Abstract

Many recommenders for modelling tasks have recently appeared. They use a variety of recommendation methods, tailored to concrete modelling languages. Typically, recommenders are created as independent programs, and subsequently need to be integrated within a modelling tool, incurring in high development effort. Moreover, it is currently not possible to reuse a recommender created for a modelling language with a different notation, even if they are similar.

To attack these problems, we propose a methodology to reuse and integrate recommenders into modelling tools. It considers four orthogonal dimensions: the target modelling language, the tool, the recommendation source, and the recommended items. To make homogeneous the access to arbitrary recommenders, we propose a reference recommendation service that enables indexing recommenders, investigating their properties, and obtaining recommendations likely coming from several sources. Our methodology is supported by IronMan, an Eclipse plugin that automates the integration of recommenders within Sirius and tree-based editors, and can bridge recommenders created for a modelling language for their reuse with a different one. We evaluate the power of the tool by reusing 2 recommenders for 4 different languages, and integrating them into 6 modelling tools.

CCS Concepts:
• Software and its engineering → Integrated and visual development environments
• Information systems → Recommender systems

Keywords: Model-driven engineering, recommender systems, language engineering, modelling tools

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ACM Reference Format:

1 Introduction

Recommender systems (RSs) are increasingly being used to assist developers in all sorts of software engineering tasks [51]. Modelling is no exception, as we are recently witnessing the proposal of numerous recommenders for modelling languages [3]. Most of them help in creating models or meta-models by recommending, e.g., new attributes or references for classes, or new classes related to existing ones [2, 11, 17, 21, 55, 61]. They use a variety of methods – each with their own strengths and weaknesses – ranging from classical recommendation algorithms like collaborative filtering [2, 17] or content-based recommendations [2], to knowledge graphs [55], natural language processing [11], pre-trained language models [61] or graph kernels [21].

Given this growing plethora of modelling recommenders, the natural question is "Can I reuse these RSs for my modelling notation, and integrate them within my modelling tool?". However, the reuse and integration of RSs pose a number of practical challenges. Firstly, existing RSs may have been developed for a different (albeit perhaps similar) modelling language, such as an existing RS for Ecore models that one may like to reuse for UML class diagrams. Moreover, it can be useful to combine several RSs because they suggest different types of items (e.g., attributes, operations) for different target elements (e.g., classes, interfaces). Further, even if they suggest the same type of items, combining RSs might be useful to retain their best recommendations. Finally, from a technical point of view, RSs may be deployed in numerous ways (e.g., a stand-alone program, a service, within a modelling tool), and need to be integrated within heterogeneous modelling tools (e.g., graphical, textual, tree-based).

In this paper, we address the challenges of integrating and reusing RSs for modelling languages. To accomplish this goal, we propose deploying the RSs as services, on the basis of a standard API and a recommender server protocol.
This also facilitates the recommenders’ integration within arbitrary modelling tools. In addition, we enable the reuse of RSs tailored to a modelling language for other notations via a structural mapping. The combination of recommenders of the same type of item (e.g., attributes) relies on mechanisms for the aggregation of their recommendation lists [46], and our approach is flexible to accommodate several aggregation methods. Technically, we provide support for the automated integration of the assembled RSs within Eclipse modelling editors based on Sirius [57], and EMF tree editors [59].

Our approach is realised as an Eclipse plugin called IronMAN (Integrating RecQmmenDers for Modelling LANGuages), which guides in all steps of the integration task, including RS discovery and selection, adaptation to the modelling language (if needed), configuration of the aggregation method, and integration of the recommender within the (Sirius- or tree-based) modelling tool. To evaluate its usefulness, we assess the reuse and integration of two existing RSs into six third-party tools of the Eclipse ecosystem.

Paper organisation. Sec. 2 provides background on RSs for modelling languages and analyses the relevant dimensions for their reuse and integration. Sec. 3 presents the components of our approach: the reference recommendation service and its protocol, the adaptation of the RSs to the modelling language, the recommendation aggregation mechanism, and the integration of the RSs into modelling tools. Sec. 4 describes our tool and Sec. 5 reports on its evaluation. Sec. 6 compares with related work and Sec. 7 concludes.

2 Background and Integration Dimensions

Next, we overview RSs for modelling languages (Sec. 2.1) and present the dimensions for their integration (Sec. 2.2).

2.1 Background on Recommender Systems

RSs have become ubiquitous software tools that assist in decision-making tasks in situations of information overload. They are key components of a wide range of applications, including e-commerce sites (e.g., Amazon), social networks (e.g., Facebook), and music (e.g., Spotify), video (e.g., Netflix) and streaming platforms (e.g., Twitch) [50].

RSs suggest items that align with the preferences of a particular user. The term item refers to what is suggested to the user. RSs usually focus on a particular type of item (e.g., videos), using filtering and ranking algorithms to provide valuable recommendations for that item type. The recommendations are computed based on data about three entities: target users, items, and user-item interactions (often unary or numeric ratings) that express personal preferences [50]. When applied to modelling tasks, these entities are sometimes reinterpreted. As an example, in a RS suggesting attributes for classes, the recommended items are the attributes, the target users are the classes, and the user-item interactions are given by the inclusion of the attributes in each class and its superclasses. To avoid confusion, we use the term target to refer to the target users (classes in this example).

RSs can be classified into three main categories based on how they compute the recommendations: content-based systems recommend items similar to the ones that the user preferred in the past; collaborative filtering systems recommend items preferred by like-minded users; and hybrid systems combine the previous two techniques to overcome their limitations. The three approaches return a list of recommended items, which is often ranked. In addition, some recommendation methods provide a rating for each item, which quantifies the likelihood of the item to be relevant for the user.

Fig. 1 shows the working scheme of a RS for UML class diagrams. A RS for a modelling language is typically built on the basis of a dataset of models conformant to the language meta-model. Then, when a modelling engineer is working on a model conformant to the same meta-model, the RS can provide sensible recommendations. In the figure, the RS suggests new attributes to incorporate to a given class.

2.2 Dimensions of Integration of Modelling RSs

The integration and reuse of RSs for modelling tasks requires the consideration of several dimensions, summarised in Fig. 2 as a feature model [31].

Target modelling language. A RS can be integrated in modelling environments developed for the same modelling language as the RS supports (homogeneous), or alternatively, it can be reused for a different – albeit similar – modelling language (heterogeneous). For example, a RS for meta-modelling languages like Ecore [59] may be reused for UML class diagrams, and vice versa [4]. For this purpose, a mapping between the target modelling language and the RS is needed. Having the possibility to set this bridge is useful in cases where there is not enough data (i.e., models) to train a RS for a (domain-specific) modelling language, but a RS for a similar notation exists. We describe our approach to adapt recommenders in Sec. 3.3.

Recommendation sources. The recommendations may be produced locally, if the RS is deployed on the computer where the modelling tool is running [11, 17, 21, 61]. In addition, recommendations may come from services deployed on a remote server [4, 55]. The latter option is more
3 Approach

This section presents our proposal to reuse and integrate RSs for modelling. First, Sec. 3.1 provides an overview. Then, Sec. 3.2 describes the recommendation service. Sec. 3.3 explains our approach to bridge RSs to modelling notations. Sec. 3.4 recasts existing aggregation methods for ranked recommendations to modelling RSs. Finally, Sec. 3.5 introduces our support for integrating RSs into modelling environments.

3.1 Overview

Fig. 3 shows the scheme of the methodology we have created for RS integration and reuse. It covers all dimensions of integration depicted in Fig. 2. Our approach relies on deploying the RSs as services conformant to the reference REST API described in Sec. 3.2. This way, the first step in the integration consists in discovering the available RSs by means of a RS indexer. The indexer can filter the available services by diverse criteria, like the modelling language for which the RSs provide suggestions. In a second step, the user selects the recommendation targets and items (a subset of those provided by the RSs selected in the previous step). If several RSs of the same kind of items are chosen, the user will need to select an aggregation method for the recommendations. Moreover, if the modelling language where the RSs are to be integrated differ from the language supported by the RSs, then the user will have to

![Figure 2. Dimensions of reuse and integration of RSs for modelling languages.](image)

![Figure 3. Overview of our methodology for RS integration.](image)
We have developed a recommendation service consisting of several RSs placed within the same URL, and the discovery of services to obtain recommendations, aggregating and adapting recommendation services and requesting recommendations.

After performing these steps, our approach automatically integrates the assembled RSs within the modelling tool. The result is a plugin that communicates with the selected RS services to obtain recommendations, aggregating and adapting them to the modelling language.

3.2 Recommendation service

We have developed a recommendation service consisting of two components: the recommendation service indexer API, and the recommendation service API. On the one hand, the
indexer provides a standardised method to register and update recommendation services, and to explore the registered services, enabling clients to discover and access the recommendation services that best suit their needs. On the other hand, the recommendation service offers a uniform mechanism for requesting recommendations and accessing the features of the RSs registered in the indexer. This approach simplifies the integration of arbitrary RSs into modelling tools, avoiding the need to build custom, heterogeneous integrations.

Table 1 shows the REST endpoints of the indexer, which enable clients to register, update, explore, and discover services. The /register endpoint allows registering new recommendation services in the indexer. To register a service, clients need to provide its URL using the /register?urlName=(url) endpoint, where (url) is the URL of the recommendation service. Several RSs can be placed within the same URL, and the registered URLs must define the endpoints defined in Table 2. In particular, upon registering a recommendation service, the indexer invokes its /features endpoint (explained below) to cache the characteristics of the RS.

The /updateRegistration endpoint allows clients to update a previously registered service. Similar to /register, clients only need to provide the URL of the service to be updated using the /updateRegistration?urlName=(url) endpoint. As before, the indexer will then invoke the /features endpoint of the recommendation service.

The /services endpoint returns the list of all registered recommendation services and their metadata in JSON format, and /discover allows searching for deployed services using either the name or the nsURI of the RS. The nsURI is a unique identifier for meta-models, which is standard in modelling technologies like EMF [59]. This way, the API returns a JSON list with all recommenders with the given name or defined over a meta-model with the provided nsURI.

Table 2 shows the endpoints of the recommendation service. They allow accessing the features of the registered services and requesting recommendations.

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Desc.</th>
<th>Method</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>/register?urlName=(url)</td>
<td>Registers a new recommendation service.</td>
<td>POST</td>
<td>Ok/Error</td>
</tr>
<tr>
<td>/updateRegistration?urlName=(url)</td>
<td>Updates a registered recommendation service.</td>
<td>POST</td>
<td>Ok/Error</td>
</tr>
<tr>
<td>/services</td>
<td>Returns all registered recommendation services and their metadata. The optional query parameter nsURI=true groups services by nsURI.</td>
<td>GET</td>
<td>Available recommendation services (JSON).</td>
</tr>
<tr>
<td>/discover?</td>
<td>name=(name)</td>
<td>nsURI=(uri)</td>
<td>Searches for registered recommendation services with the given RS name or meta-model nsURI.</td>
</tr>
</tbody>
</table>

Table 1. Endpoints of the recommender indexer API.

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Desc.</th>
<th>Method</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>/features</td>
<td>Returns the features of all RSs within the recommendation service.</td>
<td>GET</td>
<td>Features of the recommendation service (JSON).</td>
</tr>
<tr>
<td>/recommend/(name)?</td>
<td>Returns a list of recommendations from RS name, for a given target (within a context, if required). All parameters are optional: newMaxRec (integer) refers to the maximum number of recommendations to retrieve, threshold (double) to the threshold for the ranking, and itemType ([string]) to the type of recommended items.</td>
<td>POST</td>
<td>Target and its context, if required (JSON).</td>
</tr>
<tr>
<td>/recommend?</td>
<td>name=(name)</td>
<td>newMaxRec=(maxRec)?, (threshold=threshold)?, (itemType=type)?</td>
<td>List of recommendations (JSON).</td>
</tr>
</tbody>
</table>

Table 2. Endpoints of the recommendation service API.

The /features endpoint allows clients to retrieve the metadata of all RSs within the service. Fig. 4 shows a conceptual model of the metadata. Class RecommenderSystem defines the name of the RS, the meta-model nsURI, and a description of the modelling context that the RS needs to compute the recommendations. The context can be None (only the target of the recommendation is needed), Full (requires the whole model containing the target element), or Targets (requires all objects with the same type as the target element).

The metadata also defines the target class of the recommendations, and its identifying features. For simplicity, our approach assumes that a RS only serves recommendations (e.g., attributes) for a target type (e.g., UML classes). If several
Figure 4. Conceptual model of RSs assumed by our approach.

Figure 5. (a) Excerpt of the Ecore meta-model, annotated with the role of the elements in the example RS. (b) Encoding excerpt of the RS returned by the /features endpoint.

The feature identifying EClasses is their name, that the recommended items are of type EAttribute, and that the feature provided when recommending an attribute is its name. In addition, EAttributes are read via the eAllAttributes derived reference, but written on the eStructuralFeatures composition reference. The former contains all attributes owned and inherited by the class, and the latter only the owned ones (and is a common container for both references and attributes). The rationale for distinguishing both is that modelling tools need to provide the items that any target object already has – owned and inherited attributes in our example, available via eAllAttributes. However, when a recommendation is accepted, the item needs to be created and assigned to the target – in our example, eStructuralFeatures is used. Fig. 5(b) shows the metadata (in JSON format) that would be returned when invoking the /features endpoint on the RS. In this case, the name of the RS is EcoreRecommender, and the RS needs to receive all other possible targets in the model (i.e., all EClasses) as context.

Some well-formedness criteria are required from the roles that meta-model elements can play in a RS. In particular, if the recommended items are of type c_i, then c_i should be the destination class of a write property p_w, or a subclass of such designation class $c_i \leq dest(p_w)$. For instance, in Fig. 5(a), EAttribute\leqEStructuralFeature, which is the destination of the write property eStructuralFeatures. This ensures compatibility of the items with the write property, so that newly created items can be inserted in it. Conversely, the destination of a read property p_r should be the type c_i of the recommended item, or a subclass: $dest(p_r) \leq c_i$. In the example, EAttribute\leqEAttribute, which is the destination of the read property eAllAttributes. This ensures that the content of the read property is compatible with the item.

The last endpoint in Table 2 is /recommend, which allows clients to request recommendations by specifying the RS name as a path parameter, and providing a JSON file with the target of the recommendation, its current items, and its context (if needed). Clients can customise the recommendation by means of optional query parameters such as the maximum number of recommendations to retrieve (newMaxRec), the minimum ranking value threshold (threshold), and the desired item type when several are possible (itemType).
Example. Fig. 6 shows a recommendation request example for the RS in Fig 5. Part (a) shows an Ecore model being edited, where recommendation for class Professor is solicited. Part (b) shows the encoding of the request, where the target EClass is named Professor, and has two EAttributes called isPhD and name. They are encoded in the read feature eAllAttributes. As specified in Fig. 5, the only feature that identifies EAttributes is their name. Since the context of the RS is set to Targets, the request needs to include the name and attributes of all other EClasses in the model. In this case, there is just one additional class named University.

3.3 Adaptation of RSs to the modelling notation

Our approach to reuse a RS for a modelling notation involves establishing a structure-preserving mapping \(m : RS \rightarrow MM \) between the classes and features used by the RS, and the elements of interest in the language meta-model \(MM \).

Example. Fig. 7 exemplifies a mapping that adapts the RS for Ecore – which recommends EAttributes for ECclasses – to UML. The adapted RS will then recommend properties for UML classes. RS on the left shows an excerpt of the Ecore meta-model containing the elements designated as targets, features and items. The mapping maps the Ecore meta-model elements playing a role in the RS to corresponding elements in the UML meta-model \(MM \) to the right.

Figure 7. Adapting the RS to the modelling language.

Not any mapping is valid, but well-formed mappings need to preserve the structure of the source meta-model. For this purpose, we build on the notion of binding, which has been used to express generic model operations [15, 54]. Next, we use predicates \(\text{item}(_e) \), \(\text{feature}(_e) \), \(\text{property}(_e) \), \(\text{writeProperty}(_e) \), and \(\text{target}(_e) \) to denote the role of the element in RS; predicate \(\text{relevant} (e) = \text{item}(e) \lor \text{feature}(e) \lor \text{property}(e) \lor \text{writeProperty}(e) \lor \text{target}(e) \) to identify the elements that need to be mapped; \(\text{src}(r) \) and \(\text{dest}(r) \) for the source and destination class of reference \(r \); and \(c_1 \leq c_j \) to denote that \(c_i \) is compatible with \(c_j \) (a subclass, or \(c_j \) itself).

This way, a mapping \(m : RS \rightarrow MM \) is well-formed if it fulfills the following conditions:

Definition domain: \(m \) is defined exactly for each element \(e \) of RS s.t. \(\text{relevant}(e) \).

Classes: If \(c \) is a class in RS s.t. \(\text{relevant}(c) \), then \(m(c) \) is also a class in \(MM \).

Class subtyping is preserved and reflected: Given classes \(c_1 \) and \(c_2 \) of RS s.t. \(\text{relevant}(c_1) \land \text{relevant}(c_2) \), then \(c_1 \leq c_2 \iff m(c_1) \leq m(c_2) \).

Attributes: If \(a \) is a relevant attribute defined or inherited by a relevant class \(c \) in RS, then \(m(a) \) is also an attribute inherited or defined in class \(m(c) \). The type of the attribute must be preserved or generalised in the mapping: \(a \cdot \text{type} \leq m(a) \cdot \text{type} \). For instance, an attribute of type \(\text{integer} \) can be mapped to a \(\text{double} \).

References: If \(r \) is a relevant reference from class \(c_1 \) to \(c_2 \) in RS, then \(m(r) \) is also a reference from class \(m(c_1) \) to \(m(c_2) \) in \(MM \), with \(m(c_1) \leq m(c_2) \). In addition, we need a further constraint for \(\text{dest}(r) \), which depends on whether \(r \) is \text{read} (\(\text{property}(r) \)) or \text{write} (\(\text{writeProperty}(r) \)):

- \(\text{property}(r) \): Any relevant superclass of \(\text{dest}(r) \) (including \(\text{dest}(r) \), if it is relevant) is mapped to a superclass of \(m(c_2) \), or to \(m(c_2) \).
- \(\forall c_1 \in RS \cdot \text{dest}(r) \leq c_1 \land \text{relevant}(c_1) \Rightarrow m(c_1) \leq m(c_2) \).
- \(\text{writeProperty}(r) \): Any relevant class compatible with \(\text{dest}(r) \) is mapped to a class compatible with \(m(c_2) \).

- \(\forall c_1 \in RS \cdot c_1 \leq \text{dest}(r) \land \text{relevant}(c_1) \Rightarrow m(c_1) \leq m(c_2) \).

Composition is preserved: If \(r \) is a relevant write composition in RS, then \(m(r) \) is also a composition.

The condition for references permits a reference \(r \) to be declared exactly on the mapped class, or in a superclass (so that it is inherited). Similarly, the destination of the reference \(r \) can be the relevant class, a subclass \((\text{property}(r)) \), or a superclass \((\text{writeProperty}(r)) \), which then should be mapped preserving subtyping.

Typically, references that are \text{write} (allowing adding an item to a target) are composition references in RS, which needs to be preserved in the target by the last well-formedness condition. The mapping does not care about cardinalities, as they do not need to be preserved.

Example. The mapping of Fig. 7 is well-formed. This is so as both EClass and EAttribute are mapped to classes in the UML meta-model \(\text{(Class and Property)} \), and their attributes \(\text{(EClass.name and EAttribute.name)} \) are mapped to attributes of the target classes \(\text{(actually inherited)} \). Both references eStructuralFeatures and eAllAttributes are mapped according to the conditions, e.g.: \(m(\text{eStructuralFeatures}) = \text{ownedAttribute}, \text{the source of both references coincide (m(E-\text{Class}) = \text{Class})}, \) and for the destination, \(m(\text{EAttribute}) = \text{Property} \), which is exactly \(\text{dest}(m(\text{eStructuralFeature})) \), but could be a subclass. Reference eStructuralFeatures is a \text{write} feature, and a composition, and so is \text{ownedAttribute}.

Our mapping enables consistent adaptations between structurally similar (but not identical) meta-models. For more complex mappings, our correspondences could be extended with an expression language – like OCL [29] – able to calculate derived elements in the target, or adapt attribute values.
3.4 Recommendation aggregation

The RSs community has proposed different ranked item aggregation methods to combine recommendations from different RSs. A rank aggregation method aims to find the best permutation of recommendation lists based on an evaluation metric, such as precision. These methods can be used to provide more accurate and diverse suggestions by taking into account weaknesses or biases that specific recommenders may have, and to reduce the impact of items incorrectly ranked in high positions by an individual recommender [46].

When combining RSs for modelling languages, two scenarios can arise. In the first one, the RSs to combine tackle different targets (e.g., one RS provides recommendations for classes and another one for packages) or different kinds of items (e.g., one recommends attributes, and another operations). In such cases, no aggregation is needed, since the items are completely disjoint. This way, the composed RS would just use a different recommender for each kind of item, returning the lists of ranked items with no modification.

In the second scenario, multiple RSs recommend the same kind of items for a given target (e.g., two RSs of class attributes that use different algorithms, or different datasets). This scenario requires rank aggregation methods to obtain a consensus ranking containing a subset of their items.

Aggregation methods can be either supervised or unsupervised [46]. The former search for the aggregated ranking that optimises a given metric computed over ground-truth data. The latter lack ground truth data and rely on metrics computed using the available rankings of items. We focus on unsupervised methods, and consider score-based positional methods, as they are very popular due to their simplicity and efficiency. These methods sort the items based on their absolute position in the individual rankings. Positional methods receive as input a set of individual rankings, and use an aggregation function \(f : U \times I \rightarrow R \) and a procedure to combine the item position-based scores, with \(U \) and \(I \) the sets of users and items in the system, respectively [46].

Unsupervised positional methods, such as Borda Count (BC) [7] and Median Rank Aggregation (MRA) [26], are popular for their simplicity and efficiency. Borda Count assigns points to items based on their rank, while MRA ranks items by their median position across the individual rankings.

Example. Fig. 8 illustrates the BC method for aggregating three hypothetical class attribute recommenders. ① shows the rankings of attributes that each RS suggests for a class named Person. ② depicts the scores assigned to the attributes in each ranking. Since there are 5 unique (non-duplicate) attributes, the score of the first attribute in each ranking is 5, and this score is decreased for the subsequent positions of the ranking. The items that each RS do not recommend (e.g., surname in Ranking 1) receive equal portions of the remaining available points from the RS. ③ displays the aggregated score of each item, calculated as the sum of individual scores in the case of BC. Step ④ shows the returned top N list of recommendations. Incidentally, MRA would output the same aggregated rank, e.g., the rank of name is 1, which is the median of its positions in the three rankings.

3.5 Integration within modelling environments

The last step of the integration is to embed the RS into a modelling environment. This embedding will be different depending on the concrete syntax of the language. We currently consider two types: graphical syntaxes and tree-based ones. In both cases, we support a reactive approach by now, where the user needs to invoke the RS explicitly.

For graphical syntaxes, the integration adds an additional graphical layer in the modelling editor, which enables the option to invoke the RS when a shape corresponding to an instance object of the target class is selected. For tree-based syntaxes, a menu option becomes available when an instance object of the target class is right-clicked. In both cases, recommendations are requested to the recommender API of the selected RSs. Then, the recommended items can be applied to the model, assigned to the selected target object.

Sec. 4.2 will provide more details of this integration for the technologies we support (Sirius and EMF).

4 Architecture and Tool Support

We have realised the previous concepts on an extensible Eclipse plugin called IronMAN. Its source code is available at: https://github.com/antoniogarmendia/integrate-recommenders-ironman. Next, Sec. 4.1 describes its architecture, and Sec. 4.2 reports on the tool itself.

4.1 Architecture

Fig. 9 shows the architecture of IronMAN. The plugin uses the /services and /discover endpoints of the recommendation indexer to obtain the available RSs and filter them by
meta-model name. **IRONMAN** supports the adaptation of the RS to modelling languages by the definition of a structural mapping between both meta-models, as Sec. 3.3 described.

IRONMAN provides two extension points. The first one is to define rank aggregation methods. **IRONMAN** currently supports Borda Count, MRA and Outranking [27], but the extension point permits adding more. The second one is to define code generators that can integrate the RSs with modelling tools. Currently, two implementations can generate integrations of RSs with Sirius and tree editors. For this purpose, the generated code makes use of the /recommend endpoint of the chosen recommendation service, and the selected aggregation method (if needed). In the case of Sirius editors, **IRONMAN** generates a recommendation layer that enables requesting the recommendations. In the case of tree editors, **IRONMAN** generates a menu that is activated when appropriate objects are selected in the tree.

4.2 Tool support

Next, we describe the parts of our solution: the plugin, the services and the generated RS clients.

4.2.1 **IRONMAN** plugin.

Our tool provides a wizard to adapt RSs to a modelling language, configure the aggregation of recommendations for the same target (if needed), and integrate RSs into modelling workbenches. Fig. 10 shows 5 pages of the wizard. The first one permits selecting the available RSs from a set of recommendation service indexers. New indexers can be added using the **IRONMAN** preference page within the Eclipse IDE. Users can select any combination of RSs, as long as all of them are for the same language. In the figure, the indexers contain several RSs for UML and Ecore.

In page 2 of the wizard, the user can filter the recommended items of each selected RS. For example, in the figure, the page contains recommenders of attributes and operations for classes. The user might be interested in obtaining only attribute recommendations, which can be selected within this page. It is possible to select several RSs for the same target and items, or for the same target and different items.

In page 3, the user can adapt the RS to a modelling language, in case the RS targets a different language. For this purpose, the user first selects the meta-model of the modelling language, and then, a tree-table enables mapping the relevant elements of the RS and the modelling language. In the figure, the user maps elements from UML to Ecore. For instance, in UML, the reference to obtain all attributes is ownedAttribute, but in Ecore is eAllAttributes. Similarly, the composition reference to add Properties to Classes in UML is ownedAttribute as well, but in Ecore is eStructuralFeatures. The identifier of attributes in both UML and Ecore is name. Since the API provides the RS metadata, there is no need to store the RS meta-model locally.

Page 4 is enabled only when the user selects RSs providing recommendations for the same target and item, which need to be aggregated. The figure shows the three aggregation methods implemented using the extension point.

In page 5, the user selects the environments – Sirius and/or tree editor – where the RS will be integrated. In case of Sirius, the user needs to select the viewpoint where the recommendation layer is to be inserted. The figure shows the selection dialog, where the user can select several views. The code generator produces plugin projects with the RS clients, which extend the modelling environments externally, without the need to have available their source code.

4.2.2 Recommendation services.

The **IRONMAN** service indexer is implemented as a Java-based REST service using Jersey [24], a framework for building RESTful web services and APIs. It is deployed on Tomcat [6], an open-source web server and Servlet container. Four core classes are responsible for handling requests from clients. *ServiceRegistration* handles registration-related requests, such as service registration, registration updates, deletion, or queries of registered services. *ServiceFeatures* handles requests for deployed and registered services, as well as their metadata. *ServiceRecommend* is responsible for generating recommendations. Finally, *ServiceDiscovery* enables service discovery. The response time for any request is generally less than a second.

4.2.3 Integration with client modelling tools.

IRONMAN synthesises code that extends externally existing (Sirius and tree) modelling editors. The generated code considers the defined mapping. It uses the EMF reflective API to query the relevant features of the target of the recommendations, and to create objects corresponding to recommended items when the user applies a recommendation.

Fig. 11 shows a screenshot of the result of the integration of a RS within the Eclipse plugin of Obeo’s UML Designer [43]. Once the recommendation layer is active, the RS can be invoked over objects of the target element type (UML classes in this case). The recommender dialog shows a ranked list of recommendations, and the RSs these come from. In this case, two recommenders provide the recommendations, and the list is aggregated using the selected rank aggregation.

Figure 9. Architecture of **IRONMAN.**
method. When the user selects an item, the corresponding object is created and added to the target.

Fig. 12 shows the integration of a RS within the standard Ecore tree editor [59]. The RS can be triggered upon selecting an EClass. When an EAttribute is selected in the recommendation list, the corresponding object is created and assigned to the selected EClass.

5 Evaluation

Next, we report on an evaluation to assess the usefulness of our approach in terms of its capacity to reuse RSs and to integrate them with existing modelling tools. Hence, we aim to answer the following research questions (RQs):

RQ1. Can IronMan be used to adapt existing RSs to different languages?

RQ2. Can IronMan be used to integrate existing RSs into third-party modelling tools?

Next, Sec. 5.1 describes the experiment set-up, Sec. 5.2 reports the results, Sec. 5.3 answers the RQs, and Sec. 5.4 discusses threats to the validity of the experiment.
5.1 Experiment set-up

To answer the RQs, we used two RSs for Ecore and UML reported in [2] and [4]. Both recommend attributes and operations for classes. Since both were already deployed as services, their adaptation to make them conformant to the API described in Sec. 3.2 was very light.

The aim of our evaluation is twofold. On the one hand, we aim to assess if the RSs can be adapted to other modelling languages. In particular, we check if the RSs can be adapted to UML, Ecore, Entity relationship (ER) diagrams, and the Interaction Flow Modelling Language (IFML) [30]. The three first languages are widely-used structural notations to define software systems, modelling languages, and databases. IFML is an OMG standard to define the content, user interaction and behaviour of the front-end of software applications. On the other hand, we want to assess the integration of the RSs into existing tree and Sirius editors built by third parties.

Table 3 summarises the experiment set-up. In the experiment, each RS (e.g., for Ecore) was adapted to the other three languages (e.g., UML, ER and IFML) and integrated in all the six tools. This resulted in twelve integrations, covering environments based both on Sirius and the tree editor.

5.2 Experiment results

Table 4 summarises the results of the integrations, including the number of mappings needed to adapt the RS to the modelling language, and the synthesised lines of code (LoC) by the code generator. We did not need any mapping when using a RS for the same language (e.g., Ecore for Ecore), while for the other cases, we required from 5 to 9 mappings. Since the original RSs recommend both attributes and operations, the number of mappings depended on whether the language had a notion akin to operations (absent both in ER and IFML).

The generated plugins use the EMF reflective API [59], and in average, 464 LoC were generated per plugin. This number does not include the implementation code to communicate with the recommender services. Additionally, in the case of Sirius, IronMAN generates an odesign model automatically, which is the file that contains the description of the modelling environment, including the recommendation layer.

Fig. 13 contains some screenshots of the resulting integrations. Labels 1–3 show the integration of the Ecore RS with the Sirius editor provided by Ecore tools. Label 1 shows the menu to activate the recommendation layer, label 2 the menu contribution of the recommender, and label 3 the dialog from which to choose the recommendations. Label 4 displays the integration of the UML RS with the UML tree editor. Finally, label 5 displays the integration of the UML RS within the Information System Designer (ISD) [42]. The resulting plugins are available at: https://github.com/antoniogarmendia/integrate-recommenders-ironman/tree/main/integrate.recommenders.ironman.project/generated-projects.

5.3 Answering the RQs

Overall, we can answer both RQs positively.

For RQ1, we could reuse RSs defined for Ecore or UML, and adapt them to other three languages (Ecore, UML, ER, IFML). The only requirement for this reuse was to map (subsets of) the meta-model of the RS and the meta-model of the target language, by defining between 0 and 9 declarative mappings.

For RQ2, we could automatically integrate each RS into six existing modelling tools based on Sirius and EMF tree editors. Remarkably, all the tools were built by third parties, and we did not need their source code.

5.4 Discussion and threats to validity

Our experiment shows evidence that IronMAN is able to reuse existing RSs for other modelling languages, and integrate them automatically into existing tools.

However, regarding external validity threats, the number of RSs reused was limited, as the experiment only considered RSs for Ecore and UML. Similarly, we reused these RSs just for four other modelling languages. A stronger evaluation would be obtained by considering more RSs and more languages. In particular, the languages in the experiment were somewhat similar, and we are aware that considering more structurally different notations would require from a more powerful mapping mechanism (e.g., based on OCL or Java), able to bridge the structural dissimilarities between the meta-models. This is future work. However, to mitigate this threat, we reused the RSs for well-known modelling languages developed by third parties, which are representative of structural modelling. Moreover, we also considered IFML, which is related to interaction modelling.
Figure 13. Screenshots of the integration results. (1–3) Ecore tools (Sirius), (4) UML tree editor, (5) ISD-Designer.

Regarding the integration with tools, we chose existing tools built by third parties to avoid any bias. Still, integration with further tools would result in a stronger evaluation.

6 Related Work

Next, we review three lines of works related to our proposal: RSs for modelling tasks (Sec. 6.1), servitisation of RSs (Sec. 6.2), and aggregation of recommendations (Sec. 6.3).

6.1 RSs for modelling

As reported in [3], the modelling community is showing a growing interest in RSs for modelling tasks. According to [3], the most common purposes of RSs in model-driven engineering (MDE) are the completion, finding, repair, reuse and, to a lesser extent, creation of modelling artefacts.

RSs for modelling have been normally developed ad-hoc for a specific modelling language, most frequently UML (e.g., class diagrams [10, 25, 28, 37, 40, 55] and sequence diagrams [13]), process modelling notations [16, 32, 33, 36, 38], or meta-models [1, 17]. Only a few language-independent approaches [1, 2, 23, 34, 47, 58] enable the definition of RSs for any language defined by a meta-model. Among them, Almonte et al. [2] propose the DSL Droid to facilitate the construction and subsequent evaluation of RSs for any modelling language. This DSL supports the selection and configuration of the recommendation algorithm. In this paper, we have evaluated our proposal using some RSs created with Droid.

Given that RSs are typically fixed for a particular language, a tool like IronMAN, which can adapt a RS for different notations, becomes useful in practice.

Outside the MDE community, tools have been proposed that, like Droid, simplify the creation and evaluation of RSs. For instance, LEV4REC [20] relies on MDE to configure the parts of a RS and generate the RS code; and the framework Elliot [5] executes a complete experimental pipeline for RSs by processing a simple configuration file. However, the RSs produced by these tools are neither specific for modelling nor automatically integrated into existing editors/tools.

Regarding the techniques to generate recommendations in MDE, the most popular ones stem from classical recommendation methods, most prominently knowledge-based techniques (i.e., systems that exploit the domain knowledge to produce recommendations, such as AMOR [10], Baya [14], IPSE [28], RapMOD [37], Refacola [58], ReVision [44] and Savary-Leblanc’s recommender [55]), followed by content-based (e.g., DoMoRe [1] and Refactory [49]), hybrid (e.g., SBPR [32] and the approaches by Kögel et al. [34] and Koschmider et al. [36]), and based on collaborative filtering (e.g., MemoRec [17] and ModBud [53]). Some recent approaches apply machine learning to build the RSs. For example, Burgueño et al. [11] propose a RS for class diagrams based on natural language processing; Weyssow et al. [61] apply a deep learning model to recommend meta-model concepts; Di Rocco et al. [19] use an encoder-decoder network to
aid modellers in executing model editing operations, and graph neural networks (GNNs) to assist in the specification of (meta-)models [18]; and Shilov et al. [56] use GNNs to assist in enterprise modelling processes.

Altogether, there is a wide variety of RSs for diverse modelling notations and methods. Our contribution in this line of works is a proposal to homogenise the access to all existing approaches behind a common API. This enables the combination of approaches by aggregating their results, and facilitates the access from arbitrary clients. Finally, our mappings permit adapting existing RSs to other modelling notations.

6.2 Deployment of RSs via web services

The idea of deploying RSs as web services is not new, but it has been adopted by both researchers and companies due to its benefits. A recommendation API is a (REST) service with recommendation functionalities akin to those of recommendation software libraries, but hosting the data in the cloud. The RSs community has coined the term Recommendations-As-a-Service (RaaS) [52] to refer to cloud platforms that enable the creation of RSs using a few clicks or LoC, by automating the steps of the recommendation generation process, from data indexing to recommendation generation and display. As an example, the engine Recombee [48] allows building recommendation services for any domain that has a catalogue of items and is interacted by users. The engine only supports content-based recommendation, but its recommendation model is customisable and permits defining business rules to filter or boost items based on their properties. The engine provides API endpoints to manage the (JSON-based) items, users and their interactions, and to get recommendations. While Recombee is generic, some RaaS are domain-specific, like bX [12], BibTip [9] and Mr. DLib [41] for digital libraries. All these approaches expose recommendation APIs as web services; however, the APIs are not modelling-specific, so their fine-tuning for modelling tasks is cumbersome.

Regarding RSs for modelling, most proposals are deployed locally and integrated ad-hoc in a specific modelling tool or IDE. One of the few exceptions are Droid [2] and Savary-Leblanc’s recommender for UML [55]. The latter is a recommender for UML class diagrams, deployed as a service, and integrated within Papyrus. Droid permits the creation of RSs for modelling languages and their deployment as REST services. In [4], the authors illustrate the integration of this service in both EMF tree editors and a modelling chatbot. Instead, our approach aims to be more general by unifying any modelling recommendation service under a common API. This will facilitate the reuse and aggregation of existing RSs by the community, hence contributing to better modelling tools augmented with recommendation capabilities.

6.3 Aggregation of RSs

Rank aggregation has been used in a wide number of fields, such as meta-search engines [22], biology [35], criticality analysis [45], or spam detection [63], to name a few. A few proposals exist in the RSs literature as well. For example, based on the observation that many top-N recommenders disagree in their returned rankings, Oliveira et al. [46] studied 19 rank aggregation methods and identified the recommendation scenarios where they performed best or worst. They concluded that rank aggregation achieves the biggest improvements in scenarios with high-quality input rankings and high diversity; unsupervised methods should be avoided in case of poor-quality input rankings; and the results of both supervised and unsupervised methods is similar in case of input rankings with high-quality but low diversity.

To our knowledge, our proposal is the first one enabling the aggregation of recommendations for modelling. We currently support unsupervised methods, and leave supervised ones as future work.

7 Conclusions and Future Work

The increasing number of RSs for modelling calls for mechanisms to facilitate their reuse, combination and integration into modelling tools. We have proposed an approach towards this goal, based on a common recommendation API, mappings bridging the RSs and the modelling notations, and rank aggregation algorithms. The approach has been realised in IRONMAN, which is able to adapt and integrate RSs within Eclipse modelling tools based on Sirius and tree editors.

In the future, we would like to integrate other existing RSs, and investigate the scenarios where aggregating RSs – providing recommendations for the same target and item – are beneficial. While we currently support unsupervised rank aggregation methods, we plan to extend our proposal with supervised ones [46]. These methods require a preconfiguration step to optimise the recommendation aggregation function with respect to a given metric, typically precision. We would also like to include more flexible means for adapting the RSs to the modelling language (e.g., using OCL or Java snippets).

Implementation-wise, the wizard requires that all selected RSs are defined for the same modelling language, and then adapted if needed. In the short term, we will support the selection of RSs for different languages, and provide assistants to adapt them to the modelling language (once the first mapping is defined). We also plan to support integration with textual notations, e.g., defined using Xtext [8, 62]. Finally, we are interested in exploring other types of integration of the RSs within modelling tools, e.g., a proactive approach where the RS monitors the modelling session and triggers recommendations when an opportunity is found.

Acknowledgments

Work supported by the Spanish MICINN (PID2021-122270OB-I00, TED2021-129381B-C21).
References

