
Software Development... For All?
Democratisation and Automation in Software Development

Juan de Lara[0000−0001−9425−6362]

Computer Science Department
Universidad Autónoma de Madrid (Spain)

Juan.deLara@uam.es

Abstract. Our world runs on software. It governs all major aspects of our life. It
is an enabler for research and innovation, and it is critical for business competitiv-
ity. Traditional software engineering techniques have achieved high effectiveness,
but still may fall short on delivering software at the accelerated pace and with the
increasing quality that future scenarios will require.
To attack this issue, some software paradigms raise the automation of software
development via higher levels of abstraction through domain-specific languages
(e.g., in model-driven engineering) and empowering non-professional developers
with the possibility to build their own software (e.g., in low-code development ap-
proaches). In a software-demanding world, this is an attractive possibility. How-
ever, to make this possible, methods are required to tweak languages to their
context of use (crucial given the diversity of backgrounds and purposes), and to
assist all types of developers (professionals or not) throughout the development
process.
This paper presents an overview of enabling techniques for this vision, supporting
the creation of families of domain-specific languages (to consider a wide range of
users and application scenarios); their automated adaptation to the usage context;
and the augmentation of low-code environments with assistants to guide devel-
opers (professionals or not) in the development process.

Keywords: Software Development · Domain-Specific Languages · Model-driven
Engineering · Product Lines · Conversational assistants.

1 Introduction

Software is essential in today’s world. It is an enabler for most aspects of our daily
lives, governing critical infrastructures like energy systems, transportation or commu-
nications, and playing a central role in many jobs and leisure activities. Quoting Bjarne
Stroustroup (the creator of C++) “our civilization runs on software” and “our civiliza-
tion is as reliant on software as it is on water”.

The central role that software plays today is raising its demand. Hence, professional
programmers and software firms need to produce software for all sorts of platforms
(web, mobile, desktop) and devices (including IoT devices, smartphones and tablets,
robotic systems). Therefore, this trend requires software to be produced in greater quan-
tities, faster, with higher quality. To achieve this goal, several strategies can be followed,

2 J. de Lara

like aiming for more automation, devising more powerful languages and frameworks (to
work at a higher level of abstraction) and proposing better tools.

However, professional developers are only one side of the coin, and we observe the
need for non-professional programmers to develop software as well. On the one hand,
this includes amateur programmers and hobbyists, who may use, e.g., spreadsheets [45]
and other end-user programming techniques [44] to serve their needs. On the other, pro-
fessionals in disciplines different from computer science that need to perform program-
ming and development tasks as part of their work. The latter types of programmers may
use low-code platforms [62,10]. However, the development languages offered by those
tools are fixed and rigid, with no adaptation to the user profile and needs. Hence, I ar-
gue that there is still the need to serve low-code users better, lowering the entry barrier
to software development, and making software development environments adaptable
to the user profile. I argue that, only by supporting non-professional programmers, we
may achieve a truly democratisation of programming.

This paper is based on the keynote talk given at the ICSOFT 2024 conference at
Dijon [38]. In the rest of it, I discuss automation techniques for both, increasing produc-
tivity (to develop software faster), and democratising software development (to enable
more people develop software). These techniques are founded on principles of model-
driven engineering (MDE) [6], low-code development [65], software product lines [59],
conversational assistants, generative artificial intelligence and large-language models
(LLMs) [72,42].

2 Automating software development: models and DSLs

Fig. 1 shows a highly simplified schema of a traditional software development pro-
cess [64]. For simplicity, the usual iterations, increments and the testing phases are
excluded.

Programming General Purpose

Programming Language (e.g., Java)

Specification

Mechanism

(Solution space)

Requirements (NL, notations)
Specification

Mechanism

(Problem space)

clients, users

analysts

SW designers,

architects

programmers

manual work

manual work

General Purpose

Design notation (e.g., UML)

Fig. 1: A traditional development process (highly simplified).

The schema illustrates that the process starts by exploring the problem space, typ-
ically a work done by analysts together with clients and potential users. In this phase,
notations for requirements engineering are used, like UML use cases [67], and also

Software Development... For All? 3

natural language descriptions [37]. Then, the project moves to the problem space, con-
structing a design that satisfies the requirements. This is normally done by software
designers and architects. In this stage, general-purpose design notations, like UML [67]
can be used to express and reason about the design. Finally, an implementation is built
based on the design. This is done by a team of programmers, using general-purpose
programming languages like Java or Python. In this traditional approach, the transition
from requirements to design, and from there to programming is done without automa-
tion.

Next, we will explore two ways to improve this process by exploiting the use of
models and modelling, which are collectively termed as Model-driven Engineering
(MDE) [6].

One possible way to increase the productivity of the previous process is to add au-
tomation in the transition from design to implementation (cf. Fig. 2). This is actually
the schema proposed by OMG’s Model-Driven Architecture (MDA) [47] in the early
2000’s. Among other OMG standards, this approach proposes the use of UML to de-
scribe the software design, in enough level of detail to be able to produce the final
code of the system (sometimes, through a series of transformations, from platform in-
dependent models, to platform specific ones, using platform description models). This
entails using languages to express executable semantics, like the Action Language for
Foundational UML (ALF) [2].

analysts

(less) programmers

code generator

Programming General Purpose

Programming Language (e.g., Java)

General Purpose

Design notation (UML)

Specification

Mechanism

(Solution space)

Requirements (NL, notations)
Specification

Mechanism

(Problem space)
manual work

clients, users

SW designers,

architects

Fig. 2: Schema of the Model-driven architecture (MDA).

While partly successful1, the MDA has some drawbacks. First, it uses UML as a
programming language (and certainly UML was not invented for that2). Even though it
is possible to define profiles [21], UML is a general-purpose modelling language, and
hence may not be the best option for some specialized domains. Given the generality of
UML, code generators need to be defined covering the language, and may become in-
flexible for certain needs. One can argue that, if all low-level details need to be specified
at the UML level, the effort that it requires may yield low gain with code generation.
Finally, the approach may not fit too well with agile development approaches.

1 See https://www.omg.org/mda/products_success.htm for descriptions of success stories
using MDA. 2 https://www.informit.com/articles/article.aspx?p=1405569

https://www.omg.org/mda/products_success.htm
https://www.informit.com/articles/article.aspx?p=1405569

4 J. de Lara

On reflection, it may be argued that the gap automated by MDA is much smaller than
the gap between the problem and the solution spaces, as Fig. 3(a) shows. Therefore, the
approach shown in Fig. 3(b) reduces the gap between the problem and the solution
spaces by the use of domain-specific languages (DSLs) [35,71]. These notations are
explicitly designed to solve problems in well-scoped domains. Hence, domain-specific
modelling typically reduces the cognitive gap between the problem and the solution.
This entails more powerful code generators able to bridge the gap between the DSL and
the implementation, but it is also possible to use interpreters.

Very large gap

(manually)

Smaller gap

(automatically)

General Purpose

Design notation (UML)

Requirements (NL, notations)

General Purpose

Programming Language (e.g., Java)

General Purpose

Programming Language (e.g., Java)

Domain-specific

notation

Make gap smaller

Automating

this bigger gap

yields bigger

gains

Requirements (NL, notations)

(a) (b)

Fig. 3: MDA (a) vs Domain-specific Modelling (b).

One advantage of the domain-specific modelling approach is that the DSLs could
be used by domain experts, who may not have a technical profile. Domain-specific
modelling works well for specific, well-understood domains [35,52], with high gain by
the automation provided. It allows modelling using the most appropriate language, at
the right level of abstraction [51]. However, it also requires high investment for building
the DSL-based infrastructure.

Building a DSL-based automation solution requires describing the DSL and its asso-
ciated services, like code generators, interpreters, optimizers, analysis tools, debugging
and testing tools, among others [68]. Normally, DSLs are built using an MDE approach
via models and automation [6]. A DSL is made of an abstract syntax, a concrete syntax
and semantics. The abstract syntax is typically described using a meta-model. This is
a structural model (frequently, a class diagram) that describes the primitives of the do-
main, their properties and relations. It may also include integrity constraints described
in languages like the Object Constraint Language (OCL) [55]. The concrete syntax –
normally either graphical [35] or textual [68] – describes how the models of the DSL
are represented. Finally, the semantics describe what the models mean [29], and may
be described via code generators (which may produce executable code) and interpreters
(which run the models). Additional services, e.g., for refactoring, optimising, analysing

Software Development... For All? 5

and transforming the models may be described as well, usually via model transforma-
tions [63].

Even if many success stories about MDE and domain-specific modelling approaches
have been published [14,52,35,31,9], they also have drawbacks. First, MDE solutions
are often very technical, hard to install and use [8]. They are frequently oriented to
developers, and many are deployed on Eclipse [20], with complex installation requiring
managing many dependencies. Solutions tend to be rigid, since features outside the DSL
may not be viable to incorporate into the system. Finally, evolving an MDE solution is
hard, since it requires evolving the DSLs and the co-evolution of all the associated
artefacts [61].

Next section analyses a modern evolution of MDE-based solutions, which aims at
solving some of these issues.

3 Low-code: old wine in new bottles?

Low code development platforms (LCDPs) [62,10] enable the definition of applications
with little or no need for coding. Being web platforms, they are cloud-first, with zero
installation cost, since they are usable from a web browser. This effectively frees the
users from complex software installation and hardware requirements. Moreover, they
often host the developed application also on the cloud, hence greatly facilitating the
deployment and operation of the defined applications.

LCDPs are oriented to so-called citizen developers, digital-savvy users with non-
technical profile, and limited or no programming experience. This way, LCDPs typi-
cally offer graphical DSLs, forms, and drag & drop interaction to facilitate the specifi-
cation of applications.

Many vendors offer LCDPs today, including Microsoft Power Apps [49], OutSys-
tems [56], Appian [5], Mendix [48], or Google AppSheet [23], among many others.
Regarding domains, numerous LCDPs for businesses have been proposed (e.g., Power
Apps, OutSystems, Mendix), but there are also LCDPs for other specific domains, like
IoT (e.g., Node-RED [54]), task-oriented chatbots (Google’s Dialogflow [25], Amazon
Lex [3], IBM’s watsonx [32]), or machine learning applications (e.g., Google’s Au-
toML [24], DataRobot [17], Akkio [1]), among many others.

Hence, LCDPs solve some of the issues with MDE solutions: zero-cost installation,
easy deployment of the generated applications, and focus on the end users (who may
not necessarily be professional programmers). However, many traditional vendors of
model-based solutions have just rebranded their products as low-code. Therefore, how
are low-code solutions different from MDE ones?. Inspired by [62], Fig. 4 aims at
highlighting the commonalities and differences in a spectrum from 1 to 5.

First, the aim of low-code solutions is reducing the effort in creating software, which
is very frequently the goal of MDE solutions, but not always. Then, we distinguish
between low-code solutions that are platforms (LCDPs), from those that are not.

Hence, in point 1, we have MDE solutions that do not aim at reducing the effort
needed to build an application, and therefore cannot be considered as low-code. These
include solutions that use models e.g., for simulation, analysis or reverse engineering. In
point 2, we find MDE solutions that aim at producing applications reducing the need to

6 J. de Lara

MDE Lowcode

1. MDE
& not

lowcode

2. MDE
&

lowcode

3. MDE
&

LCDP

4. LCDP
& not
MDE

5. lowcode
& not
MDE

lowcode

LCDPs

MDE

1 52 3 4
MDE

and lowcode
MDE

and LCDP
LCDP

Fig. 4: The MDE – low-code spectrum.

code, and consequently are considered low-code. However, this kind of solutions are not
platforms (i.e., are not accessible from a web browser, and require local installation).
In step 3 we have LCDPs, built using MDE technologies. In steps 4 and 5 we have
LCDPs that are not built using MDE technologies (i.e., they do not use artefacts that
can be recognised as models, or DSLs), and low-code solutions that are not platforms
and do not use MDE technologies. Thus, while we see a large overlap between MDE
and low-code (points 2 and 3), there are also differences (points 1, 4 and 5). The reader
is referred to [62] for a deeper discussion of commonalities and differences.

Generally, low-code development by means of platforms has the potential to broaden
the range of their users, since these tools are accessible just via a web browser. It must
be noted that not every user has the same background, the same knowledge and skills,
the same interests and objectives, or uses the same device. However, s/he interacts with
the platform in the same way, frequently as expected from the most expert user. Hence,
low-code (and MDE) solutions suffer from visual monolinguism [50], where a DSL
definition should fit all users and scenarios, which may not be reasonable. As a sim-
ile, learners of a foreign language do not talk as native speakers, and hence the other
recipient of a conversation needs to adapt. Therefore, for a true democratisation of pro-
gramming, I claim that DSLs – and their development environments – need to adapt
to the user profile and context of use. To pursue this idea, next section introduces DSL
families.

4 From languages to language families

This section introduces the need for language families (Section 4.1), and then reviews
how to build them effectively (Section 4.2). The section continues providing an overview
of the two main approaches to define language families: the annotative approach (Sec-
tion 4.3) and the modular approach (Section 4.4). Finally, a discussion on how to define
the concrete syntax and semantics of language families is provided in Section 4.5.

Software Development... For All? 7

4.1 Why language families?

Language families are sets of language variants, where each variant may be suitable for
different users, context of use, or modelling purposes. For example, instead of having
just one notation for UML class diagrams – which should fit all users and purposes –
we could have a language family, with variants to cater for:

– Different skills and expertise levels. Learners of UML could use a simple variant
(e.g., with no composition, navigation, or access control inscriptions), and then
move to more advanced variants as they learn. This idea is similar to the notion
of gradual language proposed in [30] where different versions of Python – from
simplified ones to the full language – are created to facilitate learning.

– Project stages/level of precision. Depending on the purpose of modelling, or the
project phase, the user may prefer a more flexible notation to facilitate discussion
with peers, or a more detailed and stricter notation for analysis or code genera-
tion [27].

– Context of use. Depending on the device the model is being accessed, the syntax
of the language could change e.g., to present more or less model details, or even to
show the model textually instead of graphically.

– Project roles. The language could present different information to the different
stakeholders depending on their role.

The literature reports many examples of language families, like those for software
architecture languages [46], Petri nets [53], access control languages [34] and symbolic
automata [16], among many others. In many cases, the families include variants with
different expressive power (e.g., black and white Petri nets vs. coloured Petri nets),
which provide a trade-off between modelling capacity and analysis power.

4.2 How to build language families effectively?

Without proper support, a naive approach to define a family of languages would require
the specification of each member of the family in isolation (i.e., a clone and own ap-
proach, using the terminology of product lines [19]). However, this may require high
effort, does not scale, is error prone, hardly maintainable, and incurs in replications that
one would like to avoid.

For example, in the case of the UML class diagrams example mentioned before,
assume we would like to produce variants making methods, interfaces and association
decorations (composition, aggregation, navigation and cardinalities) optional; to choose
between multiple, single and no inheritance; and between references or associations.
These 12 features lead to 288 language variants (some of them are shown in Fig. 5).

Hence, a more sensible approach – leading to a more compact language family spec-
ification – is to combine techniques from model-based software language engineering
[71,6] and product lines [59] to define:

– The variability of the language family. This involves defining the features supported
by the language family, and their dependencies.

8 J. de Lara

(1) (2) (288)

Class

name: String
isAbstract: boolean

*parents

Association
name: String

Role

name: String
min: int=0
max: int=-1

roles2

p
la

y
e

d
B

y *

Attibute
name: String
type: String

attributes*

Class

name: String
isAbstract: boolean

*parents

Association
name: String

Role
name: String
min: int=0
max: int=-1
composition: bool
navig: bool

roles2

p
la

y
e

d
B

y *

Attibute
name: String
type: String

attributes*

Class

name: String
isAbstract: boolean

*parents

Association
name: String

Role

name: String
min: int=0
max: int=-1

roles2

p
la

y
e

d
B

y *

Attibute
name: String
type: String

attributes*

Method
name: String

methods*…

Fig. 5: Three meta-model variants of the class diagrams family (out of the 288 possible
ones). (1) Variant with multiple inheritance and associations. (2) Variant with composi-
tion and navigation decorations in roles. (288) Variant with methods.

– The mapping of the language features to language elements. This way, whenever a
certain feature is selected, some elements in the language will be activated.

– Derivation mechanisms to obtain a particular language of the family out of a con-
figuration (a valid selection of features).

The variability is often defined via a feature model [33]. This is a diagrammatic
notation to express hierarchies of features, and their selection constraints. The latter is
achieved by indications of optionality in features, as well as the possibility to define or-
and alternative feature groups. The former requires selecting one or more features in
the group, the latter needs selecting exactly one feature among the set.

Fig. 6(a) shows a feature model for a family of class diagram languages (cf. [39]).
The model permits selecting Methods for classes: the type of Inheritance (single, multi-
ple, none); Interfaces; the style for associations (either full associations, or references);
and decorations for association roles (composition, aggregation, navigability and cardi-
nalities). Feature models may include boolean formulae that use features as variables,
to express further constraints (cross-tree constraints). In the example, if Interfaces is se-
lected, so should be Methods.

ClassDiagram

Methods

Classes

Inheritance

Single

Multi

No

Associations

Comp

Aggr Navig

Card

Interfaces

Style Decorations

Ref FullAssoc

Cross tree constraints:
(Interfaces Methods)

Legend

alternative
(exactly one)

or
(at least one)

mandatory optional

ClassDiagram
Classes
Methods
Inheritance
Single
Multi
No

Interfaces
Associations

Style
Ref

Decorations

Comp
Aggr
Navig
Card

FullAssoc

ClassDiagram
Classes
Methods
Inheritance
Single
Multi
No

Interfaces
Associations

Style
Ref

Decorations

Comp
Aggr
Navig
Card

FullAssoc

ClassDiagram
Classes
Methods
Inheritance
Single
Multi
No

Interfaces
Associations

Style
Ref

Decorations

Comp
Aggr
Navig
Card

FullAssoc

(a) (b)

[1] [2] [288]

Fig. 6: (a) Feature model for a family of class diagram languages. (b) Three configura-
tions corresponding to the three meta-model variants shown in Fig. 5.

Software Development... For All? 9

A configuration is a selection of features that is valid according to the feature model.
Fig. 6(b) depicts three configurations for the class diagram example, corresponding to
the meta-models in Fig. 5. Configuration 1 selects multiple inheritance, full associations
and cardinalities. The second one adds composition and navigation. The last configu-
ration selects methods, but not composition or aggregation. Altogether, the example
feature model accepts 288 configurations. Typically, the number of configurations of a
feature model is exponential with the number of features.

4.3 Language families: the annotative approach

A first approach to map language features to language elements is by using annotations.
Essentially, all meta-models of all language variants are superimposed [4], and then the
elements are tagged with the features they belong to [15]. Such superimposed meta-
model is commonly called a 150% meta-model [28]. The annotations on its elements
(classes, attributes, references) are called presence conditions (PCs), and are boolean
formula whose variables are the features of a feature model.

Fig. 7 shows a 150% meta-model for the class diagrams example. The PCs are rep-
resented in boldface, between square brackets. For example, the PC of class Association
is FullAssoc. This means that, when feature FullAssoc is selected, the class will be in-
cluded in the derived product. If a class lacks an explicit PC, then it is assumed to be
[true]. The figure makes the convention that the PC of the attributes is calculated by
conjoining their displayed PC with the PC of the owning class. This ensures that, in
the generated products, the attributes will always have an owner class (since, if the at-
tribute is selected, so must be the owner). In [28], other well-formedness conditions
regarding references and inheritance relations are discussed. Moreover, the work also
proposed methods to analyse instantiability properties of 150% meta-models with OCL
constraints.

NamedElement

name: String

methods

methods

2 roles

[Ref]

parents

[Multi]

[Single]

[Interfaces] realizes

[Methods]

Role

navig: boolean=true [Navig]
isComp: boolean=false [Comp]
isAggr: boolean=false [Aggr]
min: int=0 [Card]
max: int=-1 [Card]

playedBy

[Interfaces]
Interface

[Methods or Interfaces]
Method

Attribute

type: String[FullAssoc]
Association

Class

isAbstract: boolean

references
*

*

parent
0..1

*

*

*

attributes
*

Fig. 7: 150% meta-model for a class diagrams language family.

10 J. de Lara

The approach was realised on a tool called MERLIN, and available at: https://mi
so.es/tools/merlin/.

4.4 Language families: the modular approach

An alternative approach to the annotative approach is to split the family definition into
modules, and then use a composition mechanism to produce the members of the family
out of the selected features [40].

Fig. 8 shows an excerpt of the definition of the class diagrams family, using the
modular approach proposed in [40]. In that approach, a language product line is made
of a set of modules, each containing a meta-model fragment. For simplicity, the figure
displays only five modules of the family (Classes, Methods, Multi, Single and No).

Class
name: String
isAbstract: boolean

Attribute
name: String
type: String

*
attributes

Class

Method
name: String

methods * Class p
a

re
n

ts

* Class p
a

re
n

t
0..1

Class

… …Methods

Multi Single No

Classes

Fig. 8: Excerpt of a modular language product line for the class diagrams family.

A module may establish dependencies of different kinds (mandatory, optional, al-
ternative, or), to a parent module. For example, the Methods module has a dependency to
module Classes. The white circle at the top of module Methods indicates that it is optional
(whenever Classes is selected, Methods can be optionally selected). If a module M1 has
M as its dependency, then M1 is said to be its child. Modules can also include cross-tree
constraints (boolean formulae that use modules as variables), expressing module selec-
tion conditions for valid configurations. A language product line is a set of modules,
with their dependencies, and with a single top module with no dependencies.

Each element of a meta-model fragment within a module may define a mapping
to an element of the meta-model fragment of the module’s dependency. The figure de-
picts this mapping by equality of names. For example, class Class in module Methods is
mapped to the class with same name in module Classes.

A member of the language family is chosen by selecting a valid set of modules,
where the top always needs to be selected. If a module is selected, then its optional
children can be selected, all its mandatory children should be selected, one or more of
its or-children have to be selected, and exactly one of its alternative children need to
be selected. The meta-model of the member is derived by composing all meta-model
fragments of the selected modules, and merging all mapped elements. In [40] additional
well-formedness conditions, and mechanisms to analyse them, are discussed.

https://miso.es/tools/merlin/
https://miso.es/tools/merlin/

Software Development... For All? 11

The approach was realised on a tool called CAPONE, and available at: https:
//capone-pl.github.io/.

4.5 Language families: semantics and concrete syntax

The previous two subsections have dealt with the abstract syntax of the language family,
but a language needs to define its concrete syntax and semantics as well.

For the concrete syntax, in [22], language modules were extended with a model
fragment that specifies the graphical concrete syntax of the abstract syntax elements
introduced by the module. More specifically, the work uses Sirius’ odesign model frag-
ments, and defines composition mechanisms for both meta-model fragments, and Sirius
odesign model fragments. In practice, selecting a member of the language family gen-
erates a Sirius project with a customised graphical editor, synthesized according to the
selected language features.

For the semantics, in [40], language modules were extended with graph transforma-
tion rules and extension rules. The latter increase rules of the dependency module with
further elements (e.g., new elements to match, delete, create or forbid). A composition
mechanism was proposed to compose rules and extension rules of the modules in a con-
figuration. Hence, given a configuration, the end result is a meta-model that aggregates
the meta-model fragments of each selected module, and a transformation system with
rules resulting from composing the rules and extension rules of the selected modules.
Interestingly, given certain conditions – which can be checked statically at the product
line level –, it is possible to ensure behavioural consistency of all family members. This
means checking whether the behaviour of each language variant is consistent with the
behaviour of any “smaller” language variant. This implies that for any possible applica-
tion of a rule r’ of a language variant, which extends a base rule r in the smaller language
variant, there is a corresponding application of r in the smaller language variant (cf. [40]
for more details).

Finally, please note that other approaches exist to define transformational semantics
for product lines of languages, like [58] and [41] for 150% meta-models.

5 Beyond language families: Adaptive languages

Language product lines as described in the previous section enable the definition of the
abstract syntax, concrete syntax and semantics of a family of languages. Each member
of the family may be suitable for a given context of use, or modelling scenario. However,
those language product lines do not consider how or when to change from one language
variant to another one.

Adaptive languages [39] consider exactly that possibility. An adaptive language is
made of a language product line, plus trigger definitions (to account for when language
reconfigurations should occur), and migration adapters (to describe how models need
to be migrated from one language variant to another when a reconfiguration occurs).

Fig. 9 shows the working scheme of adaptive languages. The upper part of the fig-
ure displays the definition of an adaptive language. On the one hand, it contains a lan-
guage product line (label 1), as described in the previous section (more specifically, [39]

https://capone-pl.github.io/
https://capone-pl.github.io/

12 J. de Lara

uses an annotative approach, as in Section 4.3). On the other hand, it contains a set of
adapters to describe model migrations between language variants (label 2), and trigger
definitions (label 3) to describe conditions for reconfiguration.

Abstract
syntax

Language
product line

Variability
model

configures

Language
configuration A

Abstract
syntax A

Language
configuration B

Model

Modelling context

Language
user

«conforms to»

Adapter
definition

Trigger
definition

Adaptive Language Definition

from

typed by

A-to-B
reconfig

A-to-B
migration

run-time

config
A

«conforms to»

Modelling context

«config of» «config of»

conditions
for

«when»

Model’

Abstract
syntax B

config
B

«defined by»

triggers

to

Language
engineer

Language
reconfigurations

1 2

4

5
6

7

3
analysis

Fig. 9: Schema of adaptive modelling languages (adapted from [39]).

Please note that, given the potential high number of language variants within a fam-
ily (e.g., 288 in the case of the class diagrams example), it is not feasible to explicitly
define model migration transformations between each pair of variants (which would
yield 8256 transformations). Adapters [39] are a mechanism to make this definition
tractable. An adapter is a set of transformation rules, which work on the 150% meta-
model, and perform small migration tasks, associated to the change of just one, or a few
features in the language configuration. For example, we may define an adapter that han-
dles the change between multiple and single inheritance; and another adapter to cater
for the change between full associations and references. This way, whenever a language
reconfiguration is to be performed, the feature changes between the source and target
language configurations are collected. Then, the system selects the adapters whose spec-
ified feature changes are compatible (i.e., included) with the features changes between
language configurations. The selected adapters form the migration transformation, and
can be applied to the model of the source configuration to yield a model in the target
configuration (cf. [39] for more details).

Following with the scheme in Fig. 9, the language user builds models using the
current language configuration (labels 4 and 5). The trigger definition of the adaptive
language monitors the model and its context to check if a reconfiguration is needed.
Hence, a trigger definition may inspect the current model state, but also contextual
conditions, like the modelling history – including errors committed by the user –, the
(declared or inferred) level of expertise of the user, the language configuration used by

Software Development... For All? 13

similar models in a repository, the device being used for modelling, or even additional
information to indicate the modelling phase or desired level of flexibility. Once a trigger
holds (label 6), it produces a language reconfiguration. This means, that the current
language configuration needs to change, and the current model needs to be migrated. To
create a migration (label 7), adapters are selected as described in the previous paragraph.

This approach was realised in the MERLIN-A tool, available at https://miso.e
s/tools/merlin-adaptive/.

6 AI assistants: the two sides of the coin

The recent advances in generative artificial intelligence and LLMs [72] have triggered
the appearance of intelligent assistants for programming tasks, especially for coding.
Hence, both general-purpose LLMs – like those of the GPT family [7] (by OpenAI),
Llama [66] (by Meta) or Gemini [26] (by Google) – and LLMs optimised for coding
tasks – like Codex [12] (by OpenAI), Code Llama [60] (by Meta), or StarCoder [43] –
are used to assist in tasks like code generation from natural language, code autocom-
pletion, or error finding.

Next, Section 6.1 overviews the use of such technologies for professional program-
mers, and Section 6.2 presents perspectives on the use of assistants to support citizen
developers.

6.1 AI assistants for professional developers

Fig. 10 depicts the overall scheme of introducing AI code assistants in the development
process. The figure shows the use of assistants to produce code in a general-purpose
programming language, out of natural language. Please note that assistants can be used
for other code-related tasks (like writing test cases [69]). However, their usefulness for
design activities (like domain modelling) has currently proven to be very limited [11].

Programming General Purpose

Programming

Language (e.g., Java)

Specification

Mechanism

(Solution space)

Requirements (NL, notations)
Specification

Mechanism

(Problem space)

clients, users

analysts

SW designers,

architects

programmers

manual work

General Purpose

Design notation (e.g., UML)

code

NL

AI assistant

Fig. 10: AI assistants for professional developers.

https://miso.es/tools/merlin-adaptive/
https://miso.es/tools/merlin-adaptive/

14 J. de Lara

Using a code assistant can be done by prompting an LLM-based chatbot, like Chat-
GPT, or by using an LLM integrated within the IDE, like copilot [12] or CARET [13].
Typically, the latter option is to be preferred for a streamline coding experience. How-
ever, AI assistants have only been started to be integrated within IDEs, and many factors
require attention (see [13] for a feature-based analysis). For example, the IDE provides a
context that should be transferred into the underlying LLM, and LLM responses should
be translated into code, but also on IDE actions and commands. For professional devel-
opment, traceability of AI-generated code into the project would be essential, to track
the decisions made, storing them under standard version control systems, and support-
ing queries about which parts of the code generated the assistant, why, when, and who
invoked the assistant.

To be useful in practice, IDEs need to enable extensibility of the assistants with new
tasks (e.g., generate Javadoc comments for all code in a project), or tailor existing tasks
to the programmer and company needs (e.g., generate code following in-house cod-
ing standards). Following research in [13], I argue that IDEs should offer extensibility
mechanisms (like Eclipse extension points) to ease the integration of new AI assis-
tants and of AI-supported tasks. We term such extensibility mechanisms AI extension
points [13].

To be successful, AI assistants need to be trustworthy [70]. This means that the code
suggested should have high quality, including both syntactic correctness (the fragment
suggested by the assistant compiles when integrated into its context of use), and se-
mantic correctness (the fragment works as expected by the developer), and follows the
coding standards in use.

6.2 AI assistants for citizen developers

Current AI coding assistants may become powerful tools to improve the productivity of
developers. These assistants rely on LLMs that have been trained with vast amounts of
code, in mainstream programming languages like C, Java or Python. This means that,
currently, they are mostly useful for users with a training on programming.

Therefore, how can citizen developers benefit from AI assistants? A first possibility
is to combine AI assistants with DSLs. Fig. 11(a) shows the working scheme of such
proposal, where the assistants would need to consume and produce DSL code. However,
this is problematic, since – most probably – the underlying LLMs have not been trained
with examples of use of the DSL.

Adapting AI assistants to DSLs is still an open problem, with several proposals.
Early ones include SOCIO [57], where conversational syntaxes for DSLs are defined,
and a Dialogflow modelling chatbot is automatically generated. More recent proposals
include ModelMate [18], a system to create assistants for DSLs by fine-tuning language
models with DSL data; and DSL-Xpert [36], a simpler approach that relies only on
prompt engineering.

In the previous approach, the DSL is the medium to express what the software is to
perform. Going one step further, one could envision the natural language acting as the
programming medium, as shown in Fig. 11(b). This way, the AI assistant would directly
synthesize an application (e.g., in Python) out of the natural language descriptions of
the citizen developers. Such application would be hosted by the low-code platform (and

Software Development... For All? 15

DSL

citizen

developers

NL

DSL
code fragment

AI

assistant
Requirements

Low-code platform

(a) (b)

citizen

developers

NL

AI

assistant

Requirements

Low-code platform

Running applicationRunning application

Fig. 11: AI assistants for citizen developers. (a) The DSL is the programming medium.
(b) Natural language is the programming medium.

run in e.g., a sandbox), in such a way that the citizen developer would not need to check
or even understand the synthesized code. While this approach might be the ultimate
low-code platform – natural language becomes a programming language – it has short-
comings and limitations, e.g., related to the security and correctness of the generated
applications. In addition, it may only be suitable for small applications since there is no
medium to express a design, which is an enabler of scalability. However, small, simple,
non-critical applications are often all that citizen developers aim at building. This ap-
proach would make programming an immediate activity, and its ease of use may change
the status of such applications: they no longer need to be stored or maintained, but they
can be disposable3 – even for single-use – and discarded once they are not needed.

7 Conclusions and perspectives

In this paper, I have discussed techniques to respond to the increasing demand for soft-
ware, answering the question How to develop software faster, by more people?. This
way, the paper has reviewed the working scheme of professional vs. citizen developers,
based on using code (in traditional IDEs) vs. DSLs (in low-code platforms) to build
software. In the latter case, I have claimed that one language does not fit all users and
contexts of use, and argued for the need of languages to become adaptive. Finally, the
paper ended with a brief account of the increasingly important role of AI assistants in
software development. Today, such role is mostly oriented to professional developers
(working on mainstream, general-purpose programming languages), and I have dis-
cussed for the need to make them available to citizen developers as well. This can be
done via DSLs as a medium for programming, but one could envision environments
where natural language becomes the programming medium.

There are many challenges in this area, for example to make languages and IDEs
more aware of their usage context (i.e., a more prominent role of pragmatics in lan-
guage design). Regarding AI assistants for professionals, there is the need of a more

3 Credits to Jesús Sánchez-Cuadrado for suggesting this notion.

16 J. de Lara

streamlined integration with IDEs, languages and development processes. The impact
of AI assistants on IDEs, languages and processes should be carefully analysed too, to
be able create the next generation of development tools. Finally, we should not forget
about the “other side of the coin” of the software development: the non-professionals.
Hence, techniques to build AI assistants for citizen developers, working on (textual or
graphical) DSLs within low-code platforms, or using only natural language, would help
democratising software development.

Acknowledgments. Thanks to Esther Guerra for fruitful discussions on the paper’s topics.
This work has been funded by the Spanish MICINN with projects SATORI-UAM (TED2021-
129381B-C21), FINESSE (PID2021-122270OB-I00), and RED2022-134647-T.

References

1. Akkio: https://www.akkio.com/ (2024)
2. Action Language for Foundational UML OMG specification. https://www.omg.org/sp

ec/ALF/1.1/About-ALF (2017)
3. Amazon: Lex. https://cloud.google.com/dialogflow (2024)
4. Apel, S., Lengauer, C.: Superimposition: A language-independent approach to software com-

position. In: ICSC. LNCS, vol. 4954, pp. 20–35. Springer (2008)
5. Appian: https://appian.com/ (2024)
6. Brambilla, M., Cabot, J., Wimmer, M.: Model-driven software engineering in practice, Sec-

ond edition. Synthesis Lectures on Software Engineering, Morgan & Claypool Publishers,
San Rafael, California (USA) (2017)

7. Brown, T.B., et al.: Language models are few-shot learners. CoRR abs/2005.14165 (2020),
https://arxiv.org/abs/2005.14165, see also https://platform.openai.com/docs
/models/o1

8. Bucchiarone, A., Cabot, J., Paige, R.F., Pierantonio, A.: Grand challenges in model-driven
engineering: an analysis of the state of the research. Softw. Syst. Model. 19(1), 5–13 (2020)

9. Buezas, N., Guerra, E., de Lara, J., Martı́n, J., Monforte, M., Mori, F., Ogallar, E., Pérez,
O., Cuadrado, J.S.: Umbra designer: Graphical modelling for telephony services. In: Mod-
elling Foundations and Applications - 9th European Conference, ECMFA. Lecture Notes in
Computer Science, vol. 7949, pp. 179–191. Springer (2013)

10. Cabot, J.: The low-code handbook (2024)
11. Cámara, J., Troya, J., Burgueño, L., Vallecillo, A.: On the assessment of generative AI in

modeling tasks: an experience report with chatgpt and UML. Softw. Syst. Model. 22(3),
781–793 (2023)

12. Chen, M., et al.: Evaluating large language models trained on code. CoRR abs/2107.03374
(2021), https://arxiv.org/abs/2107.03374

13. Contreras, A., Guerra, E., de Lara, J.: Conversational assistants for software development:
Integration, traceability and coordination. In: Kaindl, H., Mannion, M., Maciaszek, L.A.
(eds.) Proceedings of the 19th International Conference on Evaluation of Novel Approaches
to Software Engineering, ENASE. pp. 27–38. SCITEPRESS (2024)

14. Cuadrado, J.S., Izquierdo, J.L.C., Molina, J.G.: Applying model-driven engineering in small
software enterprises. Sci. Comput. Program. 89, 176–198 (2014)

15. Czarnecki, K., Antkiewicz, M.: Mapping features to models: A template approach based
on superimposed variants. In: Glück, R., Lowry, M.R. (eds.) Generative Programming and
Component Engineering, 4th International Conference, GPCE. Lecture Notes in Computer
Science, vol. 3676, pp. 422–437. Springer (2005)

https://www.akkio.com/
https://www.omg.org/spec/ALF/1.1/About-ALF
https://www.omg.org/spec/ALF/1.1/About-ALF
https://cloud.google.com/dialogflow
https://appian.com/
https://arxiv.org/abs/2005.14165
https://platform.openai.com/docs/models/o1
https://platform.openai.com/docs/models/o1
https://arxiv.org/abs/2107.03374

Software Development... For All? 17

16. D’Antoni, L., Veanes, M.: Automata modulo theories. Commun. ACM 64(5), 86–95 (2021)
17. DataRobot: https://www.datarobot.com/ (2024)
18. Durá, C., López, J.A.H., Cuadrado, J.S.: ModelMate: A recommender for textual modeling

languages based on pre-trained language models. In: Proceedings of the ACM/IEEE 27th
International Conference on Model Driven Engineering Languages and Systems, MODELS.
pp. 183–194. ACM (2024)

19. Echeverrı́a, J., Pérez, F., Panach, J.I., Cetina, C.: An empirical study of performance using
clone & own and software product lines in an industrial context. Information and Software
Technology 130, 106444 (2021)

20. Eclipse: http://www.eclipse.org (2024)
21. Fuentes-Fernández, L., Vallecillo, A.: An introduction to UML profiles. Upgrade 5(2), 6–13

(2004)
22. Garmendia, A., Guerra, E., de Lara, J.: Product lines of graphical modelling languages. In:

Proceedings of the ACM/IEEE 27th International Conference on Model Driven Engineering
Languages and Systems, MODELS. pp. 69–79. ACM (2024)

23. Google: AppSheet. https://about.appsheet.com/home/ (2024)
24. Google: AutoML. https://cloud.google.com/automl (2024)
25. Google: Dialogflow. https://cloud.google.com/dialogflow (2024)
26. Google: Gemini. https://gemini.google.com/ (last access in 2024)
27. Guerra, E., de Lara, J.: On the quest for flexible modelling. In: MoDELS. pp. 23–33. ACM

(2018)
28. Guerra, E., de Lara, J., Chechik, M., Salay, R.: Property satisfiability analysis for product

lines of modelling languages. IEEE Trans. Software Eng. 48(2), 397–416 (2022)
29. Harel, D., Rumpe, B.: Meaningful modeling: What’s the semantics of ”semantics”? Com-

puter 37(10), 64–72 (2004)
30. Hermans, F.: Hedy: A gradual language for programming education. In: ICER. pp. 259–270.

ACM (2020)
31. Hutchinson, J.E., Whittle, J., Rouncefield, M.: Model-driven engineering practices in indus-

try: Social, organizational and managerial factors that lead to success or failure. Sci. Comput.
Program. 89, 144–161 (2014)

32. IBM: Watsonx. https://www.ibm.com/watson (2024)
33. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-oriented domain analysis

(FODA) feasibility study. Tech. Rep. CMU/SEI-90-TR-021, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA (1990)

34. Kashmar, N., Adda, M., Atieh, M.: From access control models to access control metamod-
els: A survey. In: FICC. LNNS, vol. 70, pp. 892–911. Springer (2020)

35. Kelly, S., Tolvanen, J.: Domain-specific modeling - Enabling full code generation. Wiley
(2008)

36. Lamas, V., R. Luaces, M., Garcia-Gonzalez, D.: DSL-Xpert: LLM-driven generic DSL code
generation. In: Proceedings of the ACM/IEEE 27th International Conference on Model
Driven Engineering Languages and Systems. p. 16–20. MODELS Companion ’24, Asso-
ciation for Computing Machinery, New York, NY, USA (2024)

37. Laplante, P., Kassab, M.: Requirements Engineering for Software and Systems (4th ed.).
Auerbach Publications (2022)

38. de Lara, J.: Software development... for all? In: Fill, H., Mayo, F.J.D., van Sinderen, M.,
Maciaszek, L.A. (eds.) Proceedings of the 19th International Conference on Software Tech-
nologies, ICSOFT. p. 5. SCITEPRESS (2024)

39. de Lara, J., Guerra, E.: Adaptive modelling languages: Abstract syntax and model migration.
ACM Transactions on Software Engineering and Methodology (Nov 2024). https://doi.
org/10.1145/3702975, just Accepted

https://www.datarobot.com/
http://www.eclipse.org
https://about.appsheet.com/home/
https://cloud.google.com/automl
https://cloud.google.com/dialogflow
https://gemini.google.com/
https://www.ibm.com/watson
https://doi.org/10.1145/3702975
https://doi.org/10.1145/3702975
https://doi.org/10.1145/3702975
https://doi.org/10.1145/3702975

18 J. de Lara

40. de Lara, J., Guerra, E., Bottoni, P.: Modular language product lines: Concept, tool and anal-
ysis. Software and Systems Modeling in press, 1–30 (2024)

41. de Lara, J., Guerra, E., Chechik, M., Salay, R.: Model transformation product lines. In: MoD-
ELS. pp. 67–77. ACM (2018)

42. Leung, M., Murphy, G.C.: On automated assistants for software development: The role of
llms. In: 38th IEEE/ACM International Conference on Automated Software Engineering,
ASE. pp. 1737–1741. IEEE (2023)

43. Li, R., et al.: Starcoder: may the source be with you! (2023), https://arxiv.org/abs/23
05.06161

44. Lieberman, H., Paternò, F., Wulf, V. (eds.): End User Development. Human-Computer
Interaction Series, Springer (2006). https://doi.org/10.1007/1-4020-5386-X,
https://doi.org/10.1007/1-4020-5386-X

45. Luckey, M., Erwig, M., Engels, G.: Systematic evolution of model-based spreadsheet appli-
cations. J. Vis. Lang. Comput. 23(5), 267–286 (2012)

46. Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., Tang, A.: What industry needs from
architectural languages: A survey. IEEE Trans. Software Eng. 39(6), 869–891 (2013)

47. MDA OMG specification. https://www.omg.org/mda/executive_overview.htm
(2024)

48. Mendix: https://www.mendix.com/ (2024)
49. Microsoft: Microsoft Power Apps. https://www.microsoft.com/en-us/power-platf

orm/products/power-apps (2024)
50. Moody, D.L.: The physics of notations: Toward a scientific basis for constructing visual

notations in software engineering. IEEE Trans. Software Eng. 35(6), 756–779 (2009)
51. Mosterman, P.J., Vangheluwe, H.: Computer automated multi-paradigm modeling: An intro-

duction. Simul. 80(9), 433–450 (2004)
52. Muñoz, P., Zschaler, S., Paige, R.F.: Preface to the special issue on success stories in model

driven engineering. Sci. Comput. Program. 233, 103072 (2024)
53. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4),

541–580 (1989)
54. Node-RED: https://nodered.org/ (2024)
55. OCL: http://www.omg.org/spec/OCL/ (2014)
56. OutSystems: https://www.outsystems.com/ (2024)
57. Pérez-Soler, S., González-Jiménez, M., Guerra, E., de Lara, J.: Towards conversational syn-

tax for domain-specific languages using chatbots. J. Object Technol. 18(2), 5:1–21 (2019)
58. Perrouin, G., Amrani, M., Acher, M., Combemale, B., Legay, A., Schobbens, P.: Featured

model types: Towards systematic reuse in modelling language engineering. In: MiSE@ICSE.
pp. 1–7. ACM (2016)

59. Pohl, K., Böckle, G., Linden, F.J.v.d.: Software product line engineering: Foundations, prin-
ciples and techniques. Springer-Verlag, Berlin, Heidelberg (2005)

60. Rozière, B., et al.: Code llama: Open foundation models for code (2024), https://arxiv.
org/abs/2308.12950

61. Ruscio, D.D., Iovino, L., Pierantonio, A.: Coupled evolution in model-driven engineering.
IEEE Softw. 29(6), 78–84 (2012)

62. Ruscio, D.D., Kolovos, D.S., de Lara, J., Pierantonio, A., Tisi, M., Wimmer, M.: Low-code
development and model-driven engineering: Two sides of the same coin? Softw. Syst. Model.
21(2), 437–446 (2022)

63. Sendall, S., Kozaczynski, W.: Model transformation: The heart and soul of model-driven
software development. IEEE Softw. 20(5), 42–45 (2003)

64. Sommerville, I.: Software engineering, 10th Edition. Pearson (2015)

https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://doi.org/10.1007/1-4020-5386-X
https://doi.org/10.1007/1-4020-5386-X
https://doi.org/10.1007/1-4020-5386-X
https://www.omg.org/mda/executive_overview.htm
https://www.mendix.com/
https://www.microsoft.com/en-us/power-platform/products/power-apps
https://www.microsoft.com/en-us/power-platform/products/power-apps
https://nodered.org/
http://www.omg.org/spec/OCL/
https://www.outsystems.com/
https://arxiv.org/abs/2308.12950
https://arxiv.org/abs/2308.12950

Software Development... For All? 19

65. Tisi, M., Mottu, J., Kolovos, D.S., de Lara, J., Guerra, E., Ruscio, D.D., Pierantonio, A.,
Wimmer, M.: Lowcomote: Training the next generation of experts in scalable low-code en-
gineering platforms. In: STAF 2019 Co-Located Events Joint Proceedings. CEUR Workshop
Proceedings, vol. 2405, pp. 73–78. CEUR-WS.org (2019)

66. Touvron, H., et al.: Llama 2: Open foundation and fine-tuned chat models (2023), https:
//arxiv.org/abs/2307.09288, see also https://www.llama.com/

67. UML 2.5.1 OMG specification. http://www.omg.org/spec/UML/2.5.1/ (2017)
68. Voelter, M., Benz, S., Dietrich, C., Engelmann, B., Helander, M., Kats, L.C.L., Visser, E.,

Wachsmuth, G.: DSL Engineering - Designing, Implementing and Using Domain-Specific
Languages. dslbook.org (2013), http://www.dslbook.org

69. Wang, J., Huang, Y., Chen, C., Liu, Z., Wang, S., Wang, Q.: Software testing with large
language models: Survey, landscape, and vision. IEEE Trans. Software Eng. 50(4), 911–936
(2024)

70. Wang, R., Cheng, R., Ford, D., Zimmermann, T.: Investigating and designing for trust in ai-
powered code generation tools. In: The 2024 ACM Conference on Fairness, Accountability,
and Transparency, FAccT. pp. 1475–1493. ACM (2024)

71. Wasowski, A., Berger, T.: Domain-Specific Languages - Effective Modeling, Automation,
and Reuse. Springer (2023)

72. Zhao, W.X., et al.: A survey of large language models. https://arxiv.org/abs/2303.1
8223 (2023)

https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://www.llama.com/
http://www.omg.org/spec/UML/2.5.1/
http://www.dslbook.org
https://arxiv.org/abs/2303.18223
https://arxiv.org/abs/2303.18223

	Software Development... For All?

