relevant for the language, or alternatively, selects all configurations. In the former case,

the individual configurations can be defined using FeatureIDE.

(4) Build migration adapters. The adapters to migrate between the relevant configurations are

created.Merlin-a provides a textual DSL for their specification, and relies on the transformation

language Henshin [5] to define the rules. At this stage, the language designer can use the

analysis methods described in Section 6 to analyse: (i) the correctness of the adapters, and

(ii) the coverage of the configurations of interest and the language features by the adapters.

Section 7.1 will provide further details on the DSL and the supported analyses, and Section 7.2

will display screenshots of their use within Merlin-a.

(5) Generate adaptive editor. At this point,Merlin-a can automatically generate a modelling editor

for the adaptive language. The editor permits creating models of the selected language variants,

and migrates the models when the language variant in use changes.

(6) Customise triggers. Optionally, the language engineer can customise the editor with hook

methods on GUI events, to trigger language reconfigurations. To facilitate regenerating the

editor (step 5), but still preserve the manually added code, this manual code is encapsulated

into event classes (e.g., OnEdit) with protected regions to prevent it from being overwritten.

This process does not need to be sequential, but may have iterations. For example, languages

with many variants are typically developed iteratively, adding one or a few variants and their

adapters in different iterations. As the following subsections will explain, our use of code generation

techniques allows for quick editor re-generation while preserving any manually added code.

In the remainder of this section, we describe the tool architecture (Section 7.1), the facilities

for defining adaptive languages (Section 7.2, steps 1–4), and those for generating and using the

adaptive modelling language editors (Section 7.3, steps 5–6).

7.1 Architecture
Figure 19 shows the architecture of Merlin-a, which is an Eclipse plugin. It uses the Eclipse

Modeling Framework (EMF) [68] as the underlying (meta-)modelling technology, Henshin [5] for

creating the adapter rules, FeatureIDE [50] for defining and handling the language variability via

feature models, and Xtext
10
to support specifying the adapters using a textual DSL.

Components 1 to 4 in Figure 19 support the definition of adaptive languages. Our tool relies

on FeatureIDE (label 1) to handle the language variability. Merlin-a provides an extension to

FeatureIDE that enables the definition of LPLs (label 2). Hence, in the first place, the language

10
http://www.eclipse.org/Xtext/
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Fig. 19. Architecture of Merlin-a.

engineer needs to create a FeatureIDE project selecting theMerlin-a extension, define a feature

model, and specify the feature configurations corresponding to the allowed language variants.

Then, the engineer must define the 150MM with all language variants superimposed. The 150MM
is a regular Ecore meta-model, where the PCs are specified as annotations on the meta-model

elements. Merlin-a relies on Merlin to validate the correctness of the specified 150MM, both

syntactically (e.g., no language variant has inheritance cycles) and semantically (e.g., all PCs are

satisfiable, the OCL constraints in all variants are satisfiable). See [25, 30] for more details.

Next, the language engineer defines the adapter rules using Henshin (label 3), and the adapters

themselves using a dedicated textual DSL (label 4). Figure 20 shows the meta-model of this DSL,

whereby an AdapterModel has a name, stores the path of the ecore and Henshin files with the 150MM
and the rules, and comprises a collection of adapters. Each Adapter has a name, a set of rules, and a

configuration diff (context and delta). Section 7.2 provides more details about the editor.

AdapterModel

name: String
ecore: String
transformation: String

Adapter

name: String
rules: String[*]

ConfigDiff

ConfigDelta

ConfigContext

ConfigTuple

posSet : String[*]
negSet : String[*]

adapters
*

cfgDiff

delta

context

Fig. 20. Meta-model of the textual DSL for adapter definition.

Merlin-a integrates an analyser (label 4 of Figure 19) that reveals non-compatible rules and

the reasons for non-compatibility, as described in Section 6.1. In addition, the analyser reports on

the adapters that use each language feature. This report is divided into deactivated (+-), activated

(-+), positive (++) and negative context (--), depending on where the feature appears. This way, the

analysis can be used to understand the coverage of feature (de)activation by adapters, as described

in Section 6.2. If no adapter covers the activation of a feature, then a migration into a configuration

where the feature is activated will not create elements whose type is guarded by the feature.

Conversely, if no adapter covers the deactivation of a feature, then a migration into a configuration

where the feature is deactivated will not handle elements whose type is guarded by the feature.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.
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By default, these elements will be deleted by the migration. If a feature is not covered, it does not

mean there is an error, but coverage serves to trace the language features explicitly considered by

the migrations.

As Section 7.3 details, our tooling also integrates a generator of adaptive editors (label 5 of

Figure 19). This is built atop the EMF generation facility for tree-based modelling editors. The

generated editors (label 6) support language reconfiguration and model migration.

7.2 Tool Support: Definition of Adaptive Languages
Figure 21 showsMerlin-a being used to define the adaptive language of the running example. The

panel with label 1 corresponds to the editor of the adapter definition DSL. The displayed listing

specifies the language name (AdaptiveClassDiagrams) in line 1, the ecore file with the 150MM in line

2, the Henshin file containing the rules in line 3, and then the adapters including their diff and the

name of their Henshin rules. The editor features code completion on possible rule names (those

defined in the Henshin file, cf. label 2) and feature names (those defined in the feature diagram, cf.

label 3). It also integrates validators for the diffs, e.g., checking their well-formedness.

1 2

3

4

5 6

Fig. 21. Merlin-a in use for specifying the Class Diagrams adaptive language.

The panel with label 2 displays the Henshin editor. It allows creating the migration rules, which

are typed by the 150MM. FeatureIDE provides an editor for the feature diagram (label 3), another to

create valid configurations, and tools to analyse the feature diagram. As the project explorer shows

(label 4), these artefacts are stored within a FeatureIDE project.

The view with label 5 provides coverage information. It displays a matrix where the rows are the

non-mandatory features, and the columns are possible uses of the feature within a diff (+-, -+, ++,

--). Each cell shows the adapters that use the feature. Finally, the view with label 6 displays errors

and warnings detected by the compatibility analysis of Definition 6.3.

7.3 Tool Support: Generation and Usage of Adaptive Language Editors
EMF provides built-in support to generate tree editors for Ecore-based languages by means of a

model-to-text template language called Java Emitter Templates (JET)
11
. In particular, EMF provides

11
https://projects.eclipse.org/projects/modeling.m2t.jet
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a set of predefined JET templates that generate Java code implementing the editor for a given

regular (i.e., non-adaptive) Ecore meta-model.

In Merlin-a, we have included a generator (label 5 in Figure 19) that overwrites those templates

to extend the generated tree editor with support for language adaptation. The generator is invoked

using a contextual menu. It receives a 150MM, an adapter specification, and a set of feature configu-

rations of interest, and synthesises a tree editor for the adaptive language together with migration

transformations between the language variants corresponding to the given configurations.

The language users can use the generated editor to build models in the selected language variant

(label 6 in Figure 19). The editor is an Eclipse plugin, and has a menu to select the language variant

in use. This selection triggers the migration of the current model to the new language version. The

editor dynamically inspects the current language variant and adapts its behaviour accordingly,

hiding the menus and fields for creating and editing objects and features unsupported in the current

language variant, and omitting the checking of the cardinality and OCL constraints absent from

the current configuration. The editor includes hook methods that are called upon certain events,

like saving or editing the model. The language designer can use these hooks to specify triggering

conditions for language reconfigurations, e.g., based on the analysis of the user editing actions or

the result of OCL queries evaluated on the model. Technically, we generate separate template hook

classes (OnEdit, OnSave) with a common interface (IHook). To activate a hook, the language designer

needs to fill in a method of these classes – which is generated empty – to perform actions when the

event occurs. The common IHook interface has default methods with useful functionality, which

can be called from the implementing classes. For example, it provides methods to execute OCL

queries – passed as Strings – on particular objects or resources. The hook classes have protected
regions that prevent overwriting the manually created code if the editor is regenerated.

Figure 22 displays some screenshots of the generated tree editor for the running example, where

no hook code has been manually added. Label 1 shows the model-creation wizard, which extends

the standard one with a combo-box to select the initial language configuration (Analysis in the

figure). Label 2 shows the tree editor, which is used in the standard way to create models of the

selected configuration. Our generator modifies the file name displayed in the top node of the

model (after platform:) to display the current language version (Analysis). When modelling, the

hooks are evaluated in the background and may trigger language reconfigurations. In addition,

the editor includes by default a contextual menu Adaptation that permits changing to a different

language configuration. When a language configuration is selected, the migration transformation is

executed and the model updated (label 3). As an example, the figure shows the adaptation depicted

in Figure 12 from Analysis to Java.

8 EVALUATION
Next, we evaluate the approach to answer the following research questions (RQs):

RQ1: How feasible is it to specify adaptive languages in practice?
RQ2: How efficient is the adaptation process at runtime?

To dig into RQ1, we compare the number of rules required by our approach, w.r.t. the number of

rules required by a naive approach where each migration transformation is specified separately

in an explicit way. Moreover, we analyse the reduction in the number of rules that our sequential

composition of adapters brings. Hence, we study these two follow-up RQs:

RQ1.1: What is the specification size reduction of using adapters w.r.t. a naive approach?
RQ1.2: What is the specification size reduction achieved by the sequential composition of
adapters?

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.
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1 2

3

Fig. 22. Generated adaptive (tree-based) model editor for the running example.

To answer RQ2, we measure the adaptation time of models of increasing size, for migrations

between different variants of an adaptive language.

In the following, Sections 8.1 and 8.2 answer the RQs, and Section 8.3 discusses threats to validity.

8.1 RQ1: Specification Size of Adaptive Languages
8.1.1 Experiment design. To evaluate RQ1, we developed six case studies, available at https://miso.

es/tools/merlin-adaptive/examples.html. They are families of well-known notations, variants of

which have been reported in the literature, but never as adaptive languages.

• Adaptive class diagrams. This is the running example. It considers variants of class diagrams

with/without interfaces, associations and methods, as well as variants with multiple, single, and

no inheritance. The adaptation in this case is useful when using the language in different project

phases (e.g., analysis, design, detailed design) or within a learning scenario. For the adaptation,

we have designed adapters that bridge the different types of inheritance (using interfaces and

delegation when moving frommultiple to single inheritance, and interfaces are available), replace

associations by simple references and vice versa, and substitute interfaces by abstract classes

when the former are not available in a language variant.

• Adaptive Petri nets. The purpose of this adaptive language is to adapt the Petri net model

to the user needs, moving to variants with sophisticated primitives when requiring a more

expressive language, and to simpler variants when analysis capabilities are required. The language

considers Petri nets [52] with tokens represented either as objects or as an integer attribute; arcs

with/without weights; transitions with/without priority; variants with/without inhibitor, read

and reset arcs; variants with/without bounded places; and variants with/without hierarchy. We

have defined three sets of adapters. The first set moves from a complex to a simple variant, by

expressing one primitive (e.g., read arcs) in terms of patterns of simpler primitives (e.g., parallel

simple arcs in each direction). Hence, this set of adapters removes read arcs, weights from arcs,

inhibitor arcs, bounded places, and the net hierarchy. The second set of adapters replaces patterns

of a simple language variant by a primitive of a more sophisticated language variant. They detect

arc loops to create read arcs, and parallel arcs to create weighted arcs. The third adapter set

moves between alternative language realisations: tokens as objects or as attributes.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.
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• Adaptive process modelling. We have built an adaptive process modelling language to fit different

modelling scenarios. The language has variability on the available gateway types (parallel split,

synchronisation, simple merge, exclusive choice, and multi-choice), the task types (hierarchical,

initial and final, where the two latter can be mandatory or optional), and the representation of

flows between elements either as intermediate objects or references. The adaptation capabilities

enable changing the language style (with/without mandatory initial and final states, with flows

represented as objects or relations) and the level of support for gateway types. Similar to the

Petri nets case, we have defined adapters into simpler language variants, which replace complex

gateways by patterns of primitives of simpler language variants.

• Adaptive relational databases. This adaptive language permits specifying database schemas, and

optionally, their content data. The language has variants with/without primary and foreign

keys; indices; and default values, unique values, and value auto-increment for columns. It also

considers variants with either a closed set of data types, or an open set of data types represented

as objects or attributes. The adapters bridge variants with open and closed data types. They also

infer whether a column can be null from the available data, or be declared as unique.

• Adaptive state machines. This adaptive language has variants with a choice of the following

features: transitions that are timed, have event triggers, or are immediate; guarded transitions

and actions; hierarchical states, concurrent states, and states with entry, exit or do actions;

pseudostates of types condition, (deep) history, and forks/joins; and executable machines. The

adaptiveness permits moving between language variants tailored to the expressive power required

at a certain moment. The defined adapters replace primitives by patterns: when exit actions are

not available for states, these are moved to the output transitions (and similar for entry actions);

condition pseudostates are replaced by standard transitions (concatenating the incoming and

outgoing transitions); immediate transitions are replaced either by timed or event transitions

depending on availability; and hierarchy is flattened when no longer available.

• Adaptive multi-level modelling.Multi-level modelling [27] permits modelling using any number

of meta-levels, and not just two (meta-model and model). This results in simpler models in some

scenarios [7]. Researchers have proposed different realisations of this approach [35], each with

their own meta-modelling facilities and variants of them. To allow their inter-operability, we

have designed an adaptive language which encompasses variants of the most common primitives

within those multi-level proposals, provides different degrees of flexibility, and enables moving

between variants depending on the modelling needs. For example, one may start using the

primitives of one tool (e.g., Melanee [6]) and then change to another (e.g., with leap potency, as in

MetaDepth [22]) when needed. At any point, the language can be adapted back (e.g., to Melanee),

so that the adapters will express the unavailable primitives in terms of the available ones. Overall,

the language allows choosing different degrees of conformance flexibility (e.g., cardinality checks,

objects with abstract type), mechanisms for information extension (e.g., inheritance between

objects, untyped objects and features), different flavours of potency (e.g., range [58], leap [26]),

and the possibility to have multiple classifiers for objects, abstract classifiers, or assigning levels to

models. The language adapters express abstract clabjects by using 0 potency; create appropriate

subclasses to emulate multi-typing when multiple classification is no longer available; calculate

model levels and element potency when those features become available; express leap potency

with normal potency; and create proper types for untyped elements if these are disabled.

8.1.2 Results. Table 1 reports some metrics on the structure of the defined adaptive languages.

The first column shows the language name; the next four columns report the size of the 150MM
in terms of the number of classes, attributes, references and PCs; and the last three columns

characterise the language variability by the number of features of the feature model (in parenthesis,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: October 2024.
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the number of non-mandatory ones, i.e., those that are selectable), alternative feature sets, and valid
configurations. Overall, the 150MM sizes range from 7 to 16 classes

12
, from 1 to 14 attributes, from

7 to 15 references, and from 14 to 19 PCs. The feature models have between 14 and 26 features,

leading to languages with 256 to 27 648 variants. Four adaptive languages have alternative feature

sets. The class diagrams language has 2 alternative sets (cf. Figure 6), and the other languages have

0, 1 or 3.

Table 1. Metrics for the case studies: Structure.

Size of 150MM Feature Model
Language Class Attrs. Refs. PCs Features Alternative Configs.

(selectable) feature sets
Class diagrams 7 13 14 16 17 (12) 2 288

Petri nets 7 6 15 18 14 (9) 1 256

Process modelling 11 1 7 14 21 (15) 3 1 920

Relational DDBB 9 12 14 19 16 (11) 1 576

State machines 16 12 7 19 21 (17) 0 12 288

Multi-level modelling 8 14 11 19 26 (19) 0 27 648

Table 2 focusses on the adaptiveness specifications of the languages. For each adaptive language,

the first three columns show the number of language adapters, the total number of defined rules

(in parenthesis, the average number of rules per adapter), and the feature coverage (percentage

of activated or deactivated individual (selectable) features for which there is an explicit adapter,

cf. Section 6.2). Then, the next two columns provide metrics on our mechanism for the sequential

composition of adapters, counting the total number of context fixers and completers that this

mechanism discovers (in parenthesis, the fixers and adapters that are unique, cf. Section 5). Finally,

the last five columns report the total number of possible migration transformations between

language variants (i.e., to go from each language variant to each other language variant), the

migration transformations that are unique as a result of Algorithm 2, the average number of

adapters per transformation, the average number of rules per transformation, and the total number

of rules in the unique transformations.

Table 2. Metrics for the case studies: Adaptiveness.

Language Adapters Seq. Composition Migration Transformations
Language Adapt. Rules Feature Fixers Complet. Possible Unique Average Average Total

(avg.) cover. (unique) (unique) adapters rules rules
Class diagrams 7 12 (1.7) 45.4% 3 (3) 2 (2) 82 656 22 1.4 3.0 66

Petri nets 10 18 (1.8) 61.1% 40 (4) 0 (0) 65 280 117 2.7 6.2 726

Process modelling 14 18 (1.3) 46.7% 4 064 (9) 0 (0) 3 684 480 2 609 5.4 13.4 34 961

Relational DDBB 6 11 (1.8) 31.8% 0 (0) 8 (2) 331 200 28 1.9 3.8 107

State machines 6 13 (2.2) 14.7% 0 (0) 0 (0) 150 982 656 139 3.3 7.2 1 001

Multi-level mod. 10 19 (1.9) 26.3% 0 (0) 0 (0) 764 384 256 319 4.0 5.5 1 755

The number of unique migration transformations is much lower than the total number of

possible migrations (which is the number of configuration pairs). Transformations between pairs of

configurations are identical if they select the same adapters. This is so if changes in some features,

or the fact that some features remain selected or unselected, are irrelevant for the migration task.

For instance, in our running example, it does not matter whether feature Aggr is selected or not, as

12
The table reports one extra class and four extra references for the adaptive class diagrams compared to Figure 7(a). It

corresponds to the root class that is customary in EMF meta-models, and the composition references this class defines.
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migrations do not need to do anything special. Thus, migration transformations will be the same

between two pairs of configurations that only differ in the selection value of feature Aggr.

We can observe in Table 2 that all adaptive languages required a moderate number of adapters

(between 6 and 14) and rules (between 11 and 19), independently on the number of language

configurations. We used our toolMerlin-a to produce migration transformations between every

two configurations. In the first four case studies, our optimised algorithm for sequential adapter

composition generated between 2 and 9 unique context fixers or completers, which were reused

from 2 to 4 064 times. These high numbers for Process modelling (9 unique context fixers, reused 4 064

times) is explained because this adaptive language has the largest number of alternative sets (3), and

from the 4 languages with alternative sets, it has the highest number of configurations (1 920). This

way, our migration mechanism was able to bridge many pairs of language configurations, ranging

between 65 280 and more than 764 million. For this purpose, the algorithm generated between 22

and 2 609 unique transformations, by using between 1.4 and 5.4 adapters in average. In average,

these transformations contain between 3 and 13.4 rules.

8.1.3 Answering RQ1. Next, we answer RQ1 and its follow-up questions.

RQ1: How feasible is it to specify adaptive languages in practice? The effort required to specify both

the structure and adaptiveness of the adaptive languages is moderate. For the former, the overall

size of the 150MMs ranged from 33 to 54 elements (including classes, attributes, references and PCs).

Regarding adaptiveness, the language specifications had between 6 and 14 adapters, and between

11 and 19 rules.

RQ1.1: What is the specification size reduction of using adapters w.r.t. a naive approach? The effort

reduction of using adapters compared to the naive approach of defining each migration transfor-

mation by hand is considerable. For the case studies, the naive approach requires defining between

22 and 2 609 transformations, with an overall number of rules between 66 and 34 961. Instead, we

created between 6 and 14 adapters per language, and an overall number of rules between 11 and 19.

RQ1.2: What is the specification size reduction achieved by the sequential composition of adapters?
The composition mechanism created either context fixers or completers for the first four case

studies, which were the cases with alternative feature sets. In these cases, our approach saved the

construction of between 2 to 9 adapters. Defining those adapters manually would have meant an

increase between 66.7% and 85.7% on the number of adapters defined.

8.2 RQ2: Adaptation Efficiency at Runtime
8.2.1 Experiment design. To address this RQ, we measured the model migration time between

variants of the same adaptive language, for models of increasing size. Specifically, we considered the

adaptive class diagrams running example, and the five migrations between configurations Analysis,

Design, Java and C++ depicted in Figure 14(b). For each configuration, we created 10 random models

with 10, 50, 100, 200, 500 and 1 000 objects (10 models of each size). To ensure realism, we used

probability distributions for the number of objects per type (classes, attributes, methods, interfaces,

roles, associations), as reported in language usage studies for meta-models [8]. Additionally, 25% of

the classes were randomly assigned between 1 and 3 parent classes (only 1 if the language variant

did not support multiple inheritance, as is the case for Java). Similarly, 25% of the classes were

randomly set to implement between 1 to 3 interfaces, if permitted by the configuration.

The experiments were executed on a Windows 11 machine with Intel iCore 9 CPU and 32Gb of

RAM. To reduce possible effects of non-determinism (e.g., rule matches, operating system processes),

we repeated each execution 10 times, restarting the tool, and taking the median of the times [38].

The raw data are available at: https://miso.es/tools/merlin-adaptive/runtimeEval.html.
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8.2.2 Results. Table 3 shows the adaptation time, in milliseconds, for each migration and model size

(more precisely, the medians of the migration execution time for the median of the 10 executions

of the 10 models of each size). This time includes loading and executing the transformation, as

well as the model augmentation/restriction steps (cf. Definition 4.17). The time does not include

the generation of the migration transformations, as our implementation pre-computes and caches

these transformations for each configuration transition of interest. Figure 23 shows the results

graphically.

Table 3. Adaptation time (in ms) for models of increasing size of the adaptive class diagrams language.

Model size
Migration 10 50 100 200 500 1 000
Analysis-Design 4.75 2.75 2 3 3.5 4

Design-Java 5.75 9 15.75 108 2 937 39 170.75

Design-C++ 3.5 3 5.75 14 175 1 225.5

Java-C++ 2.25 2 2.5 2.75 3.25 3.75

C++-Java 4 11.5 12.75 22.75 110 654.75
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Fig. 23. Results of the experiment for RQ2 (vertical axis in logarithmic scale).

Overall, with the exception of two cases, the times are below 1.3 seconds. The Analysis-Design

migration uses an empty transformation, making it one of the quickest. Both Design-Java and Design-

C++ are non-totally covered migrations (cf. Example 6.8), and require converting full associations

into references. However, Design-Java is significantly more costly as it needs to convert frommultiple

to single inheritance as well. For instance, Design-Java takes almost 3 seconds for models with

500 objects. Finally, both migrations between configurations Java and C++ are totally covered

transformations (cf. Example 6.8). The Java-C++ migration is among the quickest ones, as it only

involves a straightforward bridge between single and multiple inheritance. Instead, C++-Java is

more time-consuming because it must convert from multiple to single inheritance.

8.2.3 Answering RQ2: How efficient is the adaptation process at runtime? In our experiment with

models containing up to 1 000 objects, most adaptations are fluid, typically taking only a few

milliseconds. The only exception is the Design-Java migration, where models of 500 objects have

delays of almost 3 seconds, and those with 1 000 objects can take up to 39 seconds. This long

adaptation time is due to the complex transformation required to emulate multiple inheritance with
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interfaces and delegation. This makes it highly sensitive to the number of inheritance relationships

in the model. In our experiment, 25% of the classes were set to have inheritance. Reducing this to

15% yields median execution times of 24.5 seconds for models of size 1 000, while increasing it to

30% yields a median of 54.5 seconds. We argue that such large models are unlikely in this domain.

Contrary to standard model-to-model transformations, designed to bridge likely very different

languages, our migration transformations bridge variants of the same language, which typically

results in fast adaptations.

8.3 Threats to Validity
Regarding internal validity, for RQ1, we created adapters between language features when this

made sense. We cannot claim that it is not possible to define further adapters for some of the case

studies, however, that would not change substantially the assessment on the feasibility of defining

adaptive languages, or the gains to specify migrations w.r.t. a naive approach.

Regarding construct validity, RQ1.1 and RQ1.2 assess specification size reduction by measuring

the decrease in the number of migration transformations and rules. However, these RQs do not

evaluate effort reduction due to the use of adapters. For instance, our approach has the overhead of

devising suitable adapters and their diffs, though this can be seen as a way to organise rules into

migration transformations, which any naive approach should do manually in one way or another.

Another possible overhead is related to testing the correctness of migrations. While we provide

some analyses for adapters, we currently lack specific facilities for testing migrations within an

adaptive language. Thus, while we argue that effort is correlated with specification size, only a

user study can confirm this hypothesis. For RQ2, we used random models of increasing size, using

probability distributions for the number of objects to emulate realistic models. Some migrations –

notably Design-Java – are sensitive to model features like the number of inheritance relationships.

We reported its effect, but perhaps other model characteristics may influence the execution time

of other migrations. To reduce the effects of non-determinism in the execution times, we run

each migration on each model 10 times, taking the median. Also for RQ2, our implementation

pre-computes the migration transformations between the configurations of interest. It can be

argued that other implementations may generate those migrations dynamically, in the adaptive

editor. In any case, this generation time has very low impact in our experiment, with a median of

110 milliseconds.

With respect to external validity, themain threat for RQ1 is the limited number of case studies (six).

To minimise this threat, we selected representative modelling languages targeting both structural

system descriptions (class diagrams, relational schemas, multi-level modelling) and behaviour

definition (Petri nets, process modelling, state machines). A related threat is the limited meta-model

size of the case studies (between 7 and 16 classes). We argue that the main issue with specification

scalability is not the size of the meta-model, but the size of the variability space (i.e., the number of

language configurations) which in our evaluation ranges from 256 to 27 640. We reckon that larger

meta-models may provide room for more variability, and new features may require additional

adapters to bridge models of the new language variants. Still, in our case studies, the cost of building

an adapter was relatively cheap, since each adapter required a low number of rules (between 1.3

and 2.2 in average). We hypothesise that the reason is that these transformations adapt models

within the same language. Hence, they do not need to bridge wildly different languages, as might

be the case for standard model-to-model transformations. While we expect that this is also the

case for larger meta-models, stronger results would be obtained by more case studies, which we

will tackle in future work. Similarly, the main external threat for RQ2 is the limited number of

migrations measured (five). To mitigate this threat, we selected a variety of transformations (empty,

covered, and totally covered).
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9 RELATEDWORK
Next, we revise related works on techniques to deal with families of modelling languages (Sec-

tion 9.1), flexible modelling (Section 9.2), specification of adaptive systems (Section 9.3), mechanisms

for model migration and transformation (Section 9.4), and configuration diffs (Section 9.5).

9.1 Families of Modelling Languages
Several researchers have recognised the usefulness of defining product lines of modelling languages

to enable language reuse [14, 24, 30, 33, 55, 80]. They typically rely on feature models to represent

the language variability, and use approaches either compositional (building the language out of

components) [14, 24, 33] or annotative (building the language by removing elements) [30, 55, 80].

We opted for an annotative approach to facilitate defining adapters, since the rules are typed by

the 150MM. Adaptive languages go beyond LPLs because they consider adaptation triggers and

model migration across language variants.

Transformational approaches to model variability, like delta-modelling [19], specify variants of a

core model by a set of deltas that describe modifications on this core model [31]. Delta-modelling

has been mainly applied to specify model variants [31]. Even though it can also be used to specify

meta-model variants [56], to support a notion akin to adaptive languages, it should be complemented

with corresponding migrations at the model level, and triggers for language reconfiguration.

Multi-level modelling [27] can also be used to define language families as specialisations of a

generic language. In [23], we combined a product-line approach with multi-level modelling to

enable the customisation of generic languages, which can be specialised via instantiation. However,

that approach does not consider model migrations or adaptation triggers.

Close to our motivation, Hedy [32] is a Python-based gradual programming language for children

education. It has five increasing levels of sophistication, to be used as programming expertise is

gained. Similarly, adaptive languages may define several language configurations to be used in a

learning process. All variants of Hedy are compiled into Python, but there is no transfer of programs

between levels. Instead, adaptive languages support model migration across language variants.

Related to the previous work, van der Storm and Hermans [75] investigate the definition of

textual gradual languages. Instead of building a parser for each language variant, they propose the

gradual extension of grammars with (and deprecation of) syntactic constructs in consecutive levels,

and syntax internationalisation. Our adaptive languages go beyond, since we consider migration

between language versions (which do not need to be considered as a sequence of levels) and trigger

mechanisms for language reconfigurations.

9.2 Flexible Modelling
Flexible modelling approaches [29] advocate the benefits of flexibility in modelling. They allow

customising the conformance relationship, which enables the creation of modelling languages

bottom-up [45, 85] or dealing with inconsistent models [29]. This makes modelling languages

adaptable to different usages, from informal discussion to precise modelling aiming at code genera-

tion. This goal is in common with our notion of adaptive languages. However, flexible modelling

approaches do not provide an explicit definition of language variants that offer users different

primitive sets.

Kite [29] and Dandelion [49] are two flexible modelling tools that support the definition of

process models governing the relaxations of the conformance checks to be made on a model w.r.t.

its meta-model. While this can be seen as a light form of adaptation, these tools do not consider an

explicit definition of language variants, or the migration of models between variants.
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9.3 Modelling of Adaptive Languages and Systems
Self-adaptive systems [15, 42] modify their behaviour to achieve their goals. To do so, they exhibit a

MAPE-K control loop to monitor their state and context, analyse whether an adaptation is required,

choose the adaptation, and execute it. As described in Section 4.4, our triggered languages make this

loop explicit to govern the modelling language adaptation. However, even if sharing similarities,

many self-* features of autonomic computing, like self-healing or self-protection, do not apply in

our setting. Moreover, our setting involves one adaptive element (the language, with one control

loop) and not distributed networks of adaptive elements.

There is extensive work on modelling for adaptive systems [15, 16, 84]. The modelled systems fre-

quently perform their adaptations using a MAPE-K loop [42], which is explicit. From the modelling

perspective, research lines include the proposal of requirement languages able to cope with the

uncertainty of the adaptive systems [4, 81], or modelling languages to express adaptation strategies

and utility functions and analyse their consequences [17, 53]. Instead, in adaptive languages, the

system being adapted is the language itself. As Section 4.3 showed, our adaptation loop permits

designers of adaptive languages to include adaptation triggers based on knowledge about, e.g., the

modelling history, similar models, or language usage patterns.

Jouneaux et al. propose the notion of self-adaptive language [37] as a language that adapts its

run-time semantics depending on contextual conditions, to obtain some trade-off. For example, a

language that trades computation accuracy by execution time when the CPU load increases, or a

robotics language that trades robot displacement time by energy saving. Adaptivity is achieved by

incorporating feedback loops within the virtual machine [36], and prototype implementations are

evaluated using Truffle. The authors propose a research roadmap, arguing that adaptations could

also be supported at the language level by adding a language design feedback loop. They discuss

that such a language adaptation could be based on a fixed set of features (as we do), or on an open

set. The latter would allow adding new primitives to the language when discovering recurring

patterns on how it is used. They propose a reference framework, called L-MODA, that considers both

run-time and design-time feedback loops. Our notion of adaptive modelling language focuses on the

design-time feedback loop, offering concrete mechanisms, architecture and tooling for its realisation.

L-MODA envisions the utility of the design-time feedback loop for language evolution, such as

adding features to a language by inspecting its actual usage. Instead, our motivation is flexibility

of language usage. For this purpose, we provide a closed set of variants (with their adaptation

and migration mechanisms) adaptable to the language context of use (user background, device,

modelling aim, etc.). Adaptation at run-time is complementary to our design-time language/model

adaptation, and uses entirely different techniques and technologies. We plan to explore semantic

variability of modelling languages in future work, as well as open syntactic variability.

Metamorphic languages [1] are a proposal to support different shapes of a DSL, like internal,

external, or using fluent APIs. Instead, our adaptive languages enable language variants and

adaptation among these. We plan to study adapting the concrete syntax in future work.

9.4 Model Migration and Model Transformation
A key aspect of adaptive languages is the need to build migration transformations across variants.

Some dedicated transformation languages exist to facilitate migration, e.g., exploiting implicit

copying mechanisms [59, 60]. We emulate this by using the 150MM to type the models. Moreover,

while migration languages consider one migration between two meta-models, adaptive languages

need to consider migrations between a large set of variants.

Modifying a meta-model can cause its associated artefacts (models, transformations, code gen-

erators, editors) become obsolete and stop working [61]. To alleviate this problem, techniques to
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semi-automatically co-evolve those artefacts have been proposed, mainly for the adaptation of

models after meta-model changes [18]. For example, Cicchetti et al. [18] produce model migration

transformations out of a meta-model and its evolved version. Our setting is more complex as it

involves many language variants. Thus, we propose the manual definition of adapters, and the

automated composition of migration transformations for specific source and target meta-models.

Model transformation product lines [25] equip a given LPL with a product line of in-place

transformations, which are built out of transformation fragments depending on PCs. Our migration

problem is more complex as it involves source and target meta-models, and hence the variability is

not only in the transformation source but also in the target.

Transformation approaches have also been applied to manipulate models with variability [63].

In such setting, the meta-model is fixed, and the model contains variability. Here, we deal with

the converse problem: the meta-model has variability, and we seek migrations between models.

Variability rules [70] have been proposed as a compact way to model similar rules. Instead, our

rules are standard, but transformations are composed by selecting appropriate rules from adapters.

Our mechanisms for selecting and composing adapters build suitable transformations between

two configurations. Automated chaining of transformations has been studied in [9, 10] for model-

to-model transformations. While they use meta-model coverage as criterion for composing trans-

formations, we use diffs to select the compatible adapters included in the transformations.

9.5 Diffs of Feature Model Configurations
Related to our approach to describe changes between feature configurations (diffs), in [79], the

problem of moving between two configurations is formalised as a SAT problem. Differencing of

feature models has been widely studied as well [2, 73], including the definition of consistency-

preserving configuration operators for efficient product line configuration [34]. However, we are

not aware of works dealing with diffs of configurations and their composition.

10 CONCLUSIONS AND FUTUREWORK
This paper has introduced the concept of adaptive modelling language, which comprises a family of

language variants and mechanisms for reconfiguring the language and its instance models across

variants. Adaptive languages enable a better fit to the user expertise, modelling process, or IDE. We

have presented tool support and an evaluation on six case studies, showing the feasibility of the

approach and its advantages w.r.t. specifying the migrations between language variants explicitly.

This paper has focused on the abstract syntax of languages, but the concrete syntax could be

adapted as well. Just like web pages adapt to the client – loading less content, special menus or

smaller images in mobile devices – the concrete syntax of a language should be adaptable. This

goes beyond to having graphical syntaxes with different levels of detail, but the adaptation of the

concrete and abstract syntax should be coordinated. Moreover, adaptive languages may exhibit

syntaxes of different nature, like graphical, textual, tabular or conversational [54].

An important ingredient of adaptive languages is the adaptation triggering mechanism. In

this respect, we plan to contribute a library of useful reconfiguration triggers that consider, e.g.,

recurring modelling errors, language usage, or the detection of patterns. We would also like to

experiment with the application of adaptive languages with implicit triggers in practice.

Our evaluation suggests that it is technically feasible to build adaptive languages with many

configurations. However, we identify some opportunities for enhancement. First, regarding expres-

siveness, our adapter definition language could be extended to specify overriding relations between

adapters diffs, in the style of [25], to indicate that a more general diff overrides a more specific diff,

or vice versa. Second, regarding analysability, it would be interesting to identify the adaptations

that lead to information loss (e.g., when moving to a class diagram language variant without
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cardinalities). Likewise, it is also worth exploring the combination of operational adapters (e.g.,

based on rules) and declarative adapters (e.g., based on OCL) which might be used in a bidirectional

way. Finally, we would like to investigate testing techniques for adapters.
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A THEORY OF DIFFS, AND PROOFS
This appendix contains a theory of diffs as transformers of configurations, of diff composition, and

provides the proofs of the lemmas, propositions and theorems in the paper.

A.1 Diffs as transformers of configurations
Diffs can be used as transformers on configurations, as Definition A.1 shows.

Definition A.1 (Diff application). Let 𝐹𝑀 be a feature model, Δ = ⟨𝛿 = ⟨𝐹+−, 𝐹 −+⟩, 𝐶 = ⟨𝐹++, 𝐹 −−⟩⟩
be a wff diff, and 𝜌 ∈ 𝐶𝐹𝐺 (𝐹𝑀) be a configuration of 𝐹𝑀 with 𝐹+ and 𝐹 − its sets of selected and

unselected features. Diff Δ is applicable on 𝜌 , written 𝜌 |= Δ, if:

(1) the diff changes are applicable: (𝐹+− ⊆ 𝐹+) ∧ (𝐹 −+ ⊆ 𝐹 −)
(2) the diff context is satisfied: (𝐹++ ⊆ 𝐹+) ∧ (𝐹 −− ⊆ 𝐹 −)
(3) the post-state is consistent: Ψ[𝑡𝑟𝑢𝑒/((𝐹+ \ 𝐹+−) ∪ 𝐹 −+), 𝑓 𝑎𝑙𝑠𝑒/((𝐹 − \ 𝐹 −+) ∪ 𝐹+−)] = 𝑡𝑟𝑢𝑒

Given a wff diff Δ, and a configuration 𝜌 ∈ 𝐶𝐹𝐺 (𝐹𝑀) s.t. 𝜌 |= Δ, applying Δ to 𝜌 , written Δ(𝜌),
yields configuration 𝜌 ′ = ⟨(𝐹+ \ 𝐹+−) ∪ 𝐹 −+, (𝐹 − \ 𝐹 −+) ∪ 𝐹+−⟩.

Condition (1) in Definition A.1 states that for a diff Δ to be applicable to a configuration 𝜌 ,

the selected features of the configuration should contain the features changing to false, and the

unselected features should contain those changing to true. Condition (2) requires the context of the

diff to be satisfied: the configuration should select the features within the positive context (𝐹++),
and unselect those within the negative context (𝐹 −−). Finally, condition (3) requires the result of

swapping the features in 𝐹+− from true to false, and those in 𝐹 −+ from false to true, to be consistent

with the feature model. This ensures that the result from applying Δ to the configuration is also a

configuration, as the following lemma captures.

Lemma A.2 (Diff application correctness). Given a configuration 𝜌 ∈ 𝐶𝐹𝐺 (𝐹𝑀) and a wff
diff Δ s.t. 𝜌 |= Δ, then Δ(𝜌) ∈ 𝐶𝐹𝐺 (𝐹𝑀).

Proof. Trivially by condition (3) in Definition A.1, which states exactly the condition for Δ(𝜌)
to be a configuration of 𝐹𝑀 (cf. Definition 3.15). □

As an observation, the wff conditions for diffs in Definition 4.3 are no substitute for condition (3)

in Definition A.1. Instead, a diff whose pre-state or post-state is not wff is never applicable. This is

captured by the next proposition.

Proposition A.3 (non-wff diffs are not applicable). Given a feature model 𝐹𝑀 and a non-wff
diff Δ, then �𝜌 ∈ 𝐶𝐹𝐺 (𝐹𝑀) s.t. 𝜌 |= Δ.

Proof. Let us assume Δ’s pre-state is not wff. Then, according to Definition 4.3, Ψ[𝑡𝑟𝑢𝑒/(𝐹+− ∪
𝐹++), 𝑓 𝑎𝑙𝑠𝑒/(𝐹 −+∪𝐹 −−)] = 𝑓 𝑎𝑙𝑠𝑒 . But this means that there cannot be a configuration 𝜌 = ⟨𝐹+, 𝐹 −⟩
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that satisfies conditions (1) and (2) in Definition A.1, since if 𝐹+− ∪ 𝐹++ ⊆ 𝐹+ and 𝐹 −+ ∪ 𝐹 −− ⊆ 𝐹 − ,
then Ψ[𝑡𝑟𝑢𝑒/𝐹+, 𝑓 𝑎𝑙𝑠𝑒/𝐹 −] = 𝑓 𝑎𝑙𝑠𝑒 .
Now, let us assume Δ’s post-state is not wff. Then, according to Definition 4.3, Ψ[𝑡𝑟𝑢𝑒/(𝐹 −+ ∪

𝐹++), 𝑓 𝑎𝑙𝑠𝑒/(𝐹+− ∪ 𝐹 −−)] = 𝑓 𝑎𝑙𝑠𝑒 . However, given any 𝜌 ∈ 𝐶𝐹𝐺 (𝐹𝑀), the resulting configuration

Δ(𝜌) = ⟨(𝐹+ \ 𝐹+−) ∪ 𝐹 −+, (𝐹 − \ 𝐹 −+) ∪ 𝐹+−⟩ cannot satisfy condition (3) in Definition A.1. This is

so as 𝐹 −+ ∪ 𝐹++ ⊆ (𝐹+ \ 𝐹+−) ∪ 𝐹 −+ (since according to condition (2) in Definition A.1, 𝐹++ ⊆ 𝐹+;
and by Definition 4.1, 𝐹++ ∩ 𝐹+− = ∅) and 𝐹+− ∪ 𝐹 −− ⊆ (𝐹 − \ 𝐹 −+) ∪ 𝐹+− (since according to

condition (2) in Definition A.1, 𝐹 −− ⊆ 𝐹 − ; and by Definition 4.1, 𝐹 −− ∩ 𝐹 −+ = ∅). Therefore,
Ψ[𝑡𝑟𝑢𝑒/((𝐹+ \ 𝐹+−) ∪ 𝐹 −+), 𝑓 𝑎𝑙𝑠𝑒/((𝐹 − \ 𝐹 −+) ∪ 𝐹+−)] = 𝑓 𝑎𝑙𝑠𝑒 . □

Lemma A.4 (Configuration diffs are wff). Given 𝜌𝑖 , 𝜌 𝑗 ∈ 𝐶𝐹𝐺 (𝐹𝑀), their configuration diff
Δ𝑖 𝑗 , constructed as in Definition 4.5, is wff w.r.t. 𝐹𝑀 .

Proof. The pre-state (cf. Definition 4.3) is wff since Ψ is evaluated substituting a subset of 𝐹+𝑖 (i.e.,

(𝐹+𝑖 ∩𝐹 −𝑗 )∪(𝐹+𝑖 ∩𝐹+𝑗 )) by true, and a subset of 𝐹 −𝑖 ((𝐹 −𝑖 ∩𝐹+𝑗 )∪(𝐹 −𝑖 ∩𝐹 −𝑗 )) by false. This cannot yield false

because Ψ yields true when substituting the complete sets 𝐹+𝑖 and 𝐹 −𝑖 by true and false, respectively.

Similarly, the post-state is wff since Ψ is evaluated substituting (𝐹 −𝑖 ∩ 𝐹+𝑗 ) ∪ (𝐹+𝑖 ∩ 𝐹+𝑗 ) ⊆ 𝐹+𝑗 by true,

and (𝐹+𝑖 ∩ 𝐹 −𝑗 ) ∪ (𝐹 −𝑖 ∩ 𝐹 −𝑗 ) ⊆ 𝐹 −𝑗 by false, which cannot yield false. □

Configuration diffs are not only required to be wff, but they must also agree with the semantics

of diff application (cf. Definition A.1). This way, any configuration diff Δ𝑖 𝑗 must be applicable to 𝜌𝑖 ,

resulting in 𝜌 𝑗 , as the next lemma describes.

Lemma A.5 (Application of configuration diffs). Given 𝜌𝑖 , 𝜌 𝑗 ∈ 𝐶𝐹𝐺 (𝐹𝑀), then 𝜌𝑖 |= Δ𝑖 𝑗
and Δ𝑖 𝑗 (𝜌𝑖 ) = 𝜌 𝑗 .

Proof. We start checking that 𝜌𝑖 = ⟨𝐹+𝑖 , 𝐹 −𝑖 ⟩ |= Δ𝑖 𝑗 = ⟨𝛿𝑖 𝑗 = ⟨𝐹+𝑖 ∩ 𝐹 −𝑗 , 𝐹 −𝑖 ∩ 𝐹+𝑗 ⟩,𝐶𝑖 𝑗 = ⟨𝐹+𝑖 ∩
𝐹+𝑗 , 𝐹

−
𝑖 ∩ 𝐹 −𝑗 ⟩⟩ (cf. Definition A.1).

Conditions (1) and (2) of Definition A.1 are immediate, since we just need to show that (𝐹+𝑖 ∩𝐹 −𝑗 ) ⊆
𝐹+𝑖 and (𝐹 −𝑖 ∩ 𝐹+𝑗 ) ⊆ 𝐹 −𝑖 (for condition 1), and (𝐹+𝑖 ∩ 𝐹+𝑗 ) ⊆ 𝐹+𝑖 and (𝐹 −𝑖 ∩ 𝐹 −𝑗 ) ⊆ 𝐹 −𝑖 (for condition 2).

For condition (3) in Definition A.1, we use the fact that ⟨𝐹+𝑖 , 𝐹 −𝑖 ⟩ and ⟨𝐹+𝑗 , 𝐹 −𝑗 ⟩ are two partitions

of the set 𝐹 of features (cf. Figure 24). This means we can express 𝐹+𝑗 as (𝐹+𝑖 \𝐹 −𝑗 ) ∪ (𝐹 −𝑖 ∩𝐹+𝑗 ), which
can be rewritten into (𝐹+𝑖 \ 𝐹 −𝑗 ) ∪ 𝐹 −+ and then into (𝐹+𝑖 \ (𝐹+𝑖 ∩ 𝐹 −𝑗 )) ∪ 𝐹 −+ and (𝐹+𝑖 \ 𝐹+−) ∪ 𝐹 −+.

FFF

Fi
+ Fi

- Fj
+ Fj

-

(a) (b)

Fi
- \ Fj

+

Fi
+  Fj

-

Fi
+ \ Fj

-

Fi
- Fj

+

(c)

Fig. 24. Representation of (a) 𝜌𝑖 = ⟨𝐹+
𝑖
, 𝐹−
𝑖
⟩, and (b) 𝜌 𝑗 = ⟨𝐹+

𝑗
, 𝐹−
𝑗
⟩, as partitions of set 𝐹 . (c) Expressing

𝜌 𝑗 = ⟨𝐹+𝑗 , 𝐹
−
𝑗
⟩ in terms of the intersections of partitions (a) and (b).

Similarly, we can express 𝐹 −𝑗 as (𝐹 −𝑖 \ 𝐹+𝑗 ) ∪ (𝐹+𝑖 ∩ 𝐹 −𝑗 ), which then can be rewritten into

(𝐹 −𝑖 \ 𝐹+𝑗 ) ∪ 𝐹+− and then into (𝐹 −𝑖 \ (𝐹 −𝑖 ∩ 𝐹+𝑗 )) ∪ 𝐹+− and (𝐹 −𝑖 \ 𝐹 −+) ∪ 𝐹+− .
Since Ψ[𝑡𝑟𝑢𝑒/𝐹+𝑗 , 𝑓 𝑎𝑙𝑠𝑒/𝐹 −𝑗 ] = 𝑡𝑟𝑢𝑒 , we have that Ψ[𝑡𝑟𝑢𝑒/((𝐹+𝑖 \𝐹+−)∪𝐹 −+), 𝑓 𝑎𝑙𝑠𝑒/((𝐹 −𝑖 \𝐹 −+)∪

𝐹+−)] = 𝑡𝑟𝑢𝑒 , and so 𝜌𝑖 |= Δ𝑖 𝑗 . Moreover, we have already shown that 𝐹+𝑗 = (𝐹+𝑖 \ 𝐹+−) ∪ 𝐹 −+ and
𝐹 −𝑗 = (𝐹 −𝑖 \ 𝐹 −+) ∪ 𝐹+− , and therefore, Δ𝑖 𝑗 (𝜌𝑖 ) = 𝜌 𝑗 , as desired. □
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A.2 Lemma 5.4: Wff diff composition
Proof. To show that Δ1;Δ2 is a diff, according to Definition 4.1, we need to prove that 𝐹+−

12
=

(𝐹+−
1
\𝐹 −+

2
)∪(𝐹+−

2
\𝐹 −+

1
), 𝐹 −+

12
= (𝐹 −+

1
\𝐹+−

2
)∪(𝐹 −+

2
\𝐹+−

1
), 𝐹++

12
= (𝐹++

1
\𝐹+−

2
)∪(𝐹++

2
\𝐹 −+

1
)∪(𝐹+−

1
∩𝐹 −+

2
)

and 𝐹 −−
12

= (𝐹 −−
1
\ 𝐹 −+

2
) ∪ (𝐹 −−

2
\ 𝐹+−

1
) ∪ (𝐹 −+

1
∩ 𝐹+−

2
) are disjoint. We proceed by parts.

Taking 𝐹+−
12

, we have that (𝐹+−
1
\ 𝐹 −+

2
) is disjoint with (𝐹 −+

1
\ 𝐹+−

2
), (𝐹++

1
\ 𝐹+−

2
), (𝐹 −−

1
\ 𝐹 −+

2
) and

(𝐹 −+
1
∩ 𝐹+−

2
) because Δ1 is a diff, and its four sets are disjoint, and therefore subsets of these four

sets are disjoint. Then, we need to prove that (𝐹+−
1
\ 𝐹 −+

2
) is disjoint with (𝐹 −+

2
\ 𝐹+−

1
), (𝐹++

2
\ 𝐹 −+

1
),

(𝐹 −−
2
\ 𝐹+−

1
) and (𝐹+−

1
∩ 𝐹 −+

2
). In the first case, it is disjoint since (𝐹+−

1
\ 𝐹 −+

2
) ∩ 𝐹 −+

2
= ∅, and

therefore, (𝐹+−
1
\ 𝐹 −+

2
) ∩ (𝐹 −+

2
\ 𝐹+−

1
) = ∅. In the second case, by Definition 5.1, we have that

(𝐹 −−
1
∪ 𝐹+−

1
) ∩ (𝐹++

2
∪ 𝐹+−

2
) = ∅, and therefore, (𝐹+−

1
\ 𝐹 −+

2
) ∩ (𝐹++

2
\ 𝐹 −+

1
) = ∅ as requested. For the

third case, we have that 𝐹+−
1
∩ (𝐹 −−

2
\ 𝐹+−

1
) = ∅, and therefore, (𝐹+−

1
\ 𝐹 −+

2
) ∩ (𝐹 −−

2
\ 𝐹+−

1
) = ∅ as

requested. Finally, (𝐹+−
1
\ 𝐹 −+

2
) is disjoint with (𝐹+−

1
∩ 𝐹 −+

2
) by the definition of set subtraction.

The disjointness of 𝐹 −+
12

, 𝐹++
12

and 𝐹 −−
12

with the others can be proved similarly.

Proving that if equations (1) and (2) are satisfied, then Δ1;Δ2 is a wff diff, is immediate. This is so

as equations (1) and (2) are exactly the requirements for Δ1;Δ2 to be wff. □

A.3 Diff composition correctness
Lemma A.6 states that applying a composite diff, and each diff in sequence, yield the same result.

Lemma A.6 (Diff composition correctness). Given a feature model 𝐹𝑀 , a configuration 𝜌 ∈
𝐶𝐹𝐺 (𝐹𝑀), and two diffs Δ1, Δ2 s.t. wffComposable(Δ1,Δ2) and 𝜌 |= Δ1;Δ2, then, Δ1;Δ2 (𝜌) =

Δ2 (Δ1 (𝜌)).

Proof. On the one hand, we have that Δ2 (Δ1 (𝜌)) = ((𝐹+ \ 𝐹+−1 ) ∪ 𝐹 −+1 ) \ 𝐹+−2 ∪ 𝐹 −+2 , which is

equal to (𝐹+ \ 𝐹+−
1
) \ 𝐹+−

2
∪ (𝐹 −+

1
\ 𝐹+−

2
) ∪ 𝐹 −+

2
.

On the other hand, we have Δ1;Δ2 (𝜌) = 𝐹+\((𝐹+−1 \𝐹 −+2 )∪(𝐹+−2 \𝐹 −+1 ))∪(𝐹 −+1 \𝐹+−2 )∪(𝐹 −+2 \𝐹+−1 ),
which is equal to (𝐹+ \ (𝐹+−

1
\ 𝐹 −+

2
)) \ (𝐹+−

2
\ 𝐹 −+

1
) ∪ (𝐹 −+

1
\ 𝐹+−

2
) ∪ (𝐹 −+

2
\ 𝐹+−

1
).

The term (𝐹 −+
1
\ 𝐹+−

2
) is in both expressions. In the second one, we can express (𝐹+ \ (𝐹+−

1
\

𝐹 −+
2
)) \ (𝐹+−

2
\ 𝐹 −+

1
) as (𝐹+ \ 𝐹+−

1
) \ 𝐹+−

2
∪ (𝐹+ ∩ 𝐹 −+

2
∩ 𝐹+−

1
) ∪ ((𝐹+ \ 𝐹+−

1
) ∩ (𝐹+−

2
∩ 𝐹 −+

1
)). The

term (𝐹+ \ 𝐹+−
1
) \ 𝐹+−

2
is now common in both expressions.

Now, we only need to show that 𝐹 −+
2

(from the first expression) is equal to (𝐹+ ∩ 𝐹 −+
2
∩ 𝐹+−

1
) ∪

((𝐹+ \ 𝐹+−
1
) ∩ 𝐹+−

2
∩ 𝐹 −+

1
) ∪ (𝐹 −+

2
\ 𝐹+−

1
). We have that (𝐹+ \ 𝐹+−

1
) ∩ (𝐹+−

2
∩ 𝐹 −+

1
) = ∅, since 𝐹+ and

𝐹 −+
1

are disjoint. Since 𝐹+−
1
⊆ 𝐹+, we have that 𝐹+ ∩ 𝐹 −+

2
∩ 𝐹+−

1
= 𝐹 −+

2
∩ 𝐹+−

1
. Therefore, we have

𝐹 −+
2

= 𝐹 −+
2
∩ 𝐹+−

1
∪ (𝐹 −+

2
\ 𝐹+−

1
), as required. □

A.4 Lemma 5.10: Composing completers
Proof. We must show Δ𝑎 ;Δ𝑏 ⊆ Δ𝑠𝑡 . For the delta, we have 𝛿𝑎𝑏 = ⟨(𝐹+−𝑎 \ 𝐹 −+

𝑏
) ∪ (𝐹+−

𝑏
\

𝐹 −+𝑎 ), (𝐹 −+𝑎 \ 𝐹+−𝑏 ) ∪ (𝐹
−+
𝑏
\ 𝐹+−𝑎 )⟩. By the definition of completer, 𝛿𝑎𝑏 = ⟨(𝐹+−𝑎 \ 𝐹 −+𝑏 ) ∪ (𝐹

−+
𝑎 \

𝐹 −+𝑠𝑡 ) \ 𝐹 −+𝑎 , (𝐹 −+𝑎 \ (𝐹 −+𝑎 \ 𝐹 −+𝑠𝑡 )) ∪ (𝐹 −+𝑏 \ 𝐹
+−
𝑎 )⟩ = ⟨(𝐹+−𝑎 \ 𝐹 −+𝑏 ), (𝐹

−+
𝑎 ∩ 𝐹 −+𝑠𝑡 ) ∪ (𝐹 −+𝑏 \ 𝐹

+−
𝑎 )⟩. Since

𝐹+−𝑎 ⊆ 𝐹+−𝑠𝑡 and 𝐹 −+
𝑏
⊆ 𝐹 −+𝑠𝑡 , we have 𝐹+−𝑎 \ 𝐹 −+𝑏 ⊆ 𝐹 −+𝑠𝑡 and (𝐹 −+𝑎 ∩ 𝐹 −+𝑠𝑡 ) ∪ (𝐹 −+𝑏 \ 𝐹

+−
𝑎 ) ⊆ 𝐹 −+𝑠𝑡 , as

required.

For the context, we have𝐶𝑎𝑏 = ⟨(𝐹++𝑎 \ 𝐹+−𝑏 ) ∪ (𝐹
++
𝑏
\ 𝐹 −+𝑎 ) ∪ (𝐹+−𝑎 ∩ 𝐹 −+𝑏 ), (𝐹

−−
𝑎 \ 𝐹 −+

𝑏
) ∪ (𝐹 −−

𝑏
\

𝐹+−𝑎 ) ∪ (𝐹 −+𝑎 ∩ 𝐹+−𝑏 )⟩. We have 𝐹++
𝑎𝑏
⊆ 𝐹++𝑠𝑡 since (𝐹++𝑎 \ 𝐹+−𝑏 ) ⊆ 𝐹++𝑠𝑡 , (𝐹++𝑏 \ 𝐹

−+
𝑎 ) ⊆ 𝐹++𝑠𝑡 , and

(𝐹+−𝑎 ∩ 𝐹 −+𝑏 ) = ∅. Similarly, we have (𝐹 −−𝑎 \ 𝐹 −+
𝑏
) ⊆ 𝐹 −−𝑠𝑡 and (𝐹 −−

𝑏
\ 𝐹+−𝑎 ) ⊆ 𝐹 −−𝑠𝑡 . Since 𝐹 −+𝑎 ⊆ 𝐹 −𝑠 ,

and 𝐹+−
𝑏
⊆ 𝐹 −𝑡 , then 𝐹 −+𝑎 ∩ 𝐹+−𝑏 ⊆ 𝐹 −−𝑠𝑡 , and so, 𝐹++

𝑎𝑏
⊆ 𝐹 −−𝑠𝑡 as required. □
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A.5 Lemma 5.13: Composing context fixers
Proof. Since Δ®𝑎 and Δ𝑏 are inverse of each other, the diff Δ®𝑎 ;Δ𝑎 ;Δ𝑏 has the changes of Δ𝑎 ,

while Δ𝑏 fixes Δ𝑎’s unsatisfied context. We next prove the case of PositiveFixer, since the proof for
NegativeFixer is analogous.

First, we check that Δ®𝑎 and Δ𝑎 are composable according to Definition 5.1. For this, we need to

check that (𝐹 −−®𝑎 ∪ 𝐹+−®𝑎 ) ∩ (𝐹
++
𝑎 ∪ 𝐹+−𝑎 ) = ∅. This holds since 𝐹 −−®𝑎 = ∅, 𝐹+−®𝑎 = 𝐹 −+

𝑏
, 𝐹 −+
𝑏
∩ 𝐹++𝑎 = ∅

(since composable(Δ𝑎,Δ𝑏)), and 𝐹 −+𝑏 ∩ 𝐹
+−
𝑎 = ∅ (since predicate FixerApplicable requires the actions

of Δ𝑎 and Δ𝑏 to be disjoint). The proof of (𝐹++®𝑎 ∪ 𝐹
−+
®𝑎 ) ∩ (𝐹

−−
𝑎 ∪ 𝐹 −+𝑎 ) = ∅ (the second part of

Definition 5.1) is analogous.

Then, Δ®𝑎 ;Δ𝑎 = ⟨⟨(𝐹 −+
𝑏
\ 𝐹 −+𝑎 ) ∪ (𝐹+−𝑎 \ 𝐹+−𝑏 ), (𝐹

+−
𝑏
\ 𝐹+−𝑎 ) ∪ (𝐹 −+𝑎 \ 𝐹 −+𝑏 )⟩, ⟨(∅ \ 𝐹

+−
𝑎 ) ∪ (𝐹++𝑎 \

𝐹+−
𝑏
) ∪ (𝐹 −+

𝑏
∩ 𝐹 −+𝑎 ), (∅ \ 𝐹 −+𝑎 ) ∪ (𝐹 −−𝑎 \ 𝐹 −+

𝑏
) ∪ (𝐹+−

𝑏
∩ 𝐹+−𝑎 )⟩⟩. Simplifying, we have Δ®𝑎 ;Δ𝑎 =

⟨⟨𝐹 −+
𝑏
∪ 𝐹+−𝑎 , 𝐹+−

𝑏
∪ 𝐹 −+𝑎 ⟩, ⟨𝐹++𝑎 \ 𝐹+−𝑏 , 𝐹 −−𝑎 \ 𝐹 −+

𝑏
⟩⟩.

Then, Δ®𝑎 ;Δ𝑎 and Δ𝑏 are composable by Definition 5.1, which requires showing ((𝐹 −−𝑎 \ 𝐹 −+
𝑏
) ∪

(𝐹 −+
𝑏
∪ 𝐹+−𝑎 )) ∩ (𝐹++𝑏 ∪ 𝐹

+−
𝑏
) = ∅. By cases, we have that: (1) (𝐹 −−𝑎 \ 𝐹 −+

𝑏
) ∩ 𝐹++

𝑏
= ∅, since

composable(Δ𝑎,Δ𝑏); (2) (𝐹 −−𝑎 \ 𝐹 −+𝑏 ) ∩ 𝐹
+−
𝑏

= ∅ for the same reason; (3) (𝐹 −+
𝑏
∪ 𝐹+−𝑎 ) ∩ 𝐹++𝑏 = ∅ since

𝐹 −+
𝑏

and 𝐹++
𝑏

are disjoint by Definition 4.1, and 𝐹+−𝑎 ∩ 𝐹++𝑏 = ∅ since composable(Δ𝑎,Δ𝑏); and (4)

(𝐹 −+
𝑏
∪ 𝐹+−𝑎 ) ∩ 𝐹+−𝑏 = ∅ for the same reason. The proof for the 2

𝑛𝑑
part of Definition 5.1 is analogous.

Then, the composed diff Δ®𝑎 ;Δ𝑎 ;Δ𝑏 is ⟨⟨((𝐹 −+
𝑏
∪ 𝐹+−𝑎 ) \ 𝐹 −+𝑏 ) ∪ (𝐹

+−
𝑏
\ (𝐹+−

𝑏
∪ 𝐹 −+𝑎 )), ((𝐹+−𝑏 ∪

𝐹 −+𝑎 ) \ 𝐹+−𝑏 ) ∪ (𝐹
−+
𝑏
\ (𝐹 −+

𝑏
∪ 𝐹+−𝑎 ))⟩, ⟨(𝐹++𝑎 \ 𝐹+−𝑏 ) \ 𝐹

+−
𝑏
∪ (𝐹++

𝑏
\ (𝐹+−

𝑏
∪ 𝐹 −+𝑎 )) ∪ ((𝐹 −+𝑏 ∪ 𝐹

+−
𝑎 ) ∩

𝐹 −+
𝑏
), (𝐹 −−𝑎 \ 𝐹 −+

𝑏
) \ 𝐹 −+

𝑏
∪ (𝐹 −−

𝑏
\ (𝐹 −+

𝑏
∪ 𝐹+−𝑎 )) ∪ ((𝐹+−𝑏 ∪ 𝐹

−+
𝑎 ) ∩ 𝐹+−𝑏 )⟩⟩. Simplifying, we have

Δ®𝑎 ;Δ𝑎 ;Δ𝑏 = ⟨⟨𝐹+−𝑎 , 𝐹 −+𝑎 ⟩, ⟨(𝐹++𝑎 \ 𝐹+−𝑏 ) ∪ (𝐹
++
𝑏
\ 𝐹 −+𝑎 ) ∪ 𝐹 −+𝑏 , (𝐹 −−𝑎 \ 𝐹 −+

𝑏
) ∪ (𝐹 −−

𝑏
\ 𝐹+−𝑎 ) ∪ 𝐹+−𝑏 ⟩⟩.

It remains to show that Δ®𝑎 ;Δ𝑎 ;Δ𝑏 ⊆ Δ𝑠𝑡 . This is the case since, on the one hand, 𝐹+−𝑎 ⊆ 𝐹+−𝑠𝑡 and

𝐹 −+𝑎 ⊆ 𝐹 −+𝑠𝑡 because FixerApplicable(Δ𝑎,Δ𝑏,Δ𝑠𝑡 ). On the other hand, the context is also satisfied.

First, 𝐹++𝑎 \ 𝐹+−𝑏 ⊆ 𝐹++𝑠𝑡 . Since PositiveFixer(Δ𝑎,Δ𝑏,Δ𝑠𝑡 ), we have (𝐹++𝑎 \ 𝐹++𝑠𝑡 ) ⊆ 𝐹+−𝑏 ⊆ 𝐹 −−𝑠𝑡 . This

means that 𝐹+−
𝑏
∩ 𝐹++𝑠𝑡 = ∅, and so (𝐹++𝑎 \ 𝐹+−𝑏 ) = 𝐹

++
𝑎 ∩ 𝐹++𝑠𝑡 ⊆ 𝐹++𝑠𝑡 . For the positive context, we also

need to show 𝐹++
𝑏
\ 𝐹 −+𝑎 ⊆ 𝐹++𝑠𝑡 (which holds by predicate FixerApplicable), and 𝐹 −+

𝑏
⊆ 𝐹++𝑠𝑡 (which

holds by predicate PositiveFixer). Regarding the negative context, we have (𝐹 −−𝑎 \ 𝐹 −+
𝑏
) ⊆ 𝐹 −−𝑠𝑡

(which holds by predicate PositiveFixer, which requires 𝐹 −−𝑎 ⊆ 𝐹 −−𝑠𝑡 ), (𝐹 −−
𝑏
\ 𝐹+−𝑎 ) ⊆ 𝐹 −−𝑠𝑡 (since

𝐹 −−
𝑏
⊆ 𝐹 −−𝑠𝑡 by predicate FixerApplicable), and 𝐹+−

𝑏
⊆ 𝐹 −−𝑠𝑡 (by predicate PositiveFixer). □

A.6 Lemma 6.5: Migration compatibility
Proof. We deal with each of the three cases:

(1) Δ ⊆ Δ𝑠𝑡 =⇒ 𝑐𝑜𝑚𝑝𝑎𝑡Δ𝑠𝑡
(𝑎)

Given a rule 𝑡𝑟 of adapter 𝑎, by Definition 6.3 of 𝑐𝑜𝑚𝑝𝑎𝑡Δ (𝑡𝑟 ), we have src-compatΔ (𝐿 \𝑙 (𝐾)), and so
∀𝑥 ∈ (𝐿\𝑙 (𝐾)) ·Φ(𝑡𝑦𝑝𝑒 (𝑥)) = false∨Φ(𝑡𝑦𝑝𝑒 (𝑥)) [true/(𝐹+−∪𝐹++), false/ (𝐹 −+∪𝐹 −−)] = true. Since
Δ ⊆ Δ𝑠𝑡 we have 𝐹

𝑋 ⊆ 𝐹𝑋𝑠𝑡 for 𝑋 ∈ {+−,−+, ++,−−}. This means that (𝐹+− ∪ 𝐹++) ⊆ (𝐹+−𝑠𝑡 ∪ 𝐹++𝑠𝑡 )
and (𝐹 −+ ∪ 𝐹 −−) ⊆ (𝐹 −+𝑠𝑡 ∪ 𝐹 −−𝑠𝑡 ). Hence, given 𝑥 ∈ (𝐿 \ 𝑙 (𝐾)), either Φ(𝑡𝑦𝑝𝑒 (𝑥)) = false, or
else, substituting a larger set of features cannot change the valuation of Φ(𝑡𝑦𝑝𝑒 (𝑥)) [𝑡𝑟𝑢𝑒/(𝐹+−𝑠𝑡 ∪
𝐹++𝑠𝑡 ), 𝑓 𝑎𝑙𝑠𝑒/(𝐹 −+𝑠𝑡 ∪ 𝐹 −−𝑠𝑡 )] from true to false, and hence, src-compatΔ𝑠𝑡

(𝐿 \ 𝑙 (𝐾)). A similar reasoning

follows for tar-compatΔ (𝑅 \ 𝑟 (𝐾)), compatΔ (𝐾), and compatΔ (𝑁𝑖 ).
(2) Δ ⊑𝑝𝑟𝑒 Δ𝑠𝑡 ∧ ¬𝑐𝑟𝑒𝑎𝑡𝑒 (𝐹++ \ 𝐹++𝑠𝑡 , 𝐹 −− \ 𝐹 −−𝑠𝑡 , 𝑎) =⇒ 𝑐𝑜𝑚𝑝𝑎𝑡Δ𝑠𝑡

(𝑎)
Since Δ ⊑𝑝𝑟𝑒 Δ𝑠𝑡 , we have 𝐹

𝑋 ⊆ 𝐹𝑋𝑠𝑡 for 𝑋 ∈ {+−,−+}, 𝐹++ ⊆ 𝐹++𝑠𝑡 ∪ 𝐹+−𝑠𝑡 , and 𝐹 −− ⊆ 𝐹 −−𝑠𝑡 ∪ 𝐹 −+𝑠𝑡 .

Like in the previous case, this means (𝐹+− ∪ 𝐹++) ⊆ (𝐹+−𝑠𝑡 ∪ 𝐹++𝑠𝑡 ) and (𝐹 −+ ∪ 𝐹 −−) ⊆ (𝐹 −+𝑠𝑡 ∪ 𝐹 −−𝑠𝑡 ).
Hence, for any rule 𝑡𝑟 of 𝑎, we have src-compatΔ𝑠𝑡

(𝐿\𝑙 (𝐾)), src-compatΔ𝑠𝑡
(𝐾) and src-compatΔ𝑠𝑡

(𝑁𝑖 )
(for each NAC 𝑁𝑖 ). But this means that compatΔ𝑠𝑡

(𝐾) and compatΔ𝑠𝑡
(𝑁𝑖 ) (for each NAC 𝑁𝑖 ). Since

¬𝑐𝑟𝑒𝑎𝑡𝑒 (𝐹++\𝐹++𝑠𝑡 , 𝐹 −− \𝐹 −−𝑠𝑡 , 𝑎), then each element in 𝑅\𝑟 (𝐾) is not typed by 𝐹++\𝐹++𝑠𝑡 or 𝐹 −− \𝐹 −−𝑠𝑡 ,

hence tar-compatΔ𝑠𝑡
(𝑅 \ 𝑟 (𝐾)), and so 𝑐𝑜𝑚𝑝𝑎𝑡Δ𝑠𝑡

(𝑎) as required.
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(3) Δ ⊑𝑝𝑜𝑠𝑡 Δ𝑠𝑡 ∧ ¬𝑑𝑒𝑙𝑒𝑡𝑒 (𝐹++ \ 𝐹++𝑠𝑡 , 𝐹 −− \ 𝐹 −−𝑠𝑡 , 𝑎) =⇒ 𝑐𝑜𝑚𝑝𝑎𝑡Δ𝑠𝑡
(𝑎)

Since Δ ⊑𝑝𝑜𝑠𝑡 Δ𝑠𝑡 , we have 𝐹𝑋 ⊆ 𝐹𝑋𝑠𝑡 for 𝑋 ∈ {+−,−+}, 𝐹++ ⊆ 𝐹++𝑠𝑡 ∪ 𝐹 −+𝑠𝑡 and 𝐹 −− ⊆ 𝐹 −−𝑠𝑡 ∪ 𝐹+−𝑠𝑡 .

This means that (𝐹 −+ ∪ 𝐹++) ⊆ (𝐹 −+𝑠𝑡 ∪ 𝐹++𝑠𝑡 ) and (𝐹+− ∪ 𝐹 −−) ⊆ (𝐹+−𝑠𝑡 ∪ 𝐹 −−𝑠𝑡 ). Hence, for any rule

𝑡𝑟 of 𝑎, we have tar-compatΔ𝑠𝑡
(𝑅 \ 𝑟 (𝐾)), tar-compatΔ𝑠𝑡

(𝐾) and tar-compatΔ𝑠𝑡
(𝑁𝑖 ) (for each NAC

𝑁𝑖 ). But this also means that compatΔ (𝐾) and compatΔ (𝑁𝑖 ) (for each NAC 𝑁𝑖 ). Since ¬𝑑𝑒𝑙𝑒𝑡𝑒 (𝐹++ \
𝐹++𝑠𝑡 , 𝐹

−− \ 𝐹 −−𝑠𝑡 , 𝑎), then each element in 𝐿 \ 𝑙 (𝐾) is not typed by 𝐹++ \ 𝐹++𝑠𝑡 or 𝐹 −− \ 𝐹 −−𝑠𝑡 , and so,

src-compatΔ𝑠𝑡
(𝐿 \ 𝑙 (𝐾)), and therefore, 𝑐𝑜𝑚𝑝𝑎𝑡Δ𝑠𝑡

(𝑎) as required. □

A.7 Theorem 6.6: Extended migration compatibility
Proof. Given two configurations 𝜌𝑠 and 𝜌𝑡 , in a first step, Algorithm 2 selects adapters just like

in Definition 4.17. Therefore, by Lemma 6.5, those adapters are compatible with Δ𝑠𝑡 .
Then, the algorithm selects context fixers, which by Lemma 5.13, have a diff included in Δ𝑠𝑡 . By

Lemma 6.5, those adapters are compatible with Δ𝑠𝑡 . Similarly, the algorithm selects completers,

which by Lemma 5.10, have a diff included in Δ𝑠𝑡 , and therefore, they are compatible with Δ𝑠𝑡 .
Finally, the algorithm also selects soft completers, which are then concatenated with a context fixer.

By the properties of context fixers (Lemma 5.13), this yields adapters compatible with Δ𝑠𝑡 . □
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