
Mutation Testing for Task-Oriented Chatbots

Pablo Gómez-Abajo
Pablo.GomezA@uam.es

Universidad Autónoma de Madrid
Madrid, Spain

Sara Pérez-Soler
Sara.PerezS@uam.es

Universidad Autónoma de Madrid
Madrid, Spain

Pablo C. Cañizares
Pablo.Cerro@uam.es

Universidad Autónoma de Madrid
Madrid, Spain

Esther Guerra
Esther.Guerra@uam.es

Universidad Autónoma de Madrid
Madrid, Spain

Juan de Lara
Juan.deLara@uam.es

Universidad Autónoma de Madrid
Madrid, Spain

ABSTRACT
Conversational agents, or chatbots, are increasingly used to access
all sorts of services using natural language. While open-domain
chatbots – like ChatGPT – can converse on any topic, task-oriented
chatbots – the focus of this paper – are designed for specific tasks,
like booking a flight, obtaining customer support, or setting an
appointment. Like any other software, task-oriented chatbots need
to be properly tested, usually by defining and executing test sce-
narios (i.e., sequences of user-chatbot interactions). However, there
is currently a lack of methods to quantify the completeness and
strength of such test scenarios, which can lead to low-quality tests,
and hence to buggy chatbots.

To fill this gap, we propose adapting mutation testing (MuT) for
task-oriented chatbots. To this end, we introduce a set of mutation
operators that emulate faults in chatbot designs, an architecture
that enables MuT on chatbots built using heterogeneous technolo-
gies, and a practical realisation as an Eclipse plugin. Moreover,
we evaluate the applicability, effectiveness and efficiency of our
approach on open-source chatbots, with promising results.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; • Human-centered computing → Natural language
interfaces.

KEYWORDS
Task-oriented chatbots, Mutation testing, Dialogflow, Rasa, Botium

ACM Reference Format:
Pablo Gómez-Abajo, Sara Pérez-Soler, Pablo C. Cañizares, Esther Guerra,
and Juan de Lara. 2024. Mutation Testing for Task-Oriented Chatbots. In
28th International Conference on Evaluation and Assessment in Software
Engineering (EASE 2024), June 18–21, 2024, Salerno, Italy. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3661167.3661220

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
EASE 2024, June 18–21, 2024, Salerno, Italy
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1701-7/24/06
https://doi.org/10.1145/3661167.3661220

1 INTRODUCTION
Conversational agents, or chatbots, are software systems that emu-
late human conversation. They can be either open-domain, like
ChatGPT [31], or task-oriented. The former are able to engage
in conversations on any topic, and are recently being built using
generative artificial intelligence, especially large language models
(LLMs) [16]. The latter are chatbots designed to solve a specific task,
like booking a ticket, ordering a pizza, setting a medical appoint-
ment, or obtaining customer support. They are popular to access
all sorts of services because of their ease of integration into many
channels, such as social networks, websites, or smart speakers.

Unlike open-domain chatbots, building task-oriented chatbots
using LLMs is still difficult [42]. Instead, their construction involves
an explicit design of the chatbot topics, the conversation paths, the
chatbot responses, and the interaction with external information
services. There are many technologies to build task-oriented chat-
bots [33], like Google’s Dialogflow [13], Amazon Lex [27], Microsoft
Bot Framework [30], IBM Watson assistant [40] or Rasa [34].

Like any other software, task-oriented chatbots require thor-
ough testing to ensure a proper behaviour. This entails testing for
accurate recognition of the user intent, adequate continuation of
the conversation paths, sensible chatbot responses, and correct
calling to information system APIs. To this end, frameworks like
Botium [4] and Rasa-test [35] enable the creation of test suites
that describe expected user-chatbot interactions and may spec-
ify assertions. However, there is currently no way to measure the
strength of a given test suite, which can lead to sub-optimal testing
processes [7], and thus to buggy chatbots. We aim to fill this gap.

Mutation testing [11] (MuT) is a technique to assess the strength
of software test suites. It involves injecting artificial errors into
the program, and checking whether the test suite detects them.
This way, the mutation score – the ratio of detected errors – is
used to quantify the quality of the test suite. Faulty programs that
remain undetected can be used to improve the original test suite and
increase the mutation score. MuT has been applied to programming
languages (e.g., Java [10], C [23]) and to other artefacts such as web
services [14] or state machines [22], but not to chatbots.

Using MuT for chatbots brings several challenges. First, devis-
ing effective MuT operators to inject errors into chatbot designs.
Second, reducing the potentially large number of generated mu-
tants to avoid excessive testing times. Third, in practice, the MuT
process should work across the many chatbot technologies in use
today [33].

https://orcid.org/0000-0002-8319-4829
https://orcid.org/0000-0002-4558-7111
https://orcid.org/0000-0002-2084-1558
https://orcid.org/0000-0002-2818-2278
https://orcid.org/0000-0001-9425-6362
https://doi.org/10.1145/3661167.3661220
https://doi.org/10.1145/3661167.3661220

EASE 2024, June 18–21, 2024, Salerno, Italy Gómez-Abajo et al.

To tackle these challenges, we propose a suite of mutation op-
erators for chatbot designs. They stem from an analysis of real
faults in open-source chatbots, and the features of existing chatbot
construction tools. To reduce the number of mutants, some oper-
ators use heuristics based on natural language processing (NLP)
and sentence embeddings [15] that model different types of errors.
Moreover, our operators are technology-independent, as they are
implemented over a technology-agnostic chatbot design notation,
called Conga [32]. Implementation-wise, we have extended the
MuT framework Wodel-Test [17] to support MuT for chatbots.
The resulting tool can import chatbots (e.g., built with Dialogflow
and Rasa) into the Conga common format for their mutation, and
supports the assessment of test suites created with Botium or Rasa-
test. We have evaluated our proposal over a set of open-source
chatbots and test suites, showing the suitability of our mutation
operators, and the effectiveness and practicality of the approach.

2 BACKGROUND
This section provides background on the key elements of our pro-
posal: chatbots (Sec. 2.1), chatbot testing (Sec. 2.2) andMuT (Sec. 2.3).

2.1 Task-oriented chatbots
Task-oriented chatbots are designed to solve particular tasks via con-
versation in natural language. Fig. 1 depicts their working scheme.
The main components of their definition are the intents, which
are the user intentions that the chatbot aims at recognising. Each
of such intents declares a set of training phrases that exemplify
how users might formulate the intent. Thus, when a user says an
utterance in natural language to the chatbot (label 1 in the figure),
the chatbot uses NLP to match the most likely intent (label 2). If no
intent matches the utterance, the chatbot applies a default fallback
intent (if it exists) with a predefined response (label 3a). For exam-
ple, a chatbot for a coffee shop may have two main intents (one to
allow users to order coffee, and another informing about the types
of coffee served) and a fallback intent.

user

match intent
backend

chatbot

intenti

Act1

Actn

…
…

p
ar

am
s

u
tt

e
ra

n
ce

extract
params

2

do actions

match?

3b

3a
fallback
intent

no

yes

reply fallback

4b

NL utterance reply message
51

intenti

phrase 1
…

phrase n

Figure 1: Workflow of task-oriented chatbots.

When the chatbot matches an intent, it may need to extract
information from the user utterance. For this purpose, intents may
declare parameters, with training phrases hinting to them (label 3b).
For instance, an intent to order coffee may have two parameters
(type and size of coffee), and a training phrase like “I’d like a regular
americano” illustrates how to provide this information. Parameters

are typed by entities, which can be predefined (e.g., dates) or domain-
specific (e.g., coffee type). In addition, parameters can be optional
or required. If the value of a required parameter is missing in an
utterance, the chatbot prompts the user for its value.

After extracting the parameter values, the chatbot may need to
access a backend to perform actions associated to the intent, like
storing the order in the shop information system (label 4b). Next,
the chatbot provides a reply message to the user (label 5), which is
usually textual, but can contain elements like images and links.

Chatbots can also define conversation flows that interleave ex-
pected intents and chatbot responses. For example, once the user
has ordered coffee, the chatbot may ask if the user wants to add
something sweet to the order. Then, depending on the user answer,
the conversation could follow different paths.

2.2 Testing task-oriented chatbots

1 #me

2 I'd like an americano
3 #bot

4 What size?
5 #me

6 Regular please
7 #bot

8 Your coffee is brewing!

Listing 1: Botium convo.

Frameworks like Botium [4] and
Rasa-test [35] give support for test-
ing the conversation flow of chatbots
by means of test scenarios, also called
convos. A scenario defines a conver-
sation path that a user and a chatbot
are supposed to follow. For example,
Listing 1 shows a convo for the cof-
fee shop chatbot, definedwith Botium.
It specifies the expected responses of
the chatbot (lines 3–4 and 7–8) to certain user utterances (lines 1–2
and 5–6). The test execution sends the specified user utterances
to the chatbot, and compares its responses with those defined in
the test scenario. Depending on the framework, the comparison
may be customisable (e.g., exact match or conformance to a regular
expression), and can include other assertions such as the expected
matching intent or the presence of images in the responses. A sce-
nario can also specify several user utterances at a given step (e.g.,
line 2), in which case, the convo is executed for each one of them,
making all combinations with the user utterances of later steps.

2.3 Mutation testing
MuT is a widely used technique to measure the ability of a test suite
to detect faults. It relies on seeding artificial faults into the pro-
gram under study, thus generating faulty program versions, called
mutants. The faults are introduced by mutation operators, which
are rules that produce valid syntactic variations of the program
under study. The design of these operators typically follows the
competent programmer hypothesis, which states that programmers
often write code that is close to being correct [11].

The strength of a test suite can then be measured in terms of
its ability to detect mutants. A mutant is detected, or killed, if the
results of applying the same test case to both the original program
and the mutant differ. Conversely, if all test cases yield the same
result when applied to both the original and mutant programs, the
mutant remains alive. If the behaviour of a mutant and the original
program are indistinguishable, the mutant is said to be equivalent.
The quality of a test suite is given by itsmutation score (MS), which is
the ratio between the number of killedmutants and the total number
of mutants minus the equivalent ones:𝑀𝑆 = #𝐾𝑖𝑙𝑙𝑒𝑑

#𝑇𝑜𝑡𝑎𝑙−#𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 .

Mutation Testing for Task-Oriented Chatbots EASE 2024, June 18–21, 2024, Salerno, Italy

The steps to compute the MS of a test suite are as follows. (i)
First, the original program must compile successfully. (ii) Next, the
test suite is run on the original program. If any test case fails, the
program must be fixed. (iii) Once the program passes all test cases,
a set of mutants is created by applying the mutation operators on
the program, seeding one fault per mutant. (iv) The test suite is run
against each mutant, and the results are compared with those of
the original program. If the result of a test case differs for a mutant,
the mutant is killed. (v) Once all mutants have been tested, the MS
is calculated. Sometimes, it is necessary to manually analyse the
live mutants to check for equivalence. If some mutants are alive,
new test cases that kill them can be added to the test suite.

3 MUTATION TESTING FOR CHATBOTS
This section describes our proposal of MuT adapted to chatbots. It
proceeds as explained in Sec. 2.3 for software systems in general,
but using mutation operators specifically designed to inject artifi-
cial faults into the chatbot under study. Some of these operators
calculate the similarity between (sets of) phrases, for which they
use NLP techniques, like sentence embeddings [15]. The mutation
operators produce a set of mutant chatbots, which are tested against
a test suite to identify killed and live non-equivalent mutants, and
calculate the MS of the test suite. As explained in Sec. 2.2, a test
suite in our context comprises a set of test conversation scenarios
with their input test utterances. The live mutants can be analysed
to improve the test suite with new cases that kill those mutants.

Next, we focus on the more distinctive ingredient of our proposal:
the chatbot mutation operators. We have designed a suite of 19 mu-
tation operators that act on the main components of task-oriented
chatbots: training phrases, intents, entities, chatbot actions, and
conversation flows. Some of these operators (DP, DPWP, DPWL,
K2P, DPP, DFI) emulate real faults identified in the analysis of a
dataset of Rasa and Dialogflow open-source chatbots reported in [8]
(see also https://github.com/Conga-dsl/ValidationSetup). The rest
of operators are designed to cover the features of existing chatbot
construction tools [33]. Next, we introduce the set of operators.
Operators for training phrases. According to [8], a common
problem when building chatbots is the lack of training phrases
that exemplify user utterances. This can lead to poorly trained
intents that the chatbot will have difficulty recognising. Hence, we
propose 6 operators that emulate this problem by deleting training
phrases attending to several criteria. In addition, we propose 2
further operators that move training phrases between intents to
simulate placing a phrase in the wrong intent by mistake.
• Delete training phrase (DP). This operator deletes a training phrase
from an intent. It could be applied exhaustively for every phrase,
whichmay producemanymutants, or randomly a certain number
of times, which may prevent some interesting mutants from
occurring. Instead, we propose a test reduction technique to select
representative mutants attending to the similarity of the phrases
within the intent, leading to two variants of the operator. The first
variant, called DP𝑚𝑎𝑥 , deletes the most representative phrase of
the intent, i.e., the one which is closer to all other phrases in
the intent. This emulates a developer who did not define small
variations of each training phrase. The second variant, called
DP𝑚𝑖𝑛 , deletes the phrase that is most different from all others

in the intent. This emulates a developer who made no effort to
formulate the intent very differently, or who created the phrases
by copy&paste with slight modifications. Phrase similarity can
be computed by several means; in our implementation, we use
sentence embeddings [15] (cf. Sec. 4.1).
Example 1. Assume an intent to request information with 4
training phrases: “What kinds of coffee are available?”, “What
types of coffee can I order?”, “What can I drink here?”, and “Tell me
what drinks there are”. Using sentence embeddings, the average
semantic similarity of each phrase with the others is 0.512, 0.538,
0.475, and 0.474, respectively. Hence, applying DP𝑚𝑎𝑥 produces a
mutant by deleting the second phrase, while DP𝑚𝑖𝑛 would delete
the last phrase.

• Delete training phrases with required parameter (DPWP). This op-
erator removes all training phrases that use a required parameter
of an intent. It models a developer who forgets to exemplify the
use of a parameter by providing training phrases for it.

• Delete training phrases with literal (DPWL). This operator removes
from an intent all training phrases that use a specific literal of
an entity, modelling that the developer forgot to add phrases
exemplifying the use of the literal.

• Keep two training phrases (K2P). This operator deletes all but two
training phrases of an intent. It emulates the frequent situation
of under-trained intents [8]. Following the same reasoning as for
the DP operator, we propose to reduce the potentially high num-
ber of mutants that this operator would generate by heuristically
selecting the two training phrases left using text similarity crite-
ria. Thus, a first operator variant, called K2P𝑚𝑎𝑥 , leaves the two
most representative phrases, and the second one, called K2P𝑚𝑖𝑛 ,
leaves the most different phrases.
Example 2. For the intent in Example 1, K2P𝑚𝑎𝑥 yields a mutant
that leaves the first two phrases of the intent, and K2P𝑚𝑖𝑛 leaves
the last two phrases.

• Move training phrase (MP). This operator moves a training phrase
from one intent to another. It emulates a developer confusing
two intents and adding a training phrase to the wrong one. To
reduce the combinatorics of cases, the phrase to be moved is
selected using text similarity criteria, resulting in two variants
of the operator. Given an intent, MP𝑚𝑖𝑛 compares the average
similarity of each of its phrases with those of all other intents,
and moves its phrase with lowest similarity to the least similar
intent. Conversely, MP𝑚𝑎𝑥 moves its most similar phrase to the
most similar intent.

Operators for intents.Wehave designed the following 4 operators
that modify intents. They emulate different developer mistakes.

• Delete intent parameter (DIP). It removes a parameter from an
intent, as well as all training phrases that use the parameter.
Unlike operator DPWP, DIP is applicable to both required and
optional parameters, and the parameter is deleted from the intent
(DPWP preserves it).

• Delete parameter prompt (DPP). It deletes the prompt that a chat-
bot uses to ask for the value of a required parameter when the
user does not provide its value. When this prompt does not exist,
chatbots often employ an overly generic prompt predefined in
the platform.

https://github.com/Conga-dsl/ValidationSetup

EASE 2024, June 18–21, 2024, Salerno, Italy Gómez-Abajo et al.

• Set required parameter to optional (SPO). It changes a required
parameter to make it optional. Consequently, the chatbot will not
ask the parameter value when absent from the user utterances.
We do not consider the opposite case (i.e., making an optional
parameter mandatory) as it tends to generate easy to kill mutants.

• Delete fallback intent (DFI). It deletes a fallback intent, making the
chatbot unable to answer when it does not recognise the intent
corresponding to a user utterance.

Operators for entities.We propose 2 operators to emulate mis-
takes in entity definitions. Each considers one of the two alternative
ways to define the entity values: implicitly by a regular expression,
or explicitly by enumerating the literals that are valid.
• Change regular expression (CRE). It changes the regular expres-
sion used to define the literals that an entity admits. Any of
the mutation operators for regular expressions proposed in the
literature can be used for this purpose [1].

• Delete literal from entity (DLE). It removes a literal from an entity
definition, making the chatbot unable to extract that value from
a phrase having a parameter typed by the entity.

Operators for actions. The following 3 operators model mistakes
related to the definition of the actions that the chatbot performs.
• Delete actions (DA). This operator deletes all the actions to be
performed in a chatbot interaction. The actions can be of different
nature, such as accessing an external system, showing an image,
or producing a text response.

• Delete a parameter used in a response (DPR). This operator modi-
fies the textual response of a chatbot, removing the parameter
values used in the response.
Example 3. Upon the utterance “Howmuch is a large americano?”,
suppose the original chatbot answers “A large americano is 6$”,
where large and americano are parameter values extracted from
the utterance. If applying DPR, the resulting mutant chatbots
would answer either “A large is 6$” or “A americano is 6$”.

• Swap outputs (SO). This operator swaps the output that the chat-
bot produces in two consecutive conversation steps. This is useful
for testing multi-turn conversations that must occur in a certain
order (e.g., as in Example 4 below).

Operators for conversation flows. The last 2 operators mutate
the conversation flow, emulating errors that a developer may in-
advertently make. The first operator is applicable to conversation
designs that chain several interactions between the chatbot and
the user (conversation depth > 1). The second one is for conver-
sation designs that may bifurcate depending on the user response
(conversation width > 1).
• Delete conversation step (DCS). It deletes a conversation step from
a conversation flow, which can be an intermediate step, an initial
step, or a final step.
Example 4. Assume a conversation design that starts with the
user intent to order coffee, follows with the intent to add cake to
the order, and ends with an intent to pay (i.e., 3 steps). Applying
DCS would yield three mutants: one that allows to order coffee
and pay, another that allows to order cake and pay, and the last
one to order coffee and cake but without paying.

• Delete conversation bifurcation (DCB). It removes a bifurcation
in a conversation flow. This simulates the mistake of forgetting

to define a possible user response to a chatbot prompt, which
would lead to an alternative conversation flow.
Example 5. Suppose a conversation design in which the chatbot
asks the user for the payment method, so that if the user selects
credit card, s/he is asked for the number, but if the user selects
cash, s/he is just informed of the amount to pay (i.e., the con-
versation forks in two). Applying DCB would yield two mutants,
each of them deleting one of the conversation alternatives.

Overall, the proposed operators cover the main elements of chat-
bot definitions and emulate mistakes by developers. In Sec. 5, we
will evaluate their applicability, effectiveness, and efficiency. Note
that we do not claim that this catalogue is exclusive, as more oper-
ators – and variants of them – may be added in the future.

4 ARCHITECTURE AND TOOL SUPPORT
We have created a MuT environment for Rasa and Dialogflow chat-
bots, available at https://gomezabajo.github.io/Wodel/Wodel-Test/.
It realises the proposed mutation operators, and computes theMS of
test suites built with Botium and Rasa-test. Next, Sec. 4.1 overviews
the architecture of our solution, and Sec. 4.2 describes the tool.

4.1 Architecture
Fig. 2 outlines the developed architecture. It builds on Wodel-
Test [17], an Eclipse framework for building MuT environments,
which we extended for MuT of chatbots. Our solution is agnostic
of the chatbot creation platform. This is achieved by parsing the
chatbots into a technology-agnostic design notation, called Conga
(step 1). Currently, our solution provides parsers from Dialogflow
and Rasa chatbots into Conga models. The parsed chatbot model is
automatically enriched with metrics on the similarity of its training
phrases, computed using TensorFlow’s sentence embedding (step
2). The mutation operators are implemented using the Wodel DSL
that is available in Wodel-Test. Applying the operators on the an-
notated chatbot model yields a set of chatbot model mutants (step 3).
These mutants are transformed back into chatbot implementations
using Conga’s code generators (step 4). This way, it is possible to
run the test suite under study against them (step 5). Our solution
supports test suites defined with Botium or Rasa-test.

Dialogflow

chatbot
model

parse
1

CONGA
meta-model

«conforms to»

annotate
annotated

chatbot
model

Tensorflow

annotation
meta-model

«conforms to»

2
mutate

mutation
operators
(WODEL)

3

chatbot
model
mutant

generate
4

chatbot
impl.

test
5

test suites

mutation
analysis
report

chatbot impl.

WODEL-TEST

Figure 2: Schema of our solution for MuT of chatbots.

https://gomezabajo.github.io/Wodel/Wodel-Test/

Mutation Testing for Task-Oriented Chatbots EASE 2024, June 18–21, 2024, Salerno, Italy

Next, we provide more details on Conga (Sec. 4.1.1), the model
annotation process (Sec. 4.1.2), and the DSLWodel (Sec. 4.1.3).

4.1.1 Conga. Conga [32] is a technology-agnostic notation to
design chatbots independently of the chatbot implementation tool.
It provides design primitives tailored for task-oriented chatbots
(intents, training phrases, parameters, entities, conversation flows...)
which abstract away low-level accidental implementation details.
Following model-driven engineering principles, its abstract syntax
is defined by a meta-model, to which Conga models must conform
to. More details about Conga can be found at [32].

To make our MuT environment generic, the mutation opera-
tors are defined for Conga models and not for a specific chatbot
technology. Adding support for a particular chatbot technology
requires building a parser from the technology into Conga, and a
code generator from Conga into the technology (steps 1 and 4 in
Fig. 2). Currently, both Dialogflow and Rasa are supported.

4.1.2 The semantic similarity annotation model. To reduce the num-
ber of mutants and optimise the MuT process with fewer redundan-
cies, our tool enriches the Conga models with information about
the similarity between the training phrases of the original chatbot
(step 2 in Fig. 2). These similarity annotations conform to the meta-
model in Fig. 3. Specifically, SemanticSimilarity stores the semantic
similarity of each pair of TrainingPhrases in the chatbot. This is
calculated by vectorising the phrases with TensorFlow’s sentence
embedding and calculating the cosine similarity between vectors. In
addition, based on the average similarity, IntentIntentValue records
the two TrainingPhrases from each intent (intent1) that have the
highest (max) and lowest (min) similarity to every other intent
(intent2), while IntentValue (a particular case of the latter, reified for
efficiency) stores the two most/least similar phrases of each intent.

intent2intent1

semanticSimilarities

*
sameIntent inv: intent1=intent2

IntentIntentValue

minValues: float [2]
maxValues: float [2]

IntentValue

«from CONGA»
Intent

«from CONGA»
TrainingPhrase

Semantic
Similarity

similarity: float

Annotation
intentIntentValues

*

intentValues

*

max 2..2
min 2..2 tp1

tp2

Figure 3: Semantic similarity annotation meta-model.

4.1.3 Wodel. We have used the Wodel DSL [18] to specify the
operators of Sec. 3 and apply them to the annotated Conga models
(step 3 in Fig. 2). Wodel provides mutation primitives to select,
create, clone, modify, retype (i.e., modify the type of an object to
a sibling type), and delete elements from models. It features two
execution modes: exhaustive, which generates all possible mutants
for the given mutation operators, and stochastic, which stablishes a
maximum number of mutants to be generated.

As an example, Listing 2 shows the DP𝑚𝑎𝑥 operator, which
deletes the most representative phrase of an intent. Line 1 specifies
the exhaustive execution mode, the output folder in which to store

1 generate exhaustive mutants in "data/out/" from "data/model/"
2 metamodel "http://botGenerator/1.0"
3 with resources from

4 { nlp = "data/model/Annotation" metamodel="http://botAnnot" }
5
6 with blocks {
7 DP_max "Deletes the most representative phrase of an intent" {
8 tpi = select one IntentValue from nlp resources

9 i = select one Intent where self == tpi→intent1
10 li = select one LanguageIntent in i→inputs
11 remove one TrainingPhrase from li→inputs where self == tpi→max[0]
12 }
13 ... }

Listing 2:Wodel program for operator DP𝑚𝑎𝑥 .

the mutants, and the input folder that contains the seed models.
Line 2 declares the URI or location of the meta-model the models
to be mutated conform to (Conga’s meta-model in this case). Lines
3–4 declare the name (nlp) and meta-model of the annotation model.
Finally, lines 7–12 define the DP𝑚𝑎𝑥 operator, which selects one
IntentValue object (line 8) that annotates one intent (line 9). Then,
the operator removes the phrase with maximum average similarity
to all other phrases, pointed by reference max[0] (line 11, cf. Fig 3).

4.2 Tooling
Fig. 4a shows the technical architecture of Wodel-Test, and our
extension for MuT of chatbots. Wodel-Test (label 1) is a post-
processing extension to theWodel engine [18] (label 2), built as an
Eclipse plugin. To extend Wodel-Test for our purposes, we had to
instantiate its extension point LanguageServiceProvider (label 3),
which requires implementing three methods:
• projectToModel: to convert the artefact to be mutated (a chatbot)
into a model. We use the Conga parser for this purpose.

• modelToProject: to convert a model into a domain artefact. In
this work, we use the Conga generator to serialise a model con-
formant to the Conga meta-model into the corresponding Rasa
or Dialogflow implementation.

• run: to specify how to execute the programs against the test suite.
In this work, we support the execution of Rasa-test and Botium
test scenarios, and allow applying multiple test suites to the same
set of mutants in the same execution.
To speed up the MuT process, we have extended Wodel-Test to

run the mutants in parallel. Currently, the detection of equivalent
mutants is purely syntactical by model comparison (label 4). We
plan to provide additional automated support in future work.

Fig. 4b shows a screenshot of Wodel-Test, displaying the results
after applying the MuT process to a Rasa chatbot. Label 1 corre-
sponds to the Eclipse project explorer, which contains the project
under test and the used test-suite projects. Label 2 shows the global
view of results which reports the MS, the running time of the MuT
process, the number of applied mutation operators, the number
of killed, equivalent and live mutants, and the number of failed
and passed tests. This view also displays this information in per-
centages using coloured bar graphs (green for killed/failed, red for
live/passed). Label 3 shows themutants view, with the results of the
tests passed and failed by each mutant. Both views offer interactive
actions, such as a pop-up window to show the applied mutation
operators or the live mutants, in the case of the global view, or a

EASE 2024, June 18–21, 2024, Salerno, Italy Gómez-Abajo et al.

WODEL engine

syntactic
equivalence

WODEL-TEST

postProc

2

1

Language
ServiceProvider

projectToModel()
modelToProject()
run()

3

CONGA
MUT SPECEMFCompare

equivalence

«interface»
«requires»

«uses»

4

WODEL
programs

(meta-model +
mutation op.)

«includes»«includes»

test suites

(a) Architecture of Wodel-Test

2

3
1

(b) The chatbot MuT tool built withWodel-Test

Figure 4: Mutation testing of chatbots withWodel-Test.

filter to show only the failed or the passed tests, in the case of the
mutants view. In addition, these views group the information by
tabs, one for each test-suite project included in the MuT process.
Wodel-Test also enables persisting these results in a plain text file.

5 EVALUATION
To assess the value of our proposal for MuT for chatbots, we aim at
answering the following research questions (RQs):

RQ1: How applicable are the defined mutation operators?
RQ2: How effective are the mutation operators?
RQ3: How effective is the mutation testing process?
RQ4: How efficient is the mutation testing process?

RQ1 is important to understand how many mutants of a chatbot
are expected to be generated, which operator types are more appli-
cable, and which ones generate the most mutants. The execution
time of the MuT process is a concern, so it may be necessary to
prioritise or filter out mutants from operators that generate many
of them. As for RQ2, its goal is to determine the usefulness of each
operator type, as operators that produce mutants that are always
killed are not useful. RQ3 is concerned with the MS (i.e., the quality)
of realistic test suites. If MSs were always close to 100% because
most mutants are killed, this would indicate that MuT is of little
value. Finally, RQ4 has practical relevance, as it measures the time
of the whole MuT process.

5.1 Experiment setup
To answer the RQs, we applied the MuT process to a dataset of 15
third-party chatbots and their available test suites.

We selected chatbots from GitHub, favouring those with a test
suite available. For simplicity, we only selected Rasa chatbots since
Dialogflow chatbots must be deployed in Google’s cloud, so their
testing cannot be executed locally. The chatbot selection criterion
was maximising their heterogeneity, considering aspects like chat-
bot size, conversation length, or vocabulary. In Table 1, columns
2–9 summarise the features of the selected chatbots: number of

training phrases (and the average per intent), intents (and those
that are fallback), entities, intent parameters (and how many of
them are required), conversation flows, average length of the con-
versations, number of conversation bifurcations, and number of
chatbot actions (and how many of them are text messages).

Columns 10 to last of Table 1 characterise the test suites for the se-
lected chatbots. All chatbots – except bikeShop and Covid19_tracer

– had a test suite built by a developer available, written either with
Botium (column Botium by hand) or with Rasa-test (column Rasa-
test). In addition, Botium permits generating an initial test suite
from a chatbot automatically, which testers canmodify and increase.
We have generated this test suite for all chatbots (column Botium
automatic). For each test suite, the table shows the number of con-
vos (in parenthesis, the number of user-chatbot interactions of the
longest conversation scenario), and the number of test cases (as
each convo is executed for every test user utterance provided). The
Botium automatic test suites have just 1 user-chatbot interaction,
while the human-written Botium and Rasa-test suites reach up to
4 interactions. The Botium automatic test suites use the training
phrases as test utterances, and so, the number of tests is higher
than for Rasa-test. Still, the manually created Botium test suites
have the highest number of tests (except for Spaceonova).

5.2 RQ1: Applicability of mutation operators
To measure the applicability of the operators, we applied them in
exhaustive mode to all chatbots in the dataset. Table 2 shows a sum-
mary of the results. The column group Applicability reports on the
number of mutants generated (#Mutants), the number of chatbots
where the operator produced at least one mutant (#Chatbots), and
the ratio of generated mutants per applicable chatbot (Ratio).
Applicability. Seven operatorswere applicable on all chatbots:DP𝑚𝑎𝑥
and DP𝑚𝑖𝑛 (which delete one phrase from intents), K2P𝑚𝑎𝑥 and
K2P𝑚𝑖𝑛 (which delete all but 2 phrases from intents), MP𝑚𝑎𝑥 and
MP𝑚𝑖𝑛 (which move phrases between intents), and DA (which
deletes chatbot actions). This was to be expected, since all chatbots
have training phrases and actions, so that operators deleting or
moving phrases, or deleting actions, are applicable.

Mutation Testing for Task-Oriented Chatbots EASE 2024, June 18–21, 2024, Salerno, Italy

Chatbots Test Suites
Train. Phr. Intents Param. Avg Path Path Actions Botium automatic Botium by hand Rasa-test

Chatbot (Avg) (Fallb.) Entities (Req.) Flows Length Bifur. (Text) Convos (len.) Tests Convos (len.) Tests Convos (len.) Tests
256644 63 (5.7) 11 (0) 0 1 (0) 10 1.10 0 12 (11) 11 (1) 63 10 (2) 107 - -
bikeShop 13 (2.6) 5 (1) 1 3 (1) 4 1.25 0 8 (6) 4 (1) 13 - - - -
Covid19_tracer 18 (2.25) 8 (0) 0 1 (0) 4 1.5 0 7 (5) 3 (1) 18 - - - -
data-mining 1,128 (26.86) 42 (0) 0 0 (0) 38 1.12 2 43 (41) 42 (1) 1,128 40 (3) 1,801 - -
diagrams2ai 39 (5.5) 7 (1) 0 0 (0) 3 2.2 2 6 (5) 6 (1) 39 4 (4) 2,212 - -
dusbot 406 (31.23) 13 (1) 0 0 (0) 13 1 0 17 (7) 11 (1) 401 - - 6 (3) 6
e2e-bot 33 (8.25) 4 (0) 0 0 (0) 2 3.5 0 3 (3) 4 (1) 33 - - 4 (4) 4
Email-WhatsApp 48 (5.3) 9 (1) 0 0 (0) 4 2 3 11 (6) 8 (1) 48 10 (3) 1,319 - -
h4h-chatbot 100 (10) 10 (0) 0 0 (0) 10 1 0 10 (10) 9 (1) 100 - - 9 (1) 9
lankbanfinance 542 (10.04) 54 (1) 0 0 (0) 51 10.2 0 55 (5) 52 (1) 542 - - 47 (1) 47
legal-alien 270 (7.5) 36 (0) 0 1 (0) 32 1.12 2 37 (36) 7 (1) 72 - - 3 (3) 3
personal-bot 91 (9.2) 10 (0) 1 5 (0) 5 1.6 0 11 (8) 6 (1) 63 - - 3 (2) 3
Rasa-demo 87 (7.9) 11 (0) 0 1 (0) 7 15.56 2 10 (7) 11 (1) 87 - - 7 (3) 7
Spaceonova 149 (9.31) 16 (0) 0 0 (0) 14 1 0 15 (14) 16 (1) 147 13 (1) 131 - -
yassinelamarti 49 (5.44) 9 (0) 0 0 (0) 4 2 2 8 (7) 9 (1) 49 6 (3) 725 7 (3) 7

Average 202.4 16.33 0.13 0.8 13.4 3.08 0.87 16.87 13.27 186.87 13.83 1,049.17 10.75 10.75

Table 1: Measurements of the selected chatbots and test suites.

Applicability Resilience Stubbornness
Operator #Mutants #Chatbots Ratio #Killed MS #Tests %

Operators for training phrases
DP𝑚𝑎𝑥 229 15 15.3 90 39.3 1,828 19.9
DP𝑚𝑖𝑛 229 15 15.3 111 48.5 2,973 32.4
DPWP 3 1 3 2 66.7 3 23.1
DPWL 5 2 2.5 3 60 1 1.3
K2P𝑚𝑎𝑥 218 15 14.5 167 76.6 5,945 64.8
K2P𝑚𝑖𝑛 222 15 14.8 162 73 6,774 73.8
MP𝑚𝑎𝑥 228 15 15.2 178 78.1 3,771 41.1
MP𝑚𝑖𝑛 229 15 15.3 183 79.9 3,357 36.6

Operators for intents
DIP 9 6 1.5 6 66.7 98 22.5
DPP 3 1 3 0 0 0 0
SPO 3 1 3 0 0 0 0
DFI 5 5 1 2 40 31 0.7

Operators for entities
CRE 0 0 0 0 - 0 -
DLE 4 2 2 2 50 1 1.3

Operators for actions
DA 262 15 17.5 199 76 7,470 81.3
DPR 7 3 2.3 1 14.3 60 21.7
SO 38 12 3.2 34 89.5 5,061 60.3

Operators for conversation flows
DCS 39 12 3.3 34 87.2 5,083 60.6
DCB 24 6 4 23 95.8 5,018 67

Average 92.5 8.2 11.3 63 68.2 2,498.7 50.5

Table 2: Operator applicability, resilience and stubbornness.

The only operator that could not be applied was CRE (which
changes a regular expression). The operators applied on 1/3 of
the chatbots or less were DPWP (deletes a phrase with required
parameters), DPP (deletes a parameter prompt) and SPO (sets a re-
quired parameter to optional), applied on 1 chatbot; DPWL (deletes

a phrase with literals) and DLE (deletes a literal), applied on 2 chat-
bots; DPR (deletes a parameter used in a response) applied on 3
chatbots; and DFI (deletes a fallback intent) applied on 5 chatbots.
These operators target more specific chatbot features, like required
parameters (DPWP, DPP, SPO), entities with literals (DPWL, DLE),
fallback intents (DFI), or chatbot answers that use parameter values
(DPR). Hence, the operators were applied on chatbots with those
features (cf. Table 1).

Generated mutants. The operator that produced the highest ratio of
mutants per chatbot was DA, with a ratio of 17.5. Other operators
with high mutant generation ratios are DP𝑚𝑎𝑥 (15.3), DP𝑚𝑖𝑛 (15.3),
MP𝑚𝑖𝑛 (15.3), MP𝑚𝑎𝑥 (15.2), K2P𝑚𝑖𝑛 (14.8) and K2P𝑚𝑎𝑥 (14.5). The
number of mutant chatbots generated with these operators is close
to the number of chatbot intents, or slightly lower as these operators
do not apply to intents that have two or less training phrases or are
fallback. The operators with the lowest mutant generation ratios
are DFI (ratio 1), DIP (1.5), DLE (2), DPR (2.3), and DPWL (2.5).

Operator type. The operators for training phrases generated the
highest number of mutants (77.6% of the total), followed by those
for actions (17.5%), flows (3.6%), intents (1.1%) and entities (0.2%).
The operators for phrases also had the highest average mutant
generation ratio (12), followed by those for actions (7.7), flows (3.6),
intents (2.1) and entities (1).

Answer to RQ1. All our operators are applicable in chatbots, with
the operators for training phrases being the most applicable within
and across chatbots.

5.3 RQ2: Operator effectiveness
We evaluate the effectiveness of the operators by measuring their re-
silience (i.e., the MS achieved by the operator) and stubbornness [19]
(i.e., % of test suites that kill the mutant). An operator yielding a
highMS implies low resilience. Amutant is stubborn if very few test
cases kill it. An operator producing stubborn mutants is stubborn.

EASE 2024, June 18–21, 2024, Salerno, Italy Gómez-Abajo et al.

Table 2 displays the results, which are computed jointly for all
available test suites of each chatbot (cf. Table 1). The column group
Resilience shows the number of mutants killed, and the MS. The
column group Stubbornness shows the number of tests that killed
each mutant, and the percentage this number represents relative to
the total number of tests executed on those mutants.
Resilience. MSs range from 0% (for DPP and SPO) to 95.8% (for DCB,
which deletes a conversation bifurcation). The average MS is 68.2%.
Some operators yield a MS higher than 80%, so their resilience is
low. This is the case of DCB (95.8%), SO (89.5%) and DCS (87.2%). In
contrast, other operators produce hard-to-kill-mutants, like DPP
(0%), SPO (0%),DPR (14.3%),DP𝑚𝑎𝑥 (39.3%) andDFI (40%). Regarding
operator variants, MP𝑚𝑎𝑥 and MP𝑚𝑖𝑛 yield similar MSs (78.1% and
79.9%, a difference of 1.8), while the difference for the other variants
is more significant: 3.6 for K2P (76.6% vs 73%) and 9.2 for DP (48.5%
vs 39.3%).
Stubbornness. The percentage of tests that kill each mutant ranges
from 0% (for DPP and SPO) to 81.3% (for DA), with an average of
50.5%. The stubbornest operators (low % values) are DPP (0%) SPO
(0%), DFI (0.7%), DLE (1.3%), DPWL (1.3%), and DP𝑚𝑎𝑥 (19.9%). The
least stubborn operators (high % values) are DA (81.3%), K2P𝑚𝑖𝑛
(73.8%), DCB (67%), K2P𝑚𝑎𝑥 (64.8%), DCS (60.6%) and SO (60.3%).
Looking at operator variants, the difference between MP𝑚𝑎𝑥 and
MP𝑚𝑖𝑛 is smaller (4.5%) than the one for K2P (9%) and DP (12.5%).
Answer to RQ2. Different operators show different effectiveness. The
operators for intents produce the hardest-to-kill mutants (overall
MS of 40%), followed by those for entities (50%), phrases (65.7%), ac-
tions (76.2%) and flows (90.5%). The operators for entities produced
the stubbornest mutants (1.3%), followed by intents (2.6%).

5.4 RQ3: MuT effectiveness
We assess the effectiveness of theMuT process by computing theMS
of the test suites. Table 3 presents the results. Columns 2–4 show the
MS of the test suites for each chatbot. The column Overlap shows
the percentage of mutants that all available test suites killed (when
there is more than one test suite). The column Overall displays the
MS resulting from the combination of all available test suites.

We observe that only 4 test suites obtained a 100%MS (all of them
of type Botium-by-hand). The test suites created manually with
Rasa-test obtained the lowest scores (with 6.3% as the lowest value).
Generally, the test suites created by hand with Botium had the
highest MS (with an average of 94.3%), followed by those generated
automatically by Botium (45.5%) and manually built with Rasa-test
(19.6%). We found good correlation (0.67) between the number of
test cases of each test suite (cf. Table 1) and the obtained MS.

The overlapping between Botium-by-hand and Botium-automatic
test cases is relatively high (peaking at 66.4%), but low between
Botium-automatic and Rasa-test, as 5 cases have no overlapping
or is close to 0 (0.3% for lankbanfinance). This is interesting as it
means that the latter test suites are complementary. This is likely
because the Botium-automatic suites focus on testing intents with
their training phrases but not the conversation flow (the length of
all convos is 1, cf. Table 1). Instead, the Rasa-test suites focus more
on the conversation paths (with lengths up to 4, cf. Table 1).
Answer to RQ3. The results show that MuT is effective for chatbots.
Only 4 out of 29 test suites had a 100% MS, with an overall MS of

Chatbot Botium auto. Botium hand Rasa-test Overlap Overall
256644 52.3 78.9 - 52.3 78.9
bikeShop 21.3 - - - 21.3
Covid19_tracer 37.5 - - - 37.5
data-mining 63.7 100 - 63.7 100
diagrams2ai 56 100 - 56 100
dusbot 53 - 10.6 0 63.6
e2e-bot 46.2 - 35.9 0 82.1
Email-WhatsApp 41.1 100 - 41.1 100
h4h-chatbot 63.4 - 15 0 78.4
lankbanfinance 41.4 - 12.9 0.3 54
legal-alien 11.4 - 6.3 0 17.6
personal-bot 40.3 - 73.6 30.6 83.4
Rasa-demo 49.5 - 20.5 1.1 68.9
Spaceonova 75.8 76.9 - 66.4 86.4
yassinelamarti 51.3 100 48.8 15.4 100

Average 45.5 94.3 19.6 23.2 68.2

Table 3: Mutation score (%) by test suite.

68.2%. MuT can help understanding the strength of test suites. For
instance, in our dataset the tests generated by Botium were weaker
than those manually built, and complementary to the Rasa tests.

To calculate the MS, we automatically checked and discarded
syntactically equivalent mutants. Moreover, we randomly sampled
a subset of the live mutants and manually checked if they were se-
mantically equivalent. We found that the sampled mutants created
by operators for intents, entities, actions and conversation flows
were not equivalent. In the case of mutants produced by training
phrase operators, we assessed that deleting or moving phrases from
an intent reduced the likelihood (confidence) that the NLP engine
would select that intent when saying the deleted phrases to the chat-
bot. For most intents, the confidence decrease was between 30–60%,
so we hypothesise that there are test utterances (other than those
in the test cases) that would cause the chatbot to select a different
intent and kill the mutant, implying that the mutant is not semanti-
cally equivalent. Instead, for intents related to greetings/farewell,
which have many similar short phrases (e.g., “Hello”, “Hi”, “Hey”),
the decrease was lower. We argue that this uncertainty would not
distort the results much, as most live mutants produced by phrase
operators (73%) come from only two chatbots (lankbanfinance and
legal-alien-chatbot). In future work, we plan to incorporate au-
tomatic heuristics for detecting semantically equivalent mutants
based on confidence decrease.

5.5 RQ4: MuT efficiency
To evaluate the efficiency of MuT for chatbots, we measured the ex-
ecution time. The MuT process comprises 3 phases: a preprocessing
phase that computes the similarity annotation model used by the
heuristics, a chatbot mutation phase, and a testing phase that runs
the test suites against the mutants and calculates the MS. Columns
2–4 of Table 4 show the execution time for each phase, and column
5 shows the total MuT time. Then, columns 6–8 show the number
of mutants, test cases, and the time per mutant (TPM), respectively.
Times are shown in seconds. We run the experiment on a windows
machine with an i9-13900 2CPU, 32GB of RAM, and using dynamic
parallelisation with 16 threads.

Mutation Testing for Task-Oriented Chatbots EASE 2024, June 18–21, 2024, Salerno, Italy

Chatbot Prepr. Mutat. Testing Total #Mut. #Tests TPM

256644 18 464 2,825 3,307 90 170 37
bikeShop 2 89 380 471 47 13 10
Covid19_tracer 1 3 250 255 32 18 8
data-mining 5,940 25,668 39,879 71,487 308 2,929 232
diagrams2ai 11 6 5,286 5,303 59 2,251 90
dusbot 799 2,365 6,861 10,026 85 407 118
e2e-bot 5 5 557 568 39 37 15
Email-WhatsApp 11 7 26,289 26,308 78 1,367 337
h4h-chatbot 49 470 3,089 3,608 60 109 60
lankbanfinance 1,418 8,777 46,555 56,750 365 589 156
legal-alien 337 208 16,818 17,364 256 75 68
personal-bot 36 378 1,988 2,403 72 66 33
Rasa-demo 34 430 2,765 3,229 93 94 35
Spaceonova 90 39 2,011 2,140 95 278 23
yassinelamarti 11 8 2,963 2,983 78 781 38

Average 584 2,595 10,568 13,747 117.2 612.3 117

Table 4: MuT efficiency. TPM = time per mutant. Times in s.

The total MuT time ranges from a few minutes (4 for Covid19_tr-
acer) to almost 20 hours (for data-mining), with 10 chatbots finish-
ing in less than 90 minutes. The per-mutant time ranges from 8
seconds (for Covid19_tracer) to 337 seconds (for Email-WhatsApp).

Regarding each phase, the preprocessing time has quadratic de-
pendence with the number of training phrases (adjusted by 4.95 ×
#𝑝ℎ𝑟𝑎𝑠𝑒𝑠 − 61.63× #𝑝ℎ𝑟𝑎𝑠𝑒𝑠 , with 𝑅2=0.9). This is expected, as this
phase calculates the similarity between each two phrases. This is
typically the fastest phase (except for diagrams2ai, Email-WhatsApp,
legal-alien, Spaceonova and yassinelamarti). Mutation is the sec-
ond fastest phase, with times from 3 seconds (for Covid19_tracer,
generating 32 mutants) to more than 7 hours (for data-mining, gen-
erating 308 mutants). The most expensive phase is testing, rang-
ing from 4 minutes (for Covid19_tracer) to almost 13 hours (for
lankbanfinance). As expected, there is high correlation (0.71) be-
tween the testing phase time and the number of test executions
(given by the product of the numbers of tests and mutants).
Answer to RQ4. In line with the results of MuT for other artefacts,
like code [24], MuT for chatbots is time-consuming. Still, its cost
may be admissible in practice, as the whole MuT process took
less than 90 minutes for 67% of the analysed chatbots. Some of
the most time-consuming chatbots had also the largest test suites
(e.g., lankbanfinance, dusbot, legal-alien, cf. Table 1), but their
MSs were not particularly high (54, 63.6 and 17.6), which shows the
potential of MuT to improve the test suites.

5.6 Threats to validity
Construct validity. We rely on parsing chatbots into Conga, and
generating an implementation back. Conga’s Rasa parser detects
when the chatbot behaviour is not preserved [32]. As an additional
sanity check, we applied an emptymutation to all chatbots, checking
that they behaved as the original in all test cases.

Internal validity. To ensure that our parsers and generators to
translate between Rasa and Conga are correct, we applied differen-
tial testing to them, and confirmed that the translation preserves
the chatbot information and behaviour.

External validity.We only consider Rasa chatbots due to the avail-
ability of test suites that can be run locally. Hence, our results need
to be confirmed with chatbots of other platforms, like Dialogflow.
Similarly, the experiment used a reduced dataset of chatbots, so its
results could be strengthened by using more chatbots. Nevertheless,
compared to the bigger dataset used in [8], our chatbots have simi-
lar size in terms of intents (average 16.3 in our case vs 15.4 in [8])
and entities (1.13 vs 0.39), and higher conversation complexity (13.4
vs 6.96 average flows).

6 RELATEDWORK
Mutation testing. MuT was initially proposed for source code,
and so, mutation operators for many programming languages exist,
such as C [23], or Java [10]. MuT has also been applied to other
artefacts like state machines [22], or model transformations [20].
Overall, the relevance of MuT is evinced by the diversity of domains
where it has been used, including cyber-physical systems [39], cloud
and HPC [9], and blockchain [2]. We follow this line of works but
for a novel domain: chatbots. Since chatbots manage specialised
concepts (e.g., training phrases, intents, flows), we have defined
mutation operators specifically for them, assessing their value.

MuT can produce a large number of mutants, leading to long
testing times. Test case reduction techniques decrease this number
by selecting the most relevant mutants. For example, Wei et al. [41]
apply spectral clustering to discard mutants based on their similar-
ity. Likewise, we measure the distance between training phrases to
consider the closest or farthest ones when generating the mutants.

Equivalent mutants can affect the efficiency and accuracy of the
MuT process. Some techniques for their detection are data flow
patterns [26], trivial compiler equivalence [25], and automata lan-
guage equivalence [12] (see [29] for a survey). In the future, we
will study techniques for detecting equivalent chatbots. In addition,
MuT approaches for deep neural networks [38] may help us man-
age the stochasticity of the NL models in chatbots to enable more
informed decisions on whether or not a mutant is killed.

Testing for chatbots. Chatbots can be tested at different levels [7].
The most basic one is unit testing, which seeks to ensure that intents
and their training phrases are properly defined. Most commercial
platforms, like Dialogflow, offer a console to test individual intents
manually. Since defining test data is time-consuming, researchers
have devised ways to generate test utterances that simulate user
phrases. For example, Charm [6] provides mutation operators for
sentences that emulate misspellings and rephrase them by using
synonyms, swapping numbers for words, or translating back and
forth into a pivot language. Applying these operators to the in-
tent training phrases generates test utterances. Božić [5] mutates
input phrases using metamorphic relations, and generates input
test utterances from an initial test suite. Similarly, DialTest [28]
applies synonym replacement, back translation and word insertion,
and identifies the test cases most likely to find defects in a chatbot.
Overall, all these works use operators to enlarge the set of test
utterances by generating variants of the input test phrases. Instead,
our operators are specific to MuT, covering aspects of the chatbot
design like conversation, interaction, or parameters.

Complementarily, some frameworks help to test the conversation
flow. Most permit running test scenarios and are specific for a

EASE 2024, June 18–21, 2024, Salerno, Italy Gómez-Abajo et al.

chatbot technology, such as Rasa-test for Rasa chatbots, or Bot
Tester [3] for chatbots created with Bot Builder. In contrast, Botium
is independent from the underlying chatbot technology, providing
connectors to several platforms. Instead of testing, Silva et al. [37]
use model checking on the conversation design to ensure properties
of interest in the conversation. This can be done at the design phase,
but still requires from testing to ensure a proper handling of the
user utterances. In our case, our mutation operators are technology-
independent since they are defined atop a neutral chatbot design
language. Our tool supports test scenarios defined with Botium and
Rasa-test, but it can be extended to support other frameworks.

Other chatbot aspects that can be tested include performance,
security or usability [7]. Usability testing often requires human
judgement [36] (which is difficult to automate) or the existence of
a record of real user-chatbot dialogues [21]. Alternatively, some
researchers propose design metrics that may hint potential usability
problems [8]. Since MuT is oriented to assess the quality of test
cases, our work does not cover these other kinds of testing.

Overall, we can find different proposals and tools to test chatbots.
However, to the best of our knowledge, there are no proposals that
apply MuT to assess the quality of chatbot test suites.

7 CONCLUSIONS AND FUTUREWORK
Task-oriented chatbots have raised in popularity, and many tech-
nologies for their construction have appeared. However, there is
currently no mechanism to assess the quality of their test suites.
To fill this gap, we have proposed an approach to MuT of chat-
bots, including a catalogue of 19 MuT operators emulating faults
in training phrases, intents, entities, chatbot actions, and conversa-
tion flows. We have implemented a MuT environment for chatbots
that is technology-independent and supports test scenarios from
Botium and Rasa-test. We have assessed the applicability, effective-
ness and efficiency of the approach on a dataset of 15 chatbots and
29 test suites, obtaining positive results. Overall, we found room for
improvement in 86% of the test suites, with costly but acceptable
running times (less than 90 minutes for 67% of the chatbots).

In the future, we will automate the detection of semantically
equivalent mutants (e.g., using confidence decrease heuristics), and
the synthesis of tests able to kill live mutants. Finally, we will adapt
our approach to LLM-based agents.

DATA AVAILABILITY
The datasets of chatbots and test suites, the experiment data, and
the results are available at https://zenodo.org/records/10938786.

ACKNOWLEDGMENTS
Work funded by the SpanishMICINNwith projects TED2021-129381B-
C21, PID2021-122270OB-I00, and RED2022-134647-T.

REFERENCES
[1] P. Arcaini, A. Gargantini, and E. Riccobene. 2019. Fault-based test generation for

regular expressions by mutation. Softw. Test. Verification Reliab. 29, 1-2 (2019).
[2] M. Barboni, A. Morichetta, and A. Polini. 2022. SuMo: A mutation testing ap-

proach and tool for the Ethereum blockchain. J. Syst. Softw. 193 (2022), 111445.
[3] Bot Tester. last access in 2024. https://github.com/microsoftly/BotTester.
[4] Botium. last access in 2024. https://www.botium.ai/.
[5] J. Bozic. 2022. Ontology-Based Metamorphic Testing for Chatbots. Softw. Qual. J.

30, 1 (2022), 227–251.

[6] S. Bravo-Santos, E. Guerra, and J. de Lara. 2020. Testing Chatbots with Charm.
In QUATIC (CCIS, Vol. 1266). Springer, 426–438.

[7] J. Cabot et al. 2021. Testing Challenges for NLP-intensive Bots. In BotSE@ICSE.
IEEE, 31–34.

[8] P. C. Cañizares, J. M. López-Morales, S. Pérez-Soler, E. Guerra, and J. de Lara.
2024. Measuring and clustering heterogeneous chatbot designs. ACM Trans.
Softw. Eng. Methodol. 33, 4 (2024), 90:1–90:43.

[9] P. C. Cañizares, A. Núñez, and M. Merayo. 2018. Mutomvo: Mutation testing
framework for simulated cloud and HPC environments. J. Syst. Softw. 143 (2018),
187–207.

[10] H. Coles, T. Laurent, C. Henard, M. Papadakis, and A. Ventresque. 2016. PIT: A
Practical Mutation Testing Tool for Java (Demo). In ISSTA (Saarbrücken,
Germany). ACM, 449–452. https://doi.org/10.1145/2931037.2948707

[11] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. 1978. Hints on Test Data Selection:
Help for the Practicing Programmer. Computer 11, 4 (1978), 34–41.

[12] X. Devroey et al. 2018. Model-basedmutant equivalence detection using automata
language equivalence and simulations. J. Syst. Softw. 141 (2018), 1–15.

[13] Dialogflow. last access in 2024. https://dialogflow.com/.
[14] A. Estero-Botaro, F. Palomo-Lozano, and I. Medina-Bulo. 2008. Mutation operators

for WS-BPEL 2.0. In ICSSEA.
[15] D. Cer et al. 2018. Universal Sentence Encoder. CoRR abs/1803.11175 (2018).

arXiv:1803.11175 http://arxiv.org/abs/1803.11175
[16] W. X. Zhao et al. 2023. A Survey of Large Language Models. CoRR abs/2303.18223

(2023). https://doi.org/10.48550/ARXIV.2303.18223 arXiv:2303.18223
[17] P. Gómez-Abajo, E. Guerra, J. de Lara, and M. Merayo. 2021. Wodel-Test: A

model-based framework for language-independent mutation testing. Softw. Syst.
Model. 20, 3 (2021), 767–793. https://doi.org/10.1007/s10270-020-00827-0

[18] P. Gómez-Abajo, E. Guerra, J. de Lara, and M. G. Merayo. 2018. A tool for
domain-independent model mutation. Sci. Comput. Program. 163 (2018), 85–92.

[19] L. Gonzalez-Hernandez et al. 2018. UsingMutant Stubbornness to Create Minimal
and Prioritized Test Sets. In QRS. IEEE, 446–457.

[20] E. Guerra, J. Sánchez Cuadrado, and J. de Lara. 2019. Towards Effective Mutation
Testing for ATL. In MODELS. IEEE, 78–88.

[21] X. Han et al. 2023. Democratizing Chatbot Debugging: A Computational Frame-
work for Evaluating and Explaining Inappropriate Chatbot Responses. In CUI.
ACM, Article 39, 7 pages.

[22] R. M. Hierons and M. G. Merayo. 2009. Mutation testing from probabilistic and
stochastic finite state machines. J. Syst. Softw. 82, 11 (2009), 1804–1818.

[23] Y. Jia and M. Harman. 2008. MILU: A Customizable, Runtime-Optimized Higher
Order Mutation Testing Tool for the Full C Language. In TAICPART. 94–98.
https://doi.org/10.1109/TAIC-PART.2008.18

[24] Y. Jia and M. Harman. 2011. An Analysis and Survey of the Development of
Mutation Testing. IEEE Trans. Software Eng. 37, 5 (2011), 649–678.

[25] M. Kintis et al. 2018. Detecting Trivial Mutant Equivalences via Compiler Opti-
misations. IEEE Trans. Software Eng. 44, 4 (2018), 308–333.

[26] M. Kintis and N. Malevris. 2015. MEDIC: A static analysis framework for equiva-
lent mutant identification. Inf. Softw. Technol. 68 (2015), 1–17.

[27] Lex. last access in 2024. https://aws.amazon.com/en/lex/.
[28] Z. Liu, Y. Feng, and Z. Chen. 2021. DialTest: Automated Testing for Recurrent-

Neural-Network-Driven Dialogue Systems. In ISSTA. ACM, 115–126.
[29] L. Madeyski, W. Orzeszyna, R. Torkar, and M. Jozala. 2014. Overcoming the

Equivalent Mutant Problem: A Systematic Literature Review and a Comparative
Experiment of Second Order Mutation. IEEE Trans. Sof. Eng. 40, 1 (2014), 23–42.

[30] Microsoft Bot Framework. last access in 2024. https://dev.botframework.com/.
[31] OpenAI. last access in 2024. https://openai.com/.
[32] S. Pérez-Soler, E. Guerra, and J. de Lara. 2020. Model-Driven Chatbot Develop-

ment. In ER (LNCS, Vol. 12400). Springer, 207–222.
[33] S. Pérez-Soler, S. Juárez-Puerta, E. Guerra, and J. de Lara. 2021. Choosing a

Chatbot Development Tool. IEEE Softw. 38, 4 (2021), 94–103.
[34] Rasa. last access in 2024. https://rasa.com/.
[35] Rasa test. last access in 2024. https://rasa.com/docs/rasa/testing-your-assistant.
[36] R. Ren, J. W. Castro, S. T. Acuña, and J. de Lara. 2019. Evaluation Techniques for

Chatbot Usability: A Systematic Mapping Study. Int. J. Softw. Eng. Knowl. Eng.
29, 11&12 (2019), 1673–1702.

[37] G. R. S. Silva, G. N. Rodrigues, and E. D. Canedo. 2023. A Modeling Strategy for
the Verification of Context-Oriented Chatbot Conversational Flows via Model
Checking. J. Univers. Comput. Sci. 29, 7 (2023), 805–835.

[38] F. Tambon, F. Khomh, and I. Antoniol. 2023. A probabilistic framework for
mutation testing in deep neural networks. Inf. Softw. Technol. 155 (2023), 107129.

[39] E. Viganò, O. Cornejo, F. Pastore, and L. Briand. 2023. Data-Driven Mutation
Analysis for Cyber-Physical Systems. IEEE Tr. Sof. Eng. 49, 4 (2023), 2182–2201.

[40] Watson. last access in 2024. https://www.ibm.com/cloud/watson-assistant/.
[41] C. Wei, X. Yao, D. Gong, and H. Liu. 2021. Spectral clustering based mutant

reduction for mutation testing. Inf. Softw. Technol. 132 (2021), 106502.
[42] J. D. Zamfirescu-Pereira et al. 2023. Herding AI Cats: Lessons from Designing a

Chatbot by Prompting GPT-3. In DIS. ACM, 2206–2220.

https://zenodo.org/records/10938786
https://github.com/microsoftly/BotTester
https://www.botium.ai/
https://doi.org/10.1145/2931037.2948707
https://dialogflow.com/
https://arxiv.org/abs/1803.11175
http://arxiv.org/abs/1803.11175
https://doi.org/10.48550/ARXIV.2303.18223
https://arxiv.org/abs/2303.18223
https://doi.org/10.1007/s10270-020-00827-0
https://doi.org/10.1109/TAIC-PART.2008.18
https://aws.amazon.com/en/lex/
https://dev.botframework.com/
https://openai.com/
https://rasa.com/
https://rasa.com/docs/rasa/testing-your-assistant
https://www.ibm.com/cloud/watson-assistant/

	Abstract
	1 Introduction
	2 Background
	2.1 Task-oriented chatbots
	2.2 Testing task-oriented chatbots
	2.3 Mutation testing

	3 Mutation Testing for Chatbots
	4 Architecture and Tool Support
	4.1 Architecture
	4.2 Tooling

	5 Evaluation
	5.1 Experiment setup
	5.2 RQ1: Applicability of mutation operators
	5.3 RQ2: Operator effectiveness
	5.4 RQ3: MuT effectiveness
	5.5 RQ4: MuT efficiency
	5.6 Threats to validity

	6 Related Work
	7 Conclusions and Future Work
	Acknowledgments
	References

