
Highlights
Building Augmented Reality Games with argDSL
Rubén Campos-López,Esther Guerra,Juan de Lara

• We present the domain-specific language argDSL for augmented reality games.

• argDSL permits defining the domain, logic and virtual objects of the game.

• The games defined with argDSL are deployed on a server, and played on iOS clients.

• We showcase argDSL by creating four games, which gamers find simple and usable.

Building Augmented Reality Games with argDSL
Rubén Campos-López, Esther Guerra and Juan de Lara

Computer Science Department
Universidad Autónoma de Madrid, Madrid, Spain

A R T I C L E I N F O

Keywords:
Domain-Specific Languages
Model-Driven Engineering
Augmented Reality
Games

A B S T R A C T
Augmented Reality (AR) has become popular. It does not require advanced
technology, but only a mobile device with a camera to interact with virtual objects.
However, developing AR applications – especially games – is time-consuming and
requires in-depth knowledge of highly specialised technologies, and mathematical
concepts related to the graphics and physics of the virtual objects.

To address this problem, we propose the domain-specific language argDSL for
creating AR games. It allows customising the game logic, and the virtual objects’
domain, physics and representation. We provide an Eclipse editor to define AR
games using the language, and an iOS client to run the games. Our experiments
show the versatility of our proposal and the usability of the games.

Metadata

Nr. Code metadata description
C1 Current code version 1.0
C2 Permanent link to code/repository used for

this code version
• argDSL editor: https://github.com/

Superrub1997/ARGDSL
• iOS client AlteR gaming: https://

github.com/Superrub1997/ALTER-gaming
C3 Permanent link to Reproducible Capsule • Videos: https://alter-ar.github.io/

gaming.html
• App Store: https://apps.apple.com/us/

app/alter-gaming/id6453476416
C4 Legal Code License EPL-1.0 License
C5 Code versioning system used Git
C6 Software code languages, tools, and services

used
Eclipse IDE for Java Developers 2023-12, EMF
2.35.0, Java 11, Xtext 2.33.0, Xtend 2.33.0,
Acceleo 3.7.14, Swift 5, Xcode 15, ARKit 5

C7 Compilation requirements, operating environ-
ments and dependencies

• argDSL editor: Microsoft Windows 10 64-
bit or later

• iOS client AlteR gaming: iOS 14
C8 If available, link to developer documentation/-

manual
https://alter-ar.github.io/argdsl.html

C9 Support email for questions rubencampos.97@gmail.com

Table 1: Code metadata

rubencampos.97@gmail.com (R. Campos-López); Esther.Guerra@uam.es (E. Guerra); Juan.deLara@uam.es (J.d. Lara)
orcid(s):

Campos-López et al.: Preprint submitted to Elsevier Page 1 of 14

https://github.com/Superrub1997/ARGDSL
https://github.com/Superrub1997/ARGDSL
https://github.com/Superrub1997/ALTER-gaming
https://github.com/Superrub1997/ALTER-gaming
https://alter-ar.github.io/gaming.html
https://alter-ar.github.io/gaming.html
https://apps.apple.com/us/app/alter-gaming/id6453476416
https://apps.apple.com/us/app/alter-gaming/id6453476416
https://alter-ar.github.io/argdsl.html

Building Augmented Reality Games with argDSL

1. Motivation and significance
Augmented Reality (AR) [2] technologies enable the visualisation of virtual objects as part of the real

world. The increasing capabilities of mobile devices and the emergence of head-mounted widgets1 has enabled
the use of AR for all sorts of applications, from industrial settings to education, health and video games [11].

Real world

Real world
captured through
the camera

Virtual objects
(controlled via
gestures in device)

Figure 1: Example of AR game
played on a mobile device.

Unlike Virtual Reality (VR), AR is quite accessible as it only
requires widely used hardware (smartphones and tablets, with their
camera and sensors) to run this type of applications. Fig. 1 shows an
illustrative example of an AR game being played on a mobile device.
The camera of the device captures the real world and displays virtual
objects (a green plane and a ball) on top. The virtual objects can
be controlled via gestures in the device (e.g., the tilt of the plane is
controlled via the accelerometer). This way, the virtual ball will move
according to the plane inclination and gravity.

AR is becoming increasingly popular, achieving high commercial
success in entertainment and video games [16]. Prominent examples of
AR games include Pokemon GO and Pikmin Bloom (both by Niantic2)
and the large AR ecosystem by SnapChat3.

However, creating AR games with current approaches is complex,
as they require high development effort, deep technical expertise, and
knowledge of computer graphics and physics. To mitigate this problem,
we propose a Domain-Specific Language (DSL) to create AR games,
called argDSL (Augmented Reality Games DSL) [9]. This is a declarative, textual DSL that allows
customising all aspects of an AR game, including the domain elements, their graphical representation,
their behaviour and the game logic. The goal of argDSL is to avoid the need of programming or the use
of complex AR frameworks, lowering the entry barrier to AR game development. Currently, we focus on
physically realistic skill games (e.g., labyrinths, balance games, shooters).

We have built an Eclipse editor that permits defining AR games with argDSL, and an iOS client able
to run the defined games on iPhones and iPads. We have evaluated the versatility of the approach based on
four case studies, and the usability of the created games by means of a user study, showing good results.

Overall, this paper contributes a novel DSL to define AR games declaratively. It does not require expertise

Game
Elements

AR
Representation

Game
Logic

Physics

ARGDSL

AR Game
model

«conforms to»

AR game
developer

gamers

interpret

code
generation

AR Game
description

Figure 2: Our approach.

in imperative programming or low-level frameworks, and allows for concise
game specifications that focus on the essence of the games and avoid the
need to write boilerplate, repetitive code across games. The defined games
are uploaded to a server and can be played immediately without requiring
compilation or deployment into the mobile device.

2. Software description
Fig. 2 shows a scheme of our approach, which is based on model-

driven [6] and language engineering [20] principles. Specifically, we have
created the DSL argDSL to allow AR game developers to define AR
games, namely: the elements used in the game, their graphical AR
representation, their physics, and the game logic. Following a model-
driven approach, argDSL specifications conform to a meta-model, and
abstract away technical low-level details of the game.

Given an AR game specified with argDSL, a code generator produces
a low-level representation of the game, which gets uploaded into a server.
This representation is then interpreted by an iOS client which runs on
iPads and iPhones, so that gamers can play the game on their devices.

1https://www.zdnet.com/article/best-ar-glasses/
2https://nianticlabs.com/
3https://ar.snap.com/

Campos-López et al.: Preprint submitted to Elsevier Page 2 of 14

https://www.zdnet.com/article/best-ar-glasses/
https://nianticlabs.com/
https://ar.snap.com/

Building Augmented Reality Games with argDSL

Next, we describe how to describe an AR game with argDSL: the game elements (Section 2.1), their
AR representation (Section 2.2), their physics (Section 2.3), and the game logics (Section 2.4). As a running
example, we will define an AR football game (introduced in [9]) to throw penalty kicks to the goal, without
touching any obstacles. The player will have 60 seconds to score as many goals as possible.

2.1. Game elements
To create an AR game with argDSL, the game developer needs to declare the elements of the game

together with their properties and relations (i.e., the domain of the game).
Fig. 3 shows the meta-model for this part of the DSL, which is inspired by the OMG’s MetaObject-Facility

(MOF) [13]. Each type of element of the game is described by a class, defined by its name, attributes, and
references. A class may be abstract and have superclasses. In addition, the derived attribute noGraphic signals
if class objects have no graphical representation, and hence they are kept invisible.

GameDomain

Class
name: String
abstract: boolean
/noGraphic: boolean

ReferenceAttribute

Feature

key: boolean
defaultValue: String

features*

classes*

String
Int
Double
Boolean
Video
Image

domain

«enum»

DataType

containment: boolean

name: String
min: int
max: int

name: String

target

opposite 0..1

type

supers *

Figure 3: Domain elements meta-model.

1 Game football {
2 elements {
3 ball {} /∗ No attributes ∗/
4 net {}
5 obstacle {}
6 floor {}
7 }
8 }

Listing 1: Definition of domain elements for the
AR football game.

Class attributes are described by their name, type, minimum and maximum cardinality, and default value.
In addition to typical data types (e.g., String, Int), we support images and videos, which get displayed on the
object’s representation. In turn, references have a name, cardinality, and point to a target class. References
can be compositions, and be paired with an opposite reference to define a bidirectional association.

Listing 1 shows the definition of the elements of the AR football game, using the textual syntax of
argDSL. There are four types of elements: ball, net, obstacle and floor. No element defines attributes, but
Section 4 will show examples of this.

2.2. AR representation
argDSL allows assigning an AR representation to each class and reference in the game domain (cf. Fig. 4).

Each class can be represented by one or several 3D objects, which can be swapped during the game. The 3D
objects are described by a name and the URL of a file containing the AR image in Apple SceneKit (SCN)
format. In addition, the following features of the AR objects can be configured (via class NodeConstraint):

• Overlapping: It controls if the AR object can overlap other objects.

• Size: It determines the initial, minimum and maximum size that the object can take during the game.
If their value is 1.0, then the default size of the SCN object is applied.

• Distance to original position: Attributes x-, y-, and zToOriginPos are used to restrict the distance
each object can be displaced from its original position (where -1.0 indicates no restriction).

• Rotation: It permits rotating the object horizontally.

• Planes: It allows configuring whether the AR object can be placed only on horizontal planes, only on
vertical planes, on any kind of plane, or anywhere.

Campos-López et al.: Preprint submitted to Elsevier Page 3 of 14

Building Augmented Reality Games with argDSL

Listing 2 declares the AR visualisation of the ball in our AR game, using the DSL textual syntax. The
ball is represented by one 3D object, can be placed on horizontal planes (i.e., atop the floor of the game) and
can overlap with the other elements.

«enum»

PlaneType
HORIZONTAL
VERTICAL

ARSyntax

nodes

*

ARNode

ARConnection 3DObject

name: String
url: URL

* versionsconnections

*

colour: Color
pattern: Pattern
src: Decorator
tar: Decorator

AR representation

«from domain»

Class

«from domain»

Attribute

«from domain mm»

Reference

«from domain»

GameDomain

represents

for

showAttributes

represents

*

NodeConstraint
overlapping: boolean = false
sizeInit: double = 1.0
sizeMin: double = 1.0
sizeMax: double = 1.0
xToOriginPos: double = -1.0
yToOriginPos: double = -1.0
zToOriginPos: double = -1.0
rotationX: double = 0

constraints

planes
0..2

Figure 4: AR representation meta-model.

1 Graphics {
2 element ball {
3 versions {
4 v1 = "http://url.com/ball.scn" /∗ just 1 AR represent. ∗/
5 }
6 constraints {
7 plane horizontal
8 overlaps
9 }

10 }
11 element net { ... }
12 ...
13 }

Listing 2: AR representation of elements for the
football game (excerpt).

2.3. Physics
In argDSL, each element class may have physical information on how its objects should behave and

move realistically during the game. Fig. 5 shows the meta-model for this part of the DSL, which is inspired
by the specifications of Apple’s ARKit4.

Physics

Physics
Model

PhysicBody
mass: double=1.0
charge: double=0
slidingFriction: double=0
rollingFriction: double=0
damping: double=0
angularDamping:double=0
restitution: double=0

Impacts

PhysicsClassSpec

Force
name: String
vectorX: double = 1.0
vectorY: double = 0
vectorZ: double = 0

«enum»

Gesture
Drag
Touch
Tilt

*

*

gesture

forces

elements

body

«enum»

BodyType
Static
Dynamic
Kynematic

b
o

d
yT

yp
e

cl
as

s

«from domain»

Class

contacts

co
lli

si
o

n
s

* co
n

ta
ct

s

*

Figure 5: Physics meta-model.

1 Physics {
2 element ball {
3 body dynamic {
4 mass 0.5
5 slidingFriction 0.5
6 rollingFriction 0.5
7 restitution 0.5
8 damping 0.1
9 angularDamping 0.1

10 }
11 forces {
12 kick : gesture drag
13 }
14 contacts {
15 collision floor obstacle net
16 contact floor obstacle net
17 }
18 }
19 element net { ... }
20 ...
21 }

Listing 3: Physics of the football game (excerpt).

Each element class has a physical body (PhysicBody) specifying its mass (in kilograms), electric charge (in
coulombs), sliding and rolling frictions, object resistance to air (damping), rotational friction (angularDamping),
and bouncing behaviour (restitution). In addition, it is possible to specify whether the movement of an element
class will be affected by collisions with other objects in the game, or by forces applied by the players to
impulse the element. Specifically, the physical body of an element class can be either Static (not affected by
collisions or forces except gravity), Dynamic (affected by both forces and collisions), or Kinematic (affected
by collisions but not by forces). Dynamic classes need to define the forces affecting them, by providing
the name of the force, its magnitude in a 3-dimensional vector, and the gesture in the user interface that
triggers the force. The latter can be either touching the screen (Touch), sliding on the screen (Drag), or
tilting the screen (Tilt). The magnitude of the force is mandatory when touching the screen, and optional

4https://developer.apple.com/documentation/realitykit/physicsbodycomponent

Campos-López et al.: Preprint submitted to Elsevier Page 4 of 14

https://developer.apple.com/documentation/realitykit/physicsbodycomponent

Building Augmented Reality Games with argDSL

when dragging and tilting. Finally, each class can specify the game elements with which it can collide or
have contact (class Impacts). Collisions affect the physic body of the element, but contacts do not. This
information can be used in the game logic, as we will explain in the next section.

Listing 3 defines the ball physics using the DSL textual syntax. The ball is set to be a dynamic object
with a mass of 0.5 kilograms and some friction forces. It also defines the force kick, which gets activated
when dragging on the object. In addition, the ball defines collisions and contacts with floor, obstacle and net.
Finally, the dynamic properties of the ball that are not explicitly provided take the default values specified
in the meta-model (cf. Fig. 5), like 0 for charge.

2.4. Game logic
The meta-model in Fig. 6 permits defining the game logic. A game (class GameLogic) can show a different

message to signal the start, win and lose situations. It also defines the starting and winning game conditions
(class ScoreSystem): initial score and number of lives of the player, and final score needed to win the game.

Gameloop

GameLogic

win: String[0..1]
lose: String[0..1]
start:String[0..1]

Action
name: String
action: BasicAction = None
scoreChange: int [0..1]
message: String [0..1]
timeTrigger: int [0..1]

Button
name: String

Score
System

start: int
finish: int
lives: int

Change

Object

name: String
posX: double
posY: double
posZ: double

Attribute
name: String
value: String

Collision

delete: boolean

Rule

«enum»

BasicAction
Start
Lose
Win
Restart
None

*

*

*

*

objInit

triggers

sceneChanges

attrInit

*

rules

score

«from domain»

Class

classbuttons

actions* triggers classA classB

triggers

obj: Object [0..1]

Delete
Object

Create
Object

Apply
Force

Change
Position

Change
AttributeVal

… … ……

Condition

Logical

Relational

…

…

condition

collisions*

Figure 6: Game logic meta-model (excerpt).

1 Gamelogic {
2 Display {
3 start "Game start"
4 win "You won!"
5 score {
6 start 0
7 finish ∗ /∗ no limit ∗/
8 lives 1
9 }

10 }
11 Actions {
12 gameover { /∗ Gameover after 60 secs ∗/
13 action win
14 timeEach 60 /∗ in seconds ∗/
15 }
16 goal {
17 score 1 /∗ increase score by 1 ∗/
18 message GOAL /∗ present a message ∗/
19 changes { /∗ delete the ball and create new one ∗/
20 do delete fb /∗ fb is a ball defined in line 37 ∗/
21 do create ball named fb at front
22 }
23 }
24 miss {
25 message MISS
26 changes {
27 do delete fb /∗ fb is a ball defined in line 37 ∗/
28 do create ball named fb at front
29 }
30 }
31 }
32 Collisions {
33 element ball to net −> goal
34 element ball to obstacle −> miss
35 }
36 Elements {
37 fb : ball [0.0, 1.0, 1.0]
38 goalNet : net [0.0, 0.0, 10.0]
39 grass : floor [0.0, 0.0, 0.0]
40 post1: obstacle [5.0, 0.0, 10.0]
41 post2: obstacle [−5.0, 0.0, 10.0]
42 limit: obstacle [0.0, 0.0, 12.0]
43 barrier: obstacle [0.0, 0.0, 5.0]
44 }
45 }

Listing 4: Definition of the football game logic.

The game logic is defined by means of actions (class Action). Each action performs one of four possible
basic actions (start the game from scratch, lose, win, restart the game saving the progress), or none of them.
In addition, it may display a message, change the score, self-trigger the action in a time interval of seconds, or
change the game objects (class Change) by creating or deleting objects, modifying attribute values, applying
forces, or changing object positions. The actions can be triggered when an object meets some conditions
(specified by class Rule), there is a collision (class Collision), or a button is pressed (class Button).

Campos-López et al.: Preprint submitted to Elsevier Page 5 of 14

Building Augmented Reality Games with argDSL

Finally, it is necessary to specify the object set-up when the game starts, indicating the objects’ name,
class, position, and attribute values. Objects may have associated rules, to be triggered when some attribute
condition is met. Conditions can be arithmetic or logical, and their operands can be constants, attribute
values, and an operation to count the number of objects of a class.

Listing 4 shows the logic for the running example in the DSL syntax. The Display block (lines 2–10)
corresponds to the GameLogic class. It defines messages for start and winning (as this game cannot be lost)
and the score system. Since finish is set to * (internally encoded as -1), the game has no upper score limit.

Figure 7: Resulting AR football game.

The game declares three actions: gameover (lines 12–15), goal
(lines 16–23) and miss (lines 24–30). Action gameover specifies that
the game is won after 60 seconds, which is controlled by a time
trigger (timeEach). Action goal increases the score by 1, presents a
message, and makes two changes on the game: it deletes the ball
(named fb) and creates another one in the front position of the
screen. The DSL also permits positioning objects at the back of the
screen, or in the default object position. Note that creating objects
requires providing their type (e.g., ball) and name (e.g., fb), and
having several objects of the same type is possible. The last action,
miss, presents a message, deletes the ball and creates another in
front. Next, lines 32–35 declare two collisions. The first one triggers
the goal action when the ball collides with the net. The second one
triggers the miss action when the ball collides with an obstacle.

Finally, lines 36–44 declare the initial object set-up. Each object
has a name (e.g., fb, goalNet), a domain class (e.g., ball, net), an
initial position in the 3D space, and optionally, attribute values.

Fig. 7 shows a screenshot of the defined game. The floor is
green and horizontal, the net at the back is white, and there is
a grey rectangular obstacle. A video of the game is available at
https: // youtu. be/ lUV3uTLBg2o .

3. Software architecture
Next, we overview the architecture of our approach (Section 3.1) and describe the tooling (Sections 3.2

and 3.3). Its source code is available at https: // github. com/ Superrub1997/ ARGDSL .

3.1. Architecture

Eclipse

AR game
developer

gamers

EMF

ARGDSL
Xtext
editor

Code
generator

Acceleo

Game Server

JSON
doc.

ALTER
GAMING

Figure 8: argDSL architecture.

Fig. 8 shows the architecture of our solution based on argDSL.
Game developers can define AR games using the argDSL editor,
built with Xtext [4]. The meta-models describing the abstract syn-
tax of the DSL are defined with the Eclipse Modeling Framework
(EMF) [8], the de-facto meta-modelling standard within Eclipse.
Developers can use the editor to define the elements of the game
textually, as illustrated in Listings 1– 4. The editor does not offer
specific support to design 3D objects though, but they can be
created with professional 3D editors (e.g., Blender, Maya, 3ds Max)
and then exported to SCN format for their use within the games.

After defining an AR game, developers can invoke a code generator that synthesises four JSON documents
with the game information. This generator was built using Acceleo5, a template-based language to emit text
from EMF models. The generated JSON documents conform to a custom JSON Schema6, and contain a
lower-level representation of the DSL models, used by the iOS client. The IDE offers an option to upload
these JSON documents into our game server, and store them in a MongoDB database. Then, an iOS client,
built atop the AlteR tool [10], is in charge of interpreting the JSON files, so that gamers can play the games.

5https://eclipse.dev/acceleo/
6https://json-schema.org/

Campos-López et al.: Preprint submitted to Elsevier Page 6 of 14

https://youtu.be/lUV3uTLBg2o
https://github.com/Superrub1997/ARGDSL
https://eclipse.dev/acceleo/
https://json-schema.org/

Building Augmented Reality Games with argDSL

Next, we provide details on the argDSL editor (Section 3.2) and the iOS client (cf. Section 3.3).

3.2. argDSL editor
Fig. 9 shows a screenshot of the argDSL editor integrated within Eclipse (label 1). To facilitate the

game definition, the editor features content assistance (activated by crtl-space, cf. label 2) and prompts
error indications when detecting missing or incorrect elements in the game. The left of the figure shows the
project explorer (label 3) containing some game files (with .arg extension). Right-clicking on an .arg file
displays a menu option to generate the JSON documents from the game definition.

Listing 5 shows an excerpt of one JSON document, generated from the physics definition of the running
example. While the mapping of the features of the physics body into JSON is direct (lines 4–7), the generator
produces bit masks for the collisions (lines 9–13) as the iOS client requires. These masks are calculated by
assigning each class a power of 2 (1, 2, 4, etc.), and adding the values of the classes involved in the collision.

Figure 9: Screenshot of argDSL editor.

1 {
2 "name": "ball",
3 "physicBody": {
4 "bodyType": "dynamic",
5 "mass": 0.5,
6 "charge": 0,
7 ...
8 },
9 "bitMasks": {

10 "category": 1, /∗ power of 2 for this class ∗/
11 "collision": 14, /∗ addition of all colliding classes: 2

↪ + 4 + 8 = 14 ∗/
12 "contactTest": 14
13 },
14 ...
15 }

Listing 5: Small excerpt of generated JSON
document for physics.

3.3. AlteR gaming
After generating the JSON documents, they can be uploaded to the game database. Then, our iOS client,

called AlteR gaming, is able to load the documents and run the defined games. This client is implemented
using Swift and ARKit, Apple’s library for AR development. When the client is started, it calls the game
server to retrieve all available AR games. Upon selecting a game, the client loads all the game data and
switches to the camera view, where it displays the game (cf. Figs. 1 and 7). Technically, the client was built
by extending the AlteR tool [10], an iOS client to create AR editors for modelling languages. AlteR gaming
extends the client with dynamic objects (with physics), an interpreter for the game logic, and the textual
DSL described in Section 2.

4. Illustrative examples
In addition to the running example, we have created three further AR games with different features, which

are described next. The complete game definitions can be found at https: // github. com/ Superrub1997/
ARGDSL/ tree/ master/ samples .

Campos-López et al.: Preprint submitted to Elsevier Page 7 of 14

https://github.com/Superrub1997/ARGDSL/tree/master/samples
https://github.com/Superrub1997/ARGDSL/tree/master/samples

Building Augmented Reality Games with argDSL

4.1. Balance
The goal of this game is to maintain a ball balanced on a platform, avoiding its collision with an obstacle.

The tilt of the platform is controlled with the accelerometer, and the goal is to keep the ball balanced for as
long as possible so that it does not go off the platform. Players earn points for every second they balance,
but colliding with the obstacle deducts points. After 10 seconds, the platform gets smaller, making it harder
to balance. If the ball falls off, the game is over and the score is displayed. Fig. 10 shows a screenshot of the
game, and an illustrative video is available at https: // www. youtube. com/ shorts/ GJhkWZz_ zIs .

Listing 6 shows the definition of the physics for the platform, which declares a force named balance
activated by tilting (line 12), and has contacts and collisions with the ball.

Figure 10: Balance game.

1 Physics {
2 element Floor
3 body {
4 mass 0.0
5 bodyType static
6 slidingFriction 0.5
7 restitution 0.5
8 damping 0.1
9 angularDamping 0.1

10 }
11 forces {
12 balance : gesture tilt
13 }
14 contacts {
15 collision Ball
16 contact Ball
17 }
18 }

Listing 6: Physics definition for the balance game
(excerpt).

4.2. Skeet
The aim of this game is to shoot at targets that are in the air, using a limited amount of time and

ammunition. Shooting is performed by clicking a button, and the player needs to orient and move the
mobile device to hit the targets. The game is won if all targets are hit within the time, and lost if there are
any targets left or the player runs out of ammunition. Fig. 11 shows a screenshot of the game, and a video
is available at https: // www. youtube. com/ shorts/ 8K4S_ yEpo0I .

Listing 7 shows the definition of the game’s domain. The element class named player declares the attribute
ammo (line 6) with initial value 6, which gets decreased on each firing. Moreover, the player is set to invisible,
since it is not graphically represented in the game.

Campos-López et al.: Preprint submitted to Elsevier Page 8 of 14

https://www.youtube.com/shorts/GJhkWZz_zIs
https://www.youtube.com/shorts/8K4S_yEpo0I

Building Augmented Reality Games with argDSL

Figure 11: Skeet game.

1 Game skeet {
2 elements {
3 bullet {}
4 target {}
5 player {
6 ammo : Int [1] = 6
7 } invisible
8 }
9 }

Listing 7: Domain definition for the skeet game.

4.3. Labyrinth
This game shows an AR labyrinth, as in Fig. 12, and the goal is to guide a ball into the green pivot

without hitting the red walls, using the direction buttons. If the ball hits a red wall, the game is lost. When
the ball reaches the pivot, the maze returns to the initial state, but reducing the platform and increasing the
size of the walls, making the game more difficult. The game is won when the pivot is reached three times. A
video illustrating the game is available at https: // www. youtube. com/ shorts/ e_ j3qINJviI .

Listing 8 shows a small excerpt of the game logic. The action named levelUp restarts the game (line 3),
displays a message (line 4), increases the score (line 5), scales down the platform (line 7), and enlarges the
walls (lines 8–11).

Figure 12: Labyrinth game.

1 Actions {
2 levelUp {
3 action restart
4 message LevelUP
5 score +1
6 changes {
7 do edit Plane named floor scale −0.1
8 do edit Wall named wall1 scale 0.3
9 do edit Wall named wall2 scale 0.3

10 do edit Wall named wall3 scale 0.3
11 do edit Wall named wall4 scale 0.3
12 }
13 }
14 ...
15 }

Listing 8: Game logic definition for the labyrinth
(excerpt).

4.4. Summary
Table 2 displays the size of the AR game specifications: number of relevant elements to define the game

domain, graphics, physics and logic, and number of lines of code (LoC) of the argDSL specifications. The
LoC are directly proportional to the number of classes in the domain, graphics and physics, and to the
number of game actions. Static and invisible objects require less LoC, as they lack physics and graphics

Campos-López et al.: Preprint submitted to Elsevier Page 9 of 14

https://www.youtube.com/shorts/e_j3qINJviI

Building Augmented Reality Games with argDSL

specifications. Overall, all the games were specified in less than 250 LoC, containing tens of objects. This
suggests a moderate effort, as games were defined in minutes. In comparison, coding a game (like the football
one) directly in Swift/ARKit would result in around 1 000 LoC (around 650 LoC for the game logic, 100
for the physics, and 250 for the elements’ graphical representation). This code, in addition to being one
order of magnitude longer than the corresponding argDSL specifications, involves low-level programming in
Swift/ARKit. Still, in future work, we plan to conduct a user study with developers to understand the real
effort, gain and acceptance of the DSL.

Game Domain Graphics Physics Logic LoC
Football 4 objs, 1 attr 4 objs 4 objs 3 actions, 6 elements 165
Balance 3 objs 3 objs 3 objs 3 actions, 3 elements 141
Skeet 3 objs, 1 attr 2 objs 2 objs 3 actions, 7 elements 113
Labyrinth 4 objs 4 objs 4 objs 8 actions, 7 elements 220

Table 2: Size of use cases, counting objects and LoC.

Regarding game functionality, note that the AR objects modelled with argDSL are not just background
images, but they can occlude and be occluded by real-world objects, and be placed on real and virtual
horizontal and vertical planes. Moreover, they are connected with reality, since the physical movement of
the device can affect the game, and some games may require the player to physically move in the real world
to get closer or away from AR objects. For example, the Skeet game requires the player to move around
the physical space to locate and shoot the balloons (Section 4.2), while the Balance game determines the
tilt angle of the horizontal plane using the accelerometer to detect changes in the speed or direction of the
device (Section 4.1).

5. Impact and evaluation
We have conducted a user study to understand the usability of the generated games. In this study,

participants first played the labyrinth game (Section 4.3) and then filled some questionnaires.

5.1. Experiment design
The experiment started with a 10-minute explanation of the tool. After that, participants freely played

the labyrinth game until passing the game or having three failed attempts. Then, they were asked to fill in
three questionnaires: one collecting demographic information (age and usage level of smartphones and AR
games); the System Usability Scale (SUS) questionnaire [7], which has become a standard for measuring
usability; and six questions designed by us on specific aspects of the game.

The SUS questionnaire comprises ten questions with five response options each, from strongly disagree to
strongly agree (a 5-point Likert scale). Five of these questions have a positive tone and their best score is 5,
and the other five have a negative tone and their best score is 1. The participants’ scores to the questions are
converted into a number between 0 and 100, which gives a measure of the system usability. The questionnaire
ends with open questions where participants can provide up to three positive and three negative aspects of
the tool, as well as suggestions for improvement.

Our game-specific questions also used a 5-point Likert scale, three with positive and three with negative
tone. The questions were: Q11: I think the game is easy to play, Q12: I had difficulties playing the game, Q13:
I think the buttons used in the game are adequate, Q14: I had problems using the buttons or understanding
how they work, Q15: The virtual objects used in the game are suitable, Q16: I missed some virtual objects
that could be in the game.

5.2. Experiment execution and results
We recruited ten participants and provided them with an iPad mini to play the game. Their average age

was 33, their average usage level of smartphones was 4.5 out of 5, and of AR games 1.6 out of 5.
The responses to the SUS questionnaire yield 87.25. According to [3], this qualifies the overall usability

of the studied game as excellent (>85.5). As for the game-specific questions, Table 3 shows the results. The
median of questions with positive tone (Q11, Q13, Q15) is 5, and the median of the negative ones is 1. This
indicates that the participants are generally satisfied with the game generated by argDSL. Questions Q13 and

Campos-López et al.: Preprint submitted to Elsevier Page 10 of 14

Building Augmented Reality Games with argDSL

Question Average Median Std Dev.
Q11 4.9 5 0.32
Q12 1.2 1 0.42
Q13 4.4 5 0.84
Q14 1.2 1 0.42
Q15 4.5 5 0.71
Q16 1.9 1 1.10

Table 3: Results on game-specific questions.

Q16 had the lowest scores, having both the AR game
interface as a common point. Therefore, participants found
the game simple, adequate and usable, but the interface
could be improved. These results are in line with the answers
to the open questions, where participants considered that
the game was easy to use, fun and intuitive, but they also
suggested improving the graphical appearance of the game
buttons and the virtual objects. Overall, the SUS results
yield an excellent usability for the game, and the specific questions suggest that participants were satisfied
with the game, though there is some room for improvement regarding the user interface.

5.3. Threats to validity and limitations
Regarding external validity (generalisability of the results), our user study involves a small number of

participants. Hence, to strengthen the generalisability of our findings, larger user studies should be conducted.
In addition, the user study considers one AR game, and so, the results might not be extrapolated to other
games. To mitigate this threat, we evaluated the AR game that we considered the most difficult to use
among the case studies (i.e., the labyrinth).

As Section 4 showed, argDSL permits generating a variety of games, however it also poses some limitation
to AR game development. The most evident is that games are mono-user (not collaborative), and there is
no native support for multi-level games (even if levels can be emulated, as we did in the labyrinth game
by periodically reducing the platform size). In this regard, if some feature is outside the reach of argDSL
and no workaround allows its emulation, the only option would be to extend argDSL, since we currently
have no facilities to export games (not even partially) to other platforms like Unity. We will address these
limitations in future work.

6. Related work
Many AR tools are used within the Unity7 environment to create video games. In addition, some can be

used in other development environments, like Xcode8 or Android Studio9. Next, we analyse the advantages,
limitations, and supported functionalities of some prominent ones [19].

Some approaches rely on libraries for general-purpose programming languages. ARCore10 provides AR
libraries for iOS and Android, and can be used in Unity, Android Studio and Unreal Engine. It is free and
supports 3D figures and motion recognition. However, despite the compatibility, it targets Google (Pixel) and
Samsung devices. ARKit11 is Apple’s AR library for iOS, and it can be used in Xcode and Unity. It has fewer
features than ARCode (e.g., it lacks 3D recognition), but it can recognise 2D objects and the illumination
level of the environment, optimising plane detection. Overall, both require low-level programming to create
games, and expertise in the language (e.g., Swift).

ARFoundation12 is the free AR tool for Unity, compatible with iOS, Android and Hololens. It is focused
on AR game development, and leverages on Unity’s development style by combining drag&drop, forms and
programming. The tool can then generate code for ARCode or ARKit. However, configuring and using
ARFoundation is complex and requires advanced knowledge of Unity.

Other frameworks are also integrated in Unity. Vuforia13 is a free tool more advanced than ARCore and
ARKit for environment recognition and 3D shapes. It is compatible with iOS, Android and Windows UWP
and supports the creation of figures. Lightship ARDK14 is a tool used by the company Niantic, integrated
into Unity and compatible with iOS and Android. It has similar features to Vuforia, but with some more
advanced ones such as virtual positioning and multiplayer sessions. It is free only in trial version. Finally,

7https://unity.com/
8https://developer.apple.com/xcode/
9https://developer.android.com/studio

10https://developers.google.com/ar
11https://developer.apple.com/augmented-reality/arkit/
12https://unity.com/unity/features/arfoundation
13https://developer.vuforia.com/
14https://lightship.dev/products/ardk/

Campos-López et al.: Preprint submitted to Elsevier Page 11 of 14

https://unity.com/
https://developer.apple.com/xcode/
https://developer.android.com/studio
https://developers.google.com/ar
https://developer.apple.com/augmented-reality/arkit/
https://unity.com/unity/features/arfoundation
https://developer.vuforia.com/
https://lightship.dev/products/ardk/

Building Augmented Reality Games with argDSL

Wikitude15 is a non-free tool for Google Glass, but also compatible with iOS and Android. It can be used
in Unity, but also has its own programming environment, and supports GPS location. Overall, the Unity
development cycle for AR can be tedious, since producing code for iOS requires another compilation on
Xcode. Instead, our approach is lightweight, and since our client interprets the games, it does not require
heavy compilation steps and the development cycle is more agile.

Many model-driven approaches and DSLs have been proposed to create specific types of games, like
tower-defense games, 2D platformers, card games [5], maze games, educational games, serious games [17, 18]
or role-playing games (cf. [22] for a survey). Technically, approaches either generate code or use an interpreter
that executes the game model. In the former case, the code can be for a low-level framework or a game engine,
and can cover part or the whole game. For example, RAIL [21] is a DSL for describing Non-Player Character
(NPC) behaviours, and generates code for the Torque 2D engine. Our approach uses an interpreted approach,
describes the whole game, targets AR, and focuses on realistic skill games (e.g., labyrinths, balance games,
shooters).

Specific to AR, in academy, ZeusAR [12] is a development process to create AR serious games based
on three phases: analysis, configuration and generation. While the process is programming language-
independent, it is focused on educational games, leaving the generation of AR games in general as future
work. Muff and Fill [14, 15] propose a visual modelling language for designing AR scenarios and AR workflows
graphically. The system targets generic AR applications (e.g., to display the assembly process of furniture
using visual markers on the physical elements), and is not specific to games. These would be challenging to
create, as defining the physics of the AR elements and the game logic likely requires a more specialised DSL.
Overall, we did not find any DSL specific to building dynamic AR games, as argDSL does.

7. Conclusions and future work
The demand for AR games has increased over time, raising the proposal of tools for their creation.

However, building AR games is time-consuming and requires deep expertise in AR technologies and
programming models. To attack this problem, we have proposed a DSL to define AR games. Our solution
allows describing the most relevant aspects of the game (domain, graphics, physics, logic), contributing
to democratise AR game development. We have proposed tool support based on Eclipse and iOS, and
demonstrated its effectiveness and usability through four cases studies and a user study.

As future work, we plan to extend our DSL to enable the use of the GPS, and the creation of multi-user
and multi-level games. In the latter case, the game may change its elements and their behaviour at each
level to provide more dynamism. We would like to provide a wizard to generate templates for different types
of games (e.g., labyrinth, shooting, etc.). We are also considering migrating the editor to the web (e.g., using
the web deployment option of Xtext) to provide a low-code web development environment for AR games.
We plan to improve the client’s graphical interface to make it more suitable for AR games (e.g., supporting
other screen widgets besides buttons) taking into account guidelines for AR user interfaces [1]. Finally, to
enhance compatibility, we will consider export facilities of the defined games into other platforms, like Unity.

Acknowledgements
Work funded by the Spanish MICINN with projects TED2021-129381B-C21 and PID2021-122270OB-I00.

References
[1] Aultman, A., Dowie, S., Hamid, N.A., 2018. Design heuristics for mobile augmented reality game user interfaces, in:

Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, ACM. pp. 1–5.
[2] Azuma, R.T., 1997. A survey of augmented reality. Presence Teleoperators Virtual Environ. 6, 355–385.
[3] Bangor, A., 2009. Determining what individual SUS scores mean: Adding an adjective rating scale. Journal of User

Experience 4, 114–123.
[4] Bettini, L., 2016. Implementing domain-specific languages with Xtext and Xtend. Packt Publishing.
[5] Borror, K., Rapos, E.J., 2021. MOLEGA: Modeling language for educational card games, in: DSM, ACM. pp. 1–10.
[6] Brambilla, M., Cabot, J., Wimmer, M., 2017. Model-driven software engineering in practice. Synthesis Lectures on

Software Engineering .
15https://www.wikitude.com/

Campos-López et al.: Preprint submitted to Elsevier Page 12 of 14

https://www.wikitude.com/

Building Augmented Reality Games with argDSL

[7] Brooke, J., 2013. SUS: A retrospective. J. of Usability Studies 8, 29–40.
[8] Budinsky, F., Merks, E., Paternostro, M., Steinberg, D., 2011. EMF: Eclipse Modeling Framework. Addison-Wesley.
[9] Campos-López, R., Guerra, E., de Lara, J., 2024. A domain-specific language for augmented reality games, in: ACM SAC

(posters), pp. 1–3.
[10] Campos-López, R., Guerra, E., de Lara, J., Colantoni, A., Garmendia, A., 2023. Model-driven engineering for augmented

reality. J. Object Technol. 22, 1–15.
[11] Ling, H., 2017. Augmented reality in reality. IEEE Multim. 24, 10–15.
[12] Marín-Vega, H., Alor-Hernández, G., Colombo-Mendoza, L.O., Bustos-López, M., Zataraín-Cabada, R., 2022. ZeusAR: A

process and an architecture to automate the development of augmented reality serious games. Multim. Tools Appl. 81,
2901–2935.

[13] MOF, 2016. http://www.omg.org/MOF.
[14] Muff, F., Fill, H., 2023. A domain-specific visual modeling language for augmented reality applications using WebXR, in:

ER, Springer. pp. 334–353.
[15] Muff, F., Fill, H., 2024. M2AR: A web-based modeling environment for the augmented reality workflow modeling language,

in: MODELS Companion, ACM.
[16] Nikolaidis, A., 2022. What is significant in modern augmented reality: A systematic analysis of existing reviews. J. Imaging

8, 145.
[17] Thillainathan, N., Hoffmann, H., Leimeister, J.M., 2013. Shack City - A serious game for apprentices in the field of

sanitation, heating and cooling (SHaC), in: GI-Jahrestagung, GI. pp. 2402–2413.
[18] Thillainathan, N., Leimeister, J.M., 2014. Educators as game developers – model-driven visual programming of serious

games, in: KICSS, Springer. pp. 335–349.
[19] Trivedi, N.K., Anand, A., Sagar, P., Batra, N., Noonia, A., Kumar, A., 2022. A systematic review of tools available in the

field of augmented reality. J. Cases Inf. Technol. 24, 1–9.
[20] Wąsowski, A., Berger, T., 2023. Domain-specific languages effective modeling, automation, and reuse. Springer

International Publishing.
[21] Zhu, M., Wang, A.I., 2017. RAIL: A domain-specific language for generating NPC behaviors in action/adventure game,

in: ACE, Springer. pp. 868–881.
[22] Zhu, M., Wang, A.I., 2020. Model-driven game development: A literature review. ACM Comput. Surv. 52, 123:1–123:32.

Rubén Campos-López is a researcher at the modelling and software engineering research lab of the
Universidad Autónoma de Madrid. His research interests include augmented reality, mobile development
and model-driven engineering. Contact him at rubencampos.97@gmail.com.

Esther Guerra is Full Professor at the Computer Science department of the Universidad Autónoma de
Madrid. Together with J. de Lara, she leads the modelling and software engineering research group
(http://miso.es). She is interested in model-driven engineering, flexible modelling, meta-modelling,
domain-specific languages and model transformation. Contact her at esther.guerra@uam.es, or visit http:
//www.ii.uam.es/~eguerra.

Juan de Lara is Full Professor at the Computer Science department of the Universidad Autónoma de
Madrid. Together with E. Guerra, he leads the modelling and software engineering research group. His
research interests are in model-driven engineering and automated software development. Contact him at
juan.delara@uam.es, or visit http://www.ii.uam.es/~jlara/.

Campos-López et al.: Preprint submitted to Elsevier Page 13 of 14

http://www.omg.org/MOF
http://miso.es
http://www.ii.uam.es/~eguerra
http://www.ii.uam.es/~eguerra
http://www.ii.uam.es/~jlara/

