
Product Lines of Graphical Modelling Languages

Antonio Garmendia

Antonio.Garmendia@uam.es

Universidad Autónoma de Madrid

Madrid, Spain

Esther Guerra

Esther.Guerra@uam.es

Universidad Autónoma de Madrid

Madrid, Spain

Juan de Lara

Juan.deLara@uam.es

Universidad Autónoma de Madrid

Madrid, Spain

ABSTRACT
Modelling languages are essential in many disciplines to express

knowledge in a precise way. Furthermore, some domains require

families of notations (rather than individual languages) that account

for variations of a language. Some examples of language families

include those to define automata, Petri nets, process models or

software architectures. Several techniques have been proposed to

engineer families of languages, but they often neglect the language’s

concrete syntax, especially if it is graphical.

To fill this gap, we propose a modular method to build product

lines of graphical modelling languages. Language features are de-

fined in modules, which comprise both the abstract and graphical

concrete syntax of the feature. A language variant is selected by

choosing a valid configuration of modules, from which the abstract

and concrete syntax of the variant is synthesised. Our approach per-

mits composition and overriding of graphical elements (e.g., symbol

styles, visualisation layers), the injection of pre-defined graphi-

cal styles into language families (e.g., to obtain a high-intensity

contrast variant for accessibility), and the analysis of graphical con-

flicts at the product line level. We report on an implementation atop

Eclipse/Sirius, and demonstrate its benefits by an evaluation which

shows a substantial specification size reduction of our product line

method with respect to a case-by-case specification approach.

CCS CONCEPTS
• Software and its engineering → Software notations and
tools; Domain specific languages.

KEYWORDS
Software Language Engineering, Model-driven Engineering, Graph-

ical Concrete Syntax, Product Lines

ACM Reference Format:
Antonio Garmendia, Esther Guerra, and Juan de Lara. 2024. Product Lines

of Graphical Modelling Languages. In ACM/IEEE 27th International Con-
ference on Model Driven Engineering Languages and Systems (MODELS ’24),
September 22–27, 2024, Linz, Austria. ACM, New York, NY, USA, 11 pages.

https://doi.org/10.1145/3640310.3674082

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MODELS ’24, September 22–27, 2024, Linz, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0504-5/24/09

https://doi.org/10.1145/3640310.3674082

1 INTRODUCTION
Modelling languages are pervasive across many disciplines to rep-

resent knowledge about objects, processes or systems. They are

heavily used in computer science to facilitate software development,

most prominently in model-driven engineering (MDE) [1]. Further-

more, many times, modelling languages come in families of related

notations, like those to define automata [8], Petri nets [34], process

models [32], access control [23] or software architectures [27].

A language may also have variants to target specific aspects

like the modelling phase (e.g., using simpler and more permissive

variants when a software project starts, and stricter, more detailed

ones as the project progresses [18]), the features of the modelled

system (e.g., requiring variants with different expressive power,

like Petri nets with/without inhibitor arcs [34]), the context of use

of the language (e.g., using variants of class diagrams that hide

class attributes or role names in small screens, and display them in

larger ones), or the user expertise (e.g., providing simpler language

versions to novice users than to expert users [20]), among other

scenarios. Variants may pertain the language syntax and semantics.

In this paper, our focus is on the syntax.

Different approaches have been proposed to create families of

languages, often resorting to software product line engineering [35].

Some of them are compositional, in which case, the features of

the languages are defined as components that can be composed

to produce language variants [2–4, 6, 9]. Conversely, annotative
approaches build a unified description of all variants, which is then

deprived of the features not needed to obtain a particular variant [19,

37]. Approaches exist for defining product lines of textual languages

based on grammars (e.g., Neverlang [43], MontiCore [2]), however,

we are not aware of proposals considering product lines of graphical

languages. Our goal is to fill this gap.

We base our work on the notion of language product line pro-

posed in [9], where a language family is defined by a set of modules,

each encapsulating a meta-model fragment. Modules may declare

dependencies to other modules, forming a tree structure akin to a

feature model [22]. A variant is selected by choosing a configura-

tion (a set of modules), and then, the abstract syntax is produced by

merging the meta-model fragments of the chosen modules. The ap-

proach also permits expressing the semantics of the family by graph

transformation. In this paper we omit the part on semantics, since it

is not needed and is directly applicable to the current work. Instead,

we extend the approach to support graphical concrete syntaxes for

the language family.

Specifically, modules can now attach a graphical syntax speci-

fication fragment. This fragment can contain graphical elements

such as symbols for meta-classes and associations, (conditional)

styles, positional constraints for associations (e.g., containment),

and presentation layers. Our approach composes the needed graph-

ical specification fragments when a language variant is selected,

https://orcid.org/0000-0001-8331-4467
https://orcid.org/0000-0002-2818-2278
https://orcid.org/0000-0001-9425-6362
https://doi.org/10.1145/3640310.3674082
https://doi.org/10.1145/3640310.3674082

MODELS ’24, September 22–27, 2024, Linz, Austria A. Garmendia et al.

and manages overriding and merging (e.g., to add compartments in

a container node). It also supports the definition of graphical lan-
guage aspects, which can be automatically woven with a language

family definition to create new variants. For example, we have

created one aspect that produces accessible variants of a language

family by overriding the defined concrete syntax with high-contrast

coloured symbols; and another aspect for internationalisation that

translates the symbol labels into the language of interest (e.g., Eng-

lish, French). Finally, we provide a method for detecting conflicts

between graphical specification fragments at the product line level.

We have realised our proposal atop Capone, an open-source

Eclipse tool for modular meta-model product lines presented in [9].

We have extended the tool to support graphical syntax specifica-

tions using Sirius’s odesign models [40]; to synthesise stand-alone,

ready-to-use Sirius editors for the chosen variants; and to analyse

conflicts in the graphical specification of a language family. To show

the benefits of our approach in terms of specification size, we have

performed an experiment with four case studies of language fami-

lies, obtaining substantial specification size reduction both when

creating a family from scratch and when adding a new feature.

Paper organisation. Section 2 introduces modular language prod-

uct lines [9]. Section 3 extends them with graphical syntax and

mechanisms for graphical syntax composition. Sections 4 and 5

present conflict analysis and graphical language aspects. Section 6

describes our tool, and Section 7 reports on the evaluation. Finally,

Section 8 compares with related research and Section 9 concludes.

2 LANGUAGE PRODUCT LINES
We start in Section 2.1 by introducing a running example. Then,

Section 2.2 recalls the notion of language product line from [9],

which covers only the abstract syntax of the language family.

2.1 Running example
Assumewewould like to build a domain-specific language (DSL) [44]

to model production systems. The DSL should enable the descrip-

tion of factories made of machines that process parts, and con-

veyors that transport parts between machines. There are many

variations of this DSL in the literature, developed in isolation [5, 11–

13, 15, 38, 42]. This variety may be because, depending on the model

purpose, the DSL may need different capabilities, like:

• A basic version that can be simulated to understand how parts

flow through a factory [11, 12, 15]. Fig. 1(a) shows a small model

of this DSL variant. It contains a machine ws1 processing a part

P1 and connected to a conveyor cb1 that is transporting two

parts P2 and P3.
• A more realistic version of the DSL that supports modelling

conveyor capacities and machine/conveyor breakdowns [38].

Fig. 1(b) shows a model using this language variant.

• Timed versions that take into account timing information (e.g.,

delays in machines and conveyors) or loss probabilities in con-

nections, as depicted in Fig. 1(c) [12, 42].

As Figs. 1(a)–(c) show, different language variants may require

different concepts in their abstract syntax, with impact in their

concrete syntax. For example, machines in Fig. 1(b) need to have

a boolean attribute to indicate if they are broken, and if so, the

concrete syntax adds a cross to the machine representation.

(c)

(e)

(d)

(f)

(a) (b)

Figure 1: Some variants of the production systems family.
(a) Basic machines and conveyors. (b) Possibly broken ma-
chines, conveyor capacities. (c) Time and loss probabilities.
(d) Higher-level view of production system. (e) High-contrast
syntax for accessibility. (f) Variant (a) in Italian.

Some variants may differ only in their concrete syntax, as they

deal with the language pragmatics [41], i.e., how the language is

used. According to the cognitive fit principle [33], different represen-
tations of information are suitable for different tasks or audiences.

While modelling notations exhibit visual monolinguism [33], we

would like to define concrete syntax variants to:

• Tailor the notation to different model usages or scenarios. For

example, large production systems could be displayed using a

more abstract view where parts are not represented individually,

but only their number is displayed (cf. Fig. 1(d)).

• Adapt the language to its target users. For example, wemaywant

to have accessible language variants – like Fig. 1(e), which shows

a high-contrast variant of the language – or internationalisation

– like Fig. 1(f), which shows a variant of the DSL in Italian. These

variants would come in addition to the existing ones, i.e., any of

the variants in Figs. 1(a)–(c) could be in English or Italian, with

or without high-contrast.

Creating each language variant in isolation is very costly (gen-

erally, for 𝑛 language features, there may be 2
𝑛
language variants)

and can easily lead to errors and inconsistencies between vari-

ants. Instead of using a clone-and-own approach for creating DSL

families [30], mechanisms are needed that allow the compact speci-

fication of both the abstract and concrete syntax of each member of

the family. Such mechanisms should maximise the reuse of specifi-

cation fragments to reduce the burden of building the DSL family,

and should facilitate the extension of the family with new features

and variants. Moreover, since a DSL family may have many variants,

it is desirable to have analysis methods to detect potential problems

related to conflicts in the definition of the concrete syntax.

Our goal is to provide such construction and analysis mecha-

nisms. We base our proposal on the concept of modular language
product line (LPL) presented in [9], which we summarise in the

next section. Since this concept only covers the abstract syntax,

Sections 3–5 will extend it to handle graphical concrete syntaxes

and their analysis, which are the core contributions of this paper.

2.2 Language product lines: Abstract syntax
LPLs, as defined in [9], are made of modules, each encapsulating a

meta-model fragment and declaring dependencies to a dependency

Product Lines of Graphical Modelling Languages MODELS ’24, September 22–27, 2024, Linz, Austria

...

optional

mandatory

alternative

or

M
(dependency)

MM

M1
(extension)

MM1

Mn
(extension)

MMn

role of Mn in dependency

glueing points for extending
MM with MMn

{C1C3,...}{C1C2,...}

1

2

1

2

Figure 2: Structure of language modules within LPLs.

module (cf. Fig. 2). We often call the dependency module the parent,

and the dependent modules its extensions.
Following standard practice in feature modelling [22], dependen-

cies can be of four types: mandatory, optional, or and alternative.
Dependencies state the conditions by which extension modules

need to be selected in a language configuration when the parent

module is selected as well. For mandatory dependencies, the exten-

sion module needs to be selected when the dependency module is

selected. For optional, the extension module can be selected when

the dependency module is selected. For or, one or more extension

modules via this dependency type need to be selected. For alterna-
tive, exactly one extension module via this dependency type must

be selected. In addition, each module needs to specify how to merge

its meta-model fragment with the meta-model of its dependency,

and graphs and morphisms are used for this purpose [14].

Def. 2.1 captures the notion of module and dependency type.

Later, modules will be added an abstract syntax specification frag-

ment (Def. 2.2) and a concrete syntax fragment (Def. 3.1).

Definition 2.1 (Module, adapted from [9]). A module is a tuple

𝑀 = ⟨𝑀𝐷 , 𝑅𝑂,Ψ⟩, where:
• 𝑀𝐷 refers to a module, called dependency;

• 𝑅𝑂 ∈ {𝐴𝐿𝑇,𝑂𝑅,𝑂𝑃𝑇,𝑀𝐴𝑁 } is the role of𝑀 in the dependency,

one among alternative, or, optional, and mandatory;
• Ψ is a boolean formula that uses modules as variables.

𝑀 is called top if𝑀𝐷 = 𝑀 andΨ = 𝑡𝑟𝑢𝑒 . We use predicate 𝑡𝑜𝑝 (𝑀) to
identify top modules: 𝑡𝑜𝑝 (𝑀) ⇐⇒ 𝑀𝐷 (𝑀) = 𝑀 ∧ Ψ(𝑀) = 𝑡𝑟𝑢𝑒 .

In Def. 2.1, the Ψ formula specifies a cross-tree constraint stating

conditions for modules to be included in a language configuration

(the formulae of every module must evaluate to true in all valid

configurations). Given a module 𝑀𝑖 , we write 𝑀𝐷 (𝑀𝑖) to denote

the dependency of𝑀𝑖 , and similarly for the other components of

𝑀𝑖 (i.e., 𝑅𝑂 , Ψ).

Definition 2.2 (Module with abstract syntax, adapted from [9]). A
module with abstract syntax is a tuple 𝑀𝐴𝑆 = ⟨𝑀𝐷 , 𝑅𝑂,Ψ, 𝐴𝑆 =

⟨𝑀𝑀, 𝐼𝑁𝐴𝑆 ⟩⟩, where:
• ⟨𝑀𝐷 , 𝑅𝑂,Ψ⟩ is a module;

• 𝐴𝑆 is a tuple describing the abstract syntax, made of:

– A meta-model𝑀𝑀 ;

– An inclusion span 𝐼𝑁𝐴𝑆 between𝑀𝑀 and the meta-model of

𝑀’s dependency: 𝐼𝑁𝐴𝑆 = 𝑀𝑀 ←− 𝐶𝐴𝑆 −→ 𝑀𝑀 (𝑀𝐷).
We use 𝐷𝐸𝑃+ (𝑀𝑖) for the transitive closure of 𝑀𝑖 ’s dependen-

cies (i.e., its dependency, the dependency of its dependency, etc.),

𝐷𝐸𝑃 (𝑀𝑖) = 𝐷𝐸𝑃+ (𝑀𝑖) \ {𝑀𝑖 } for the transitive closure exclud-

ing itself (empty in top modules, and equal to 𝐷𝐸𝑃+ in non-top

Machine

Breakdown Capacities

Conveyor

capacity: int

Part

FElement

delay: double

timeStamp: double

Time
Machine

SimpleLinks

Conveyor
*
inps

*
outs

Machine

RichLinks

Conveyor

Link

to

inps

outs

*

*

Link

LinkSpill

Conveyor

Machine

Conveyor

MachineBreak ConveyorBreak

alternative
(exactly one)

or
(at least one)

mandatory optional

Legend

FactoryMachine Conveyor

* elements

Part
parts

*

Factory

FElement

name: String name: String

broken: bool broken: bool

lossProb: double

Figure 3: An abstract syntax LPL for a family of DSLs for
modelling production systems.

modules), and 𝐷𝐸𝑃∗ (𝑀𝑖) = 𝐷𝐸𝑃+ (𝑀𝑖) ∪ {𝑀𝑖 } for the reflexive

transitive closure (i.e., including the module𝑀𝑖 as well). Typically,

𝐼𝑁𝐴𝑆 is the identity inclusion for top modules.

Given the span 𝐼𝑁𝐴𝑆 = 𝑀𝑀
𝑖𝑛1←− 𝐶𝐴𝑆

𝑖𝑛2−→ 𝑀𝑀′, we use pred-
icate 𝑚𝑎𝑝𝐴𝑆 (𝑐1, 𝑐2) to denote that elements

1 𝑐1 ∈ 𝑀𝑀 and 𝑐2 ∈
𝑀𝑀′ are related, i.e., there is a node 𝑛 ∈ 𝐶𝐴𝑆 s.t. 𝑖𝑛1 (𝑛) = 𝑐1 and

𝑖𝑛2 (𝑛) = 𝑐2. We will use a similar notation for other spans, e.g.,

𝑚𝑎𝑝𝐶𝑆 for a span 𝐼𝑁𝐶𝑆 .

An LPL is just a set of modules where the dependencies form

a tree, that is: (1) exactly one module is top, (2) the set is closed

under the modules’ dependencies, and (3) there are no dependency

cycles. We use the term abstract syntax LPL if the modules only

have abstract syntax. In the next section, we will extend modules

so that they can also carry concrete syntax.

Definition 2.3 ((Abstract syntax) Language product line, adapted
from [9]). A language product line 𝐿𝑃𝐿 = {𝑀𝑖 }𝑖∈𝐼 is a set of mod-

ules s.t.:

∃1𝑀𝑖 ∈ 𝐿𝑃𝐿 · 𝑡𝑜𝑝 (𝑀𝑖) ∧ (1)

∀𝑀𝑖 ∈ 𝐿𝑃𝐿 · 𝑀𝐷 (𝑀𝑖) ∈ 𝐿𝑃𝐿 ∧ (2)

𝑀𝑖 ∈ 𝐷𝐸𝑃+ (𝑀𝑖) =⇒ 𝑡𝑜𝑝 (𝑀𝑖) (3)

If the modules in 𝐿𝑃𝐿 have abstract syntax only, 𝐿𝑃𝐿 is called

abstract syntax language product line. We use 𝑇𝑂𝑃 (𝐿𝑃𝐿) to denote

the top module in 𝐿𝑃𝐿. Given a module 𝑀𝑖 ∈ 𝐿𝑃𝐿, we define the
sets 𝑋 (𝑀𝑖) = {𝑀𝑗 ∈ 𝐿𝑃𝐿 | 𝑀𝐷 (𝑀𝑗) = 𝑀𝑖 ∧ 𝑅𝑂 (𝑀𝑗) = 𝑋)}, for
𝑋 ∈ {𝐴𝐿𝑇,𝑂𝑅,𝑂𝑃𝑇,𝑀𝐴𝑁 }, to obtain the extension modules of𝑀𝑖

with role 𝑋 .

Example 1. Fig. 3 shows an abstract syntax LPL for the running

example. Its top module is Factory, which has five children mod-

ules: Breakdown, Capacities, Time, SimpleLinks, and RichLinks.
Modules Breakdown, Capacities and Time are optional (each of

them can be selected or not), while SimpleLinks and RichLinks
are alternative (exactly one of them must be selected). That is,

𝑂𝑃𝑇 (Factory) = {Breakdown, Capacities, Time}, and 𝐴𝐿𝑇 (Fa-
ctory) = {SimpleLinks, RichLinks}. If Breakdown is selected,

then at least one of its children MachineBreak and ConveyorBreak
must also be selected. Overall, the latter three modules add to the

1
classes, references or attributes

MODELS ’24, September 22–27, 2024, Linz, Austria A. Garmendia et al.

DSL the ability to model machine and/or conveyor breakdowns. In

turn, selecting Capacities adds capacity to conveyors, and Time
adds a delay to machines and conveyors, and a timestamp to parts.

Finally, the alternative set comprising SimpleLinks and RichLinks
allows choosing between connecting machines and conveyors via

references or Link objects, respectively. If RichLinks is selected,
then LinkSpill can optionally be selected, which introduces a loss

probability into link connectors.

In the figure, the modules contain meta-model fragments. The

mapping between the meta-model elements in a module and its

dependency are given by name. For instance, class Machine in

module Breakdown is mapped to class Machine in module Factory.

Given an LPL, a configuration is a set of modules that is consis-

tent with the dependencies of the LPL, and satisfies the formulae

introduced by the modules, as Def. 2.4 states.

Definition 2.4 (Language configuration, from [9]). Given a product
line 𝐿𝑃𝐿, a configuration 𝜌 ⊆ 𝐿𝑃𝐿 is a set of modules s.t.:

𝑇𝑂𝑃 (𝐿𝑃𝐿) ∈ 𝜌 ∧ (4)

𝑀 ∈ 𝜌 =⇒ (∀𝑀𝑖 ∈ 𝑀𝐴𝑁 (𝑀) ·𝑀𝑖 ∈ 𝜌 ∧ (5)

𝐴𝐿𝑇 (𝑀) ≠ ∅ =⇒ ∃1𝑀𝑖 ∈ 𝐴𝐿𝑇 (𝑀) ·𝑀𝑖 ∈ 𝜌 ∧ (6)

𝑂𝑅(𝑀) ≠ ∅ =⇒ ∃𝑀𝑖 ∈ 𝑂𝑅(𝑀) ·𝑀𝑖 ∈ 𝜌 ∧ (7)

𝑀𝐷 (𝑀) ∈ 𝜌) ∧ (8)∧
𝑀𝑖 ∈𝐿𝑃𝐿

Ψ(𝑀𝑖) [𝑡𝑟𝑢𝑒/𝜌, 𝑓 𝑎𝑙𝑠𝑒/(𝐿𝑃𝐿 \ 𝜌)] = 𝑡𝑟𝑢𝑒 (9)

We use 𝐶𝐹𝐺 (𝐿𝑃𝐿) to denote the set of all configurations of 𝐿𝑃𝐿.

Example 2. The example LPL has 48 configurations, including 𝜌𝑎 =

{Factory, SimpleLinks}, 𝜌𝑏 = {Factory, Breakdown, Machine-
Break, Capacities, SimpleLinks}, and 𝜌𝑐 = {Factory, Time,
RichLinks, LinkSpill}. These three language configurations were
the ones used to create the examples in Figs. 1(a)–(c).

Finally, given a language configuration 𝜌 , we can derive a product
meta-model𝑀𝑀𝜌 by merging the meta-model fragments of each

module𝑀 ∈ 𝜌 . Def. 2.5 captures this intuition using the categorical

notion of co-limit [26] (the result of merging a set of graphs by a

set of mappings among them).

Definition 2.5 (Abstract syntax derivation, from [9]). Given an

abstract syntax language product line 𝐿𝑃𝐿 and a configuration

𝜌 ∈ 𝐶𝐹𝐺 (𝐿𝑃𝐿), a product meta-model 𝑀𝑀𝜌 is given by the co-

limit object of all meta-models and spans in the set {𝐼𝑁𝐴𝑆 (𝑀𝑖) =
⟨𝑀𝑀 (𝑀𝑖) ←− 𝐶𝐴𝑆𝑖 −→ 𝑀𝑀 (𝑀𝐷 (𝑀𝑖))⟩ | 𝑀𝑖 ∈ 𝜌}.
Example 3. Fig. 4 shows the product meta-models obtained from

configurations 𝜌𝑎 , 𝜌𝑏 and 𝜌𝑐 .

Depending on the expressiveness allowed formeta-models within

modules (e.g., inheritance, cardinalities, compositions), there may

be product meta-models that are not well-formed (e.g., repeated

attribute names, inheritance cycles). We refer to the static analy-

sis techniques for well-formedness proposed in [10], which allow

detecting such problems at the product line level.

3 GRAPHICAL CONCRETE SYNTAX FOR LPLS
Next, Section 3.1 extends modules with a graphical concrete syntax,

Section 3.2 shows how to compose concrete syntax specification

Factory

Machine Conveyor

* elements

FElement

name: String

inps

outs

MMa

*

*

Machine Conveyor

Part
parts

*
FElement

name: String

inps

*
*broken: bool

outs

*

capacity: int

Factory

Machine Conveyor

*

elements
Part

parts
*FElement

name: String
delay: double

Link

inpsouts
* *

lossProb: double

name: String
timeStamp: double

to

Factory

elements

name: StringPart
parts

*
name: String

MMb

MMc

Figure 4: Product meta-models for 𝜌𝑎 , 𝜌𝑏 and 𝜌𝑐 .

fragments, and Section 3.3 introduces graphical overriding and

language variants that only change the concrete syntax.

3.1 Language product lines: Concrete syntax
Graphical representations permit users to create and manipulate

models visually. For this purpose, meta-models – defining the lan-

guage abstract syntax – are enriched with a concrete syntax specifi-

cation. We assume that such a concrete syntax specification has the

form of a model, as it is customary in model-driven approaches to

language definition [1]. While many technologies exist for creating

graphical syntaxes (e.g., Sirius [40], GMF [17] or Eugenia [25]), our

approach is agnostic with respect to the technology used.

To set our concepts, Fig. 5 shows a meta-model for graphical

concrete syntaxes, inspired by Sirius. Class Group contains the view-
points where different representations (i.e., views) can be defined.

This way, a language can be represented in different forms, e.g.,

as a diagram (with nodes and edges), a table or a tree-form. This

architecture is inspired by the Viewpoint and Views concepts from

the ISO/IEC/IEEE-42010 standard [21].

The focus of this paper is on diagrammatic visualisations (i.e.,

DiagramRepresentation). These have a default Layer and may

define additional ones. Objects in this meta-model can be repre-

sented as nodes (NodeMapping), edges (EdgeMapping) or containers
(ContainerMapping). EdgeMapping has two subclasses that permit

representing both references and objects as edges. Mappings have a

style (the figure omits the styles for EdgeMappings), such as Square
or Ellipse, and can specify a label, which can be a fixed String or

the result of an OCL expression.

Four classes in the meta-model (ContainerMapping, NodeMap-
ping, ElementEdgeMapping, DiagramRepresentation) refer to a

meta-class in the language abstract syntax meta-model (EClass in

the lower package). Hence, a concrete syntax specification is made

of a model (an instance of the ConcreteSyntax package) plus a

mapping to the abstract syntax (the domainClass references).
Next, we extend modules with a concrete syntax specification

consisting of a concrete syntax model fragment – an instance of a

concrete syntax meta-model, like the one in Fig. 5 – plus mappings

Product Lines of Graphical Modelling Languages MODELS ’24, September 22–27, 2024, Linz, Austria

GroupViewpoint
viewpoints

1..*

Representation

representations1..*

Diagram
Representation

EClassdomainClass

Layer

name: String

default
Layer

Mapping Style

style

Edge
Mapping

Node
Mapping

Container
Mapping

b
o

rd
er

ed
N

o
d

es

su
b

N
o

d
es

*

so
u

rc
e

s

ta
rg

et
s

*

*

Element
Edge

Mapping

Relational
Edge

Mapping

Square Ellipse…

domainClass

domainClass

domainClass

ConcreteSyntax

…

…

AbstractSyntax

additional
Layers*

Abstract
NodeMapping

*

Gradient

label: String*

Figure 5: Simplified excerpt of meta-model for graphical
concrete syntax.

of this model to the module’s meta-model, and to the concrete

syntax model fragment of the dependency module.

Definition 3.1 (Module with concrete syntax). A module with

concrete syntax is a tuple 𝑀𝐶𝑆 = ⟨𝑀,𝐴𝑆,𝐶𝑆 = ⟨𝐺, 𝐼𝑁𝐴𝐶 , 𝐼𝑁𝐶𝑆 ⟩⟩,
where:

• 𝑀 = ⟨𝑀𝐷 , 𝑅𝑂,Ψ⟩ is a module;

• 𝐴𝑆 = ⟨𝑀𝑀, 𝐼𝑁𝐴𝑆 ⟩ is a tuple describing the abstract syntax;

• 𝐶𝑆 is a tuple describing the concrete syntax, made of:

– A model 𝐺 , defining a graphical concrete syntax for𝑀𝑀 ;

– A span 𝐼𝑁𝐴𝐶 between 𝐺 and the meta-model of 𝑀 : 𝐼𝑁𝐴𝐶 =

𝐺 ←− 𝐶𝐴𝐶 −→ 𝑀𝑀 ;

– A span 𝐼𝑁𝐶𝑆 between 𝐺 and the concrete syntax model of

𝑀’s dependency: 𝐼𝑁𝐶𝑆 = 𝐺 ←− 𝐶𝐶𝑆 −→ 𝐺 (𝑀𝐷).

In the previous definition, span 𝐼𝑁𝐴𝐶 maps the abstract syntax

meta-model and the concrete syntax model, while span 𝐼𝑁𝐶𝑆 mod-

els the extension of the concrete syntax defined in𝑀 ’s dependency.

Example 4. Fig. 6 shows two modules of the running example

enriched with concrete syntax (simplified for readability). Module

Factory specifies the concrete syntax of conveyors and machines

(we omit the latter one for simplicity). Conveyors are represented by

a ContainerMapping (object c, shaded) with two ContainerMapp-
ing subnodes: one for the blue header with the conveyor name

(object header), and another for the parts’ compartment (object

parts). Eachmapping has a Gradient style that specifies the colour
and labels to be presented. For illustration, the right of the figure

shows the concrete syntax rendering for a conveyor named cb1.
In the same figure, module Capacities extends module Factory

by adding capacity to conveyors. Its concrete syntax model adds

a new NodeMapping (capac) to show the capacity adjacent to the

conveyor symbol (shaded). Note that the figure shows mapping

𝐼𝑁𝐴𝐶 explicitly, while mapping 𝐼𝑁𝐶𝑆 is implicitly given by equality

of object names, but using primas to distinguish them. For example,

c’ in 𝐺𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑖𝑒𝑠 is mapped to c in 𝐺𝐹𝑎𝑐𝑡𝑜𝑟𝑦 .

Capacities

Conveyor

capacity: int

Conveyor

Factory

MMCapacities GCapacities

MMFactory

… c: Container
Mapping

parts: Container
Mapping

c': ContainerMapping

capac: NodeMapping

…

G Factory

header: Container
Mapping pg: Gradient

cg: Gradient

ccg: Gradient

style

style

style

sq: Square
style

borderedNodes

subNodessubNodes

label=“max…”

CFactory

CCapacities

Figure 6: Two modules with concrete syntax.

A mapping between the concrete and abstract syntax is well-

defined if every node in the concrete syntax is mapped to at most

one class in the abstract syntax, as the next definition describes.

Definition 3.2 (Well-defined abstract-concrete mapping). A span

𝐼𝑁𝐴𝐶 = 𝐺 ←− 𝐶𝐴𝐶 −→ 𝑀𝑀 between a concrete syntax model

𝐺 and a meta-model 𝑀𝑀 is well-defined if ∀𝑐1, 𝑐2 ∈ 𝑀𝑀 , ∀𝑒 ∈ 𝐺 ,
𝑚𝑎𝑝𝐴𝐶 (𝑒, 𝑐1) ∧𝑚𝑎𝑝𝐴𝐶 (𝑒, 𝑐2) =⇒ 𝑐1 = 𝑐2.

A module with concrete syntax requires its mappings 𝐼𝑁𝐴𝑆 ,

𝐼𝑁𝐴𝐶 and 𝐼𝑁𝐶𝑆 to be coherent. That is, if an element 𝑒′ of the
concrete syntax model extends an element 𝑒 of the module’s depen-

dency, then the class 𝑒′ is mapped to should extend the class 𝑒 is

mapped to. This is captured by Def. 3.3.

Definition 3.3 (Well-formed module with concrete syntax). A mod-

ule with concrete syntax𝑀𝐶𝑆 = ⟨𝑀,𝐴𝑆,𝐶𝑆 = ⟨𝐺, 𝐼𝑁𝐴𝐶 , 𝐼𝑁𝐶𝑆 ⟩⟩ is
well-formed (wff) iff:

𝑚𝑎𝑝𝐶𝑆 (𝑒′, 𝑒) ⇐⇒ ∃𝑐′ ∈ 𝑀𝑀, ∃𝑐 ∈ 𝑀𝑀 (𝑀𝐷)·
𝑚𝑎𝑝𝐴𝐶 (𝑒′, 𝑐′) ∧𝑚𝑎𝑝𝐴𝐶 (𝑒, 𝑐) ∧𝑚𝑎𝑝𝐴𝑆 (𝑐′, 𝑐)

Example 5.Module Capacities in Fig. 6 is wff. This is so as we

have 𝑚𝑎𝑝𝐶𝑆 (c’, c), which is a valid mapping since: (1) class

Conveyor in Capacities is mapped to Conveyor in Factory (i.e.,
𝑚𝑎𝑝𝐴𝑆 (Conveyor, Conveyor)); (2) c’ in 𝐺𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑖𝑒𝑠 is mapped to

Conveyor (𝑚𝑎𝑝𝐴𝐶 (c’, Conveyor)); and (3) c in𝐺𝐹𝑎𝑐𝑡𝑜𝑟𝑦 is mapped

to Conveyor (𝑚𝑎𝑝𝐴𝐶 (c, Conveyor)). Instead,mapping c in𝐺𝐹𝑎𝑐𝑡𝑜𝑟𝑦

to class Part would not yield a wff model.

3.2 Composing concrete syntax specifications
An LPL with concrete syntax (from now on, simply LPL) is an LPL

made of modules with concrete syntax. Given a configuration 𝜌 , a

derivation yields a meta-model𝑀𝑀𝜌 mapped to a concrete syntax

model 𝐺𝜌 , i.e. 𝐼𝑁𝐴𝐶𝜌
: 𝐺𝜌 ←− 𝐶𝜌 −→ 𝑀𝑀𝜌 , as Def. 3.4 describes.

Definition 3.4 (Derivation). Given a language product line with

concrete syntax 𝐿𝑃𝐿 and a configuration 𝜌 ∈ 𝐶𝐹𝐺 (𝐿𝑃𝐿), we derive
the span 𝐼𝑁𝐴𝐶𝜌

: 𝐺𝜌

𝑔𝜌
←− 𝐶𝜌

𝑚𝑚𝜌

−→ 𝑀𝑀𝜌 as follows:

(1) The meta-model𝑀𝑀𝜌 is calculated as per Def. 2.5;

(2) The concrete syntax model 𝐺𝜌 is calculated as the co-limit ob-

ject of all models and spans in the set {𝐼𝑁𝐶𝑆 (𝑀𝑖) = ⟨𝐺 (𝑀𝑖) ←−
𝐶𝐶𝑆 (𝑀𝑖) −→ 𝐺 (𝑀𝐷 (𝑀𝑖))⟩ | 𝑀𝑖 ∈ 𝜌};

MODELS ’24, September 22–27, 2024, Linz, Austria A. Garmendia et al.

(3) The mapping model 𝐶𝜌 is the minimal graph s.t. the set of

functions {𝑐𝑠𝑖 : 𝐶𝐶𝑆 (𝑀𝑖) → 𝐶𝜌 | 𝑀𝑖 ∈ 𝜌} is jointly surjective,

and ∀𝑐 𝑗 ∈ 𝐶𝐶𝑆 (𝑀𝑗), 𝑐𝑘 ∈ 𝐶𝐶𝑆 (𝑀𝑘) ·𝑔(𝑐 𝑗) = 𝑔(𝑐𝑘) ∧𝑚𝑚(𝑐 𝑗) =
𝑚𝑚(𝑐𝑘) ⇐⇒ 𝑐𝑠 𝑗 (𝑐 𝑗) = 𝑐𝑠𝑘 (𝑐𝑘);

(4) The mappings 𝑔𝜌 and 𝑚𝑚𝜌 are defined as

⋃
𝑖 𝑔𝑖 ◦ 𝑐𝑠−1𝑖

and⋃
𝑖𝑚𝑚𝑖 ◦ 𝑐𝑠−1𝑖

respectively.

Example 6. Fig. 7 shows the derivation for a configuration con-

taining modules Factory and Capacities (cf. Fig. 6). Model 𝐺𝜌 is

the glueing of models𝐺𝐹𝑎𝑐𝑡𝑜𝑟𝑦 and𝐺𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑖𝑒𝑠 via mapping 𝐼𝑁𝐶𝑆 .

Mapping 𝐶𝜌 is the union of 𝐶𝐹𝑎𝑐𝑡𝑜𝑟𝑦 and 𝐶𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑖𝑒𝑠 , where the

elements with same mapping to𝑀𝑀𝜌 and 𝐺𝜌 are merged. On the

concrete syntax, the effect of composing both modules is the addi-

tion of the box with the capacity to the conveyor representation.

MM G

Conveyor

capacity: int

c: ContainerMapping ccg: Gradient
style

subNodes

capac: Node
Mapping

sq: Square
style

…

C

label=“max…”
borderedNodes

header: Container
Mapping pg: Gradient

style

parts: Container
Mapping cg: Gradient

style

su
b

N
o

d
es

Figure 7: Derivation for the LPL excerpt of Fig. 6.

Next, we turn our attention to the correctness of the derived

concrete syntax model and abstract-concrete syntax mapping. The

next theorem states the correctness of the mapping.

Theorem 3.5 (Derivation mapping correctness). Given a lan-
guage product line 𝐿𝑃𝐿 s.t. all modules are wff and all mappings
𝐼𝑁𝐴𝐶𝑖

are well-defined, and a configuration 𝜌 ∈ 𝐶𝐹𝐺 (𝐿𝑃𝐿), then the
mapping 𝐼𝑁𝐴𝐶𝜌

: 𝐺𝜌

𝑔𝜌
←− 𝐶𝜌

𝑚𝑚𝜌

−→ 𝑀𝑀𝜌 generated by Def. 3.4 is
well-defined.

Proof. Since each individual function 𝑐𝑠𝑖 , and the union of any

two functions 𝑐𝑠 𝑗 , 𝑐𝑠𝑘 may be non-injective,

⋃
𝑖 𝑐𝑠
−1
𝑖

would not be

a function, but a relation. However, by Def. 3.3,

⋃
𝑖𝑚𝑚𝑖 ◦ 𝑐𝑠−1𝑖

is

again a function. Let 𝑛 be any node in 𝐶𝜌 ; 𝑐𝑠 𝑗 and 𝑐𝑠𝑘 be any two

functions; and 𝑛 𝑗 ∈ 𝐶𝐶𝑆 𝑗
and 𝑛𝑘 ∈ 𝐶𝐶𝑆𝑘 be any two nodes with

𝑐𝑠 𝑗 (𝑛 𝑗) = 𝑛 = 𝑐𝑠𝑘 (𝑛𝑘). Then we have that𝑚𝑚 𝑗 (𝑛 𝑗) = 𝑚𝑚𝑘 (𝑛𝑘)
by condition 3 in Def. 3.4, and so

⋃
𝑖𝑚𝑚𝑖 ◦ 𝑐𝑠−1𝑖

is a function (and

similarly for

⋃
𝑖 𝑔𝑖 ◦ 𝑐𝑠−1𝑖

).

Then, we show that 𝐼𝑁𝐴𝐶𝜌
is well-defined according to Def. 3.2.

A node 𝑛 ∈ 𝐺𝜌 could be mapped to two different classes in𝑀𝑀𝜌 if:

(1) Some span 𝐼𝑁𝐴𝐶 is not well-defined, which is not possible by

the assumption of Theorem 3.5.

(2) Two nodes 𝑛𝑖 ∈ 𝐺𝑖 and 𝑛 𝑗 ∈ 𝐺 𝑗 , mapped to different classes

𝑐𝑖 ∈ 𝑀𝑀𝑖 and 𝑐 𝑗 ∈ 𝑀𝑀𝑗 , were merged to a single node 𝑛 ∈
𝐺𝜌 , and 𝑐𝑖 and 𝑐 𝑗 were not merged to the same class in𝑀𝑀𝜌 .

Nodes 𝑛𝑖 and 𝑛 𝑗 are merged if they are mapped to each other

(𝑚𝑎𝑝𝐶𝑆 (𝑛𝑖 , 𝑛 𝑗)). Since all modules are wff, according to Def. 3.3,

classes 𝑐𝑖 and 𝑐 𝑗 should be mapped to each other as well, and

thus merged by the co-limit construction.

Therefore, no node 𝑛 ∈ 𝐺𝜌 can be mapped to two different

classes, and so 𝐼𝑁𝐴𝐶𝜌
is well-defined. □

Algorithm 1: Composing concrete syntax spec. objects

1 Function compose(po: CSObject, co: CSObject): CSObject
2 𝑔𝑜 ← 𝑝𝑜.𝑐𝑙𝑜𝑛𝑒 ()
3 forall 𝑓 ∈ 𝐶𝑙𝑎𝑠𝑠 (𝑐𝑜) .𝑓 𝑖𝑒𝑙𝑑𝑠 do
4 if 𝑓 .𝑖𝑠𝑀𝑜𝑛𝑜𝑉𝑎𝑙𝑢𝑒𝑑 () then
5 if𝑚𝑎𝑝𝐶𝑆 (𝑝𝑜.𝑓 , 𝑐𝑜.𝑓) then
6 𝑔𝑜.𝑓 ← 𝑐𝑜𝑚𝑝𝑜𝑠𝑒 (𝑝𝑜.𝑓 , 𝑐𝑜.𝑓)
7 else 𝑔𝑜.𝑓 ← 𝑐𝑜.𝑓

8 else
9 forall 𝑓 𝑜 ∈ 𝑐𝑜.𝑓 do
10 if ∃𝑓 𝑜′ ∈ 𝑔𝑜.𝑓 ·𝑚𝑎𝑝𝐶𝑆 (𝑓 𝑜′, 𝑓 𝑜) then
11 𝑓 𝑜′ ← 𝑐𝑜𝑚𝑝𝑜𝑠𝑒 (𝑓 𝑜′, 𝑓 𝑜)
12 else 𝑔𝑜.𝑓 .𝑎𝑑𝑑 (𝑓 𝑜)
13 𝑔𝑜.𝑓 .𝑡𝑟𝑖𝑚 (𝑓 .𝑚𝑎𝑥𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙𝑖𝑡𝑦 ())
14 return go

15 Function compose(pf: Attribute, cf: Attribute): Attribute
16 𝑔𝑓 ← 𝑝𝑓 .𝑐𝑙𝑜𝑛𝑒 ()
17 if 𝑝𝑓 .𝑡𝑦𝑝𝑒 𝑖𝑠 𝑆𝑡𝑟𝑖𝑛𝑔 then
18 𝑔𝑓 .𝑣𝑎𝑙𝑢𝑒 ← 𝑝𝑓 .𝑣𝑎𝑙𝑢𝑒.𝑐𝑜𝑛𝑐𝑎𝑡 (𝑐 𝑓 .𝑣𝑎𝑙𝑢𝑒)
19 else if 𝑝𝑓 .𝑡𝑦𝑝𝑒 𝑖𝑠 𝑁𝑢𝑚𝑒𝑟𝑖𝑐 then
20 𝑔𝑓 .𝑣𝑎𝑙𝑢𝑒 ← 𝑝𝑓 .𝑣𝑎𝑙𝑢𝑒 + 𝑐 𝑓 .𝑣𝑎𝑙𝑢𝑒
21 else if 𝑝𝑓 .𝑡𝑦𝑝𝑒 𝑖𝑠 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 then
22 𝑔𝑓 .𝑣𝑎𝑙𝑢𝑒 ← 𝑝𝑓 .𝑣𝑎𝑙𝑢𝑒 ∨ 𝑐 𝑓 .𝑣𝑎𝑙𝑢𝑒
23 return 𝑔𝑓

Given a configuration 𝜌 , the abstract co-limit construction to

build the concrete syntax model𝐺𝜌 does not detail how to compose

the attribute values and references of objects. Moreover, it does

not consider the cardinality of the composed fields (attributes and

references), which is needed to ensure a correct resulting model.

To tackle these aspects, Algorithm 1 describes how we compose

a parent graphical object 𝑝𝑜 with a child graphical object 𝑐𝑜 (we

use CSObject for any type in the concrete syntax model, i.e., any

type in package ConcreteSyntax of Fig. 5). It iterates over all fields
of 𝑐𝑜 (line 3). If the field is monovalued (line 4), then its value in

the child object overrides the value in the parent (line 7), unless

the fields in the child and parent are mapped via𝑚𝑎𝑝𝐶𝑆 (line 5),

in which case they are composed recursively (line 6). If the field is

multivalued (line 8), the same process is applied for each of its val-

ues (line 9): the values in the child are added to the parent (line 12),

unless they are mapped (line 10), in which case they are composed

recursively (line 11). Moreover, if the result of composing a multi-

valued field exceeds its maximum cardinality, it is trimmed (line 15).

While function compose in lines 1–14 performs the composition of

graphical objects, the homonymous function in lines 15–23 com-

poses attribute values based on their type: it concatenates Strings

(the child after the parent), adds numbers, and performs the or of
booleans (composing enumerations is not allowed). In future work,

we will generalise our algorithm to enable the provision of concrete

composition algorithms for specific attribute types.

Example 7. Module Time adds a timeStamp to Parts, which should
be displayed after the part name (cf. Fig. 1 (c)). Thus, module Time
should not override the label thatmodule Factory defines for Parts,
but it needs to concatenate a value to it. Hence, both labels are

mapped using𝑚𝑎𝑝𝐶𝑆 . Then, when merging both styles, line 6 in

Algorithm 1 invokes the function compose in line 15, which con-

catenates the String labels. By overloading function compose for

Product Lines of Graphical Modelling Languages MODELS ’24, September 22–27, 2024, Linz, Austria

objects and attributes, we avoid the need to check the type of the

mapped elements.

3.3 Overriding and graphical variants
Some variants within a language family may differ just in their con-

crete syntax. Such cases are handled by adding to the LPL modules

that do not extend the abstract syntax, but only the concrete one.

Example 8. Language variant (d) in Fig. 1 only changes the concrete
syntax to show the number of parts but do not depict the individ-

ual parts. This can be specified as Fig. 8(a) shows. The optional

module Summary overrides the parts’ compartments of Machine
and Conveyor to display the number of parts. The container map-

pings parts’ and partsM’ in𝐺𝑆𝑢𝑚𝑚𝑎𝑟𝑦 are composed with parts
and partsM in 𝐺𝐹𝑎𝑐𝑡𝑜𝑟𝑦 , but the style of the former ones prevails

since Summary is a child module of Factory (cf. Fig. 8(b)). The OCL
expressions in the labels of the gradient objects mcg and cg calcu-
late the number of parts. The abstract syntax of module Summary
includes classes Machine and Conveyor to enable their mapping to

the concrete syntax 𝐺𝑆𝑢𝑚𝑚𝑎𝑟𝑦 .

Summary

Machine

Conveyor

FactoryMachine Conveyor

* elements

Part
parts

*

Factory

FElement

name: String name: String

CFactory G FactoryMMFactory

… …

MMSummary C Summary GSummary

parts’: Container
Mapping

partsM’:Container
Mapping

…

…

overrides all

cg: Gradient

label=“self.parts->size()…”

style

mcg: Gradient

label=“self.parts->size()…”

style

parts:

partsM:

(a) (b)

compose

Figure 8: (a) Module Summary with concrete syntax variant.
(b) Graphical symbols of modules Summary and Factory, and
their composition (dotted blue arrows denotemapping 𝐼𝑁𝐶𝑆).

In this example, the concrete syntax of module Summary must

prevail over any other, including that of Capacities, which adds

to the parts’ compartment of conveyors a grid with an indication of

the free capacity (cf. Fig. 1(b)). This exemplifies a feature interaction:
two modules, neither of which is a child of the other, compete to

contribute concrete syntax elements. In our case, we need that

the concrete syntax in module Summary is applied even if other

modules that extend the compartments of Machine and Conveyor
(like Capacities) are selected. To this aim, Def. 3.6 extends the

concrete syntax of modules to enable overriding via an override
specification 𝑂𝑉 .

Definition 3.6 (Concrete syntax overriding). Given a product line

with concrete syntax LPL, a concrete syntax tuple with overriding

is defined as 𝐶𝑆 = ⟨𝐺, 𝐼𝑁𝐴𝐶 , 𝐼𝑁𝐶𝑆 ,𝑂𝑉 ⟩, where:
• ⟨𝐺, 𝐼𝑁𝐴𝐶 , 𝐼𝑁𝐶𝑆 ⟩ is a concrete syntax tuple as in Def. 3.1;

• 𝑂𝑉 is a set of tuples ⟨𝐺𝑂 ⊆ 𝐺,𝑀𝑂 ⊆ 𝐿𝑃𝐿⟩ made of a (possibly

empty) subgraph𝐺𝑂 of 𝐺 , and a (possibly empty) subset𝑀𝑂 of

modules of the LPL.

In Def. 3.6, 𝐺𝑂 contains the elements of 𝐺 that override others

(all elements of 𝐺 override any other if𝐺𝑂 is empty). Similarly, if

𝑀𝑂 is empty, then all other modules in the LPL are overridden;

otherwise, only the modules in𝑀𝑂 are overridden. If the set 𝑂𝑉 is

empty, then there is no override specification.

Override specifications affect the composition procedure out-

lined in Algorithm 1 by discarding the concrete syntax of the ele-

ments within overridden modules.

Example 9. Module Summary in Fig. 8(a) defines the override speci-

fication 𝑂𝑉 = {⟨∅, ∅⟩}, so all objects in its concrete syntax model

(𝐺𝑂 = ∅) override the graphical objects in the other modules

(𝑀𝑂 = ∅). This is represented in the figure as “overrides all”. Sec-

tion 6 will describe a textual notation for override specifications.

4 ANALYSIS OF GRAPHICAL CONFLICTS
A possible mistake when specifying an LPL are modules that con-

tribute concrete syntax elements that would be overridden by other

(non-children) modules. Such modules would be in conflict because

the result would depend on the order of composition.

Example 10. The left of Fig. 9 shows a schema of an example graph-

ical conflict. For better intuition, the shapes (ellipses, rectangles) in

the graphical part of modules represent the concrete syntax they

define. Both 𝑀1 and 𝑀2 override the style for Parts in 𝑀 . This

means that, in configurations where𝑀 is selected but𝑀1 and𝑀2

are not, parts are represented as white rectangles (cf. right of Fig. 9);

in configurations where𝑀1 is selected but𝑀2 is not, parts are el-

lipses; and when 𝑀2 is selected but 𝑀1 is not, parts are coloured

rectangles. However, since elements can only have one style, when

both𝑀1 and𝑀2 are selected, there is a conflict, since both modules

override the style of parts differently.

Part Part

Part

M

M1
M2

{M}

configuration style

{M, M1}

{M, M2}

{M, M1, M2}
(conflict)

Figure 9: Example of graphical conflict. Selecting modules
𝑀 ,𝑀1 and𝑀2 yields a conflict in the graphical syntax.

We provide a method for detecting and signalling such situations,

which then can be solved by explicitly including an override speci-

fication, as in Def. 3.6. Given an LPL, a set of modules𝑀1, ..., 𝑀𝑛 ∈
𝐿𝑃𝐿 are in potential graphical conflict if: (1) they all have concrete

syntax elements 𝑒1, ..., 𝑒𝑛 extending the same element 𝑒 , (formally

∃𝑒1 ∈ 𝐺 (𝑀1), ..., ∃𝑒𝑛 ∈ 𝐺 (𝑀𝑛) ·𝑚𝑎𝑝𝐶𝑆 (𝑒1, 𝑒) ∧ ... ∧𝑚𝑎𝑝𝐶𝑆 (𝑒𝑛, 𝑒));
(2) the modules are not direct or indirect children of each other

(𝑀1 ∉ 𝐷𝐸𝑃∗ (𝑀2) ∧ ...∧𝑀𝑛 ∉ 𝐷𝐸𝑃∗ (𝑀1)); and (3) they may appear

together in a configuration (∃𝜌 ∈ 𝐶𝐹𝐺 (𝐿𝑃𝐿) · {𝑀1, ..., 𝑀𝑛} ⊆ 𝜌).

Once potential conflicts are detected, the method checks whether

they are problematic: they override fields withmaximum cardinality

1 (e.g., AbstractNodeMapping.style, cf. Fig. 5).
Given a set𝑀𝐶 of modules in graphical conflict, the conflict is

solved by setting override specifications such that, for any configu-

ration 𝜌𝑖 containing modules in𝑀𝐶 (𝜌𝑖 ∩𝑀𝐶 ≠ ∅), there is exactly
one module 𝑀𝑠 that is not overridden, and all other modules are

MODELS ’24, September 22–27, 2024, Linz, Austria A. Garmendia et al.

overridden by another module. In practice, this amounts to defining

an ordering among modules (i.e., override relations should define a

total order in conflicting modules). In our implementation, if there

is no override specification, the ordering is given by the insertion

order of child modules and the depth-first traversal of the LPL.

Example 11. Fig. 9 contains the set {𝑀1, 𝑀2} of conflictingmodules.

The conflict can be solved by specifying that𝑀1 overrides𝑀2, or

the other way round.

Finally, conflicts in override specifications may also occur, when

there is a cycle of override relations among some of the modules in

a configuration. This can be statically signalled by detecting cycles

of override relations in the LPL, and then checking that the modules

involved cannot appear together in a configuration.

5 GRAPHICAL LANGUAGE ASPECTS
Some graphical characteristics may be applicable across all variants

of a language family, such as the use of high-contrast colours for

accessibility (as in Fig. 1(e)), internationalisation (as in Fig. 1(f)),

or the size of symbols. These characteristics affect all variants of a

graphical language, and we refer to them as graphical aspects. Like
aspects in programming languages [24], graphical aspects do not

add localised features to the language, but they override certain

graphical elements (e.g., colours, line widths, labels) defined by the

LPL modules. Thus, they typically address cross-cutting concerns

of a graphical language.

Technically, applying a graphical aspect creates new language

variants by adding an optional child module to each module of the

LPL. These new modules have constrains enforcing that, whenever

the new child added to the top module is selected, the new children

added to the other modules are also selected, and vice versa. Finally,

the new optional modules modify the concrete syntaxmodel of their

parent as required. For example, an internationalisation aspect will

translate the labels of symbols into a given language (cf. Fig. 1(f)).

Example 12. Fig. 10(a) shows the operation schema of applying the

HighContrast graphical aspect on a fragment of the example LPL

made of modules Factory and Capacities. The aspect adds the
optional modules HighContrast and Capacities-HighContrast
into the LPL. These modules override the concrete syntax model of

their parent by changing the colour of symbols to black or white,

and enlarging the font size of labels and the width of symbol lines.

Moreover, the constraints in the added modules allow the aspect to

be activated by just selecting the optional module under the top one

(i.e., HighContrast). From the LPL definition, the standard feature

model in Fig. 10(b) is generated. All optional modules introduced by

the aspect – except the one for the top module – are set as hidden

features. This way, when a user selects feature HighContrast in a

configuration, the hidden feature Capacities-HighContrast will

be automatically selected if Capacities is also selected.

In practice, aspects are specified bymeans of an Eclipse extension

point, as we will see in the next section.

6 TOOL SUPPORT
We implemented these ideas in a tool named Capone-CS, available

at https://github.com/antoniogarmendia/capone-graphical-pl.

Machine

Conveyor

Part

Factory

P1

Machine: ws1

Conveyor: cb

…

…

HighContrast

P1

Machine: ws1

Conveyor: cb

Machine

Conveyor

Part

…

…

Capacities

Conveyor

capacity: int max=3

Capacities -HighContrast

Conveyor

capacity: int max=3
HighContrast

(Capacities Capacities-HighContrast) Capacities-HighContrast HighContrast

Factory

HighContrast Capacities

Factory

HighContrast

Capacities

(a) (b)

Capacities-
HighContrast

(hidden)

Figure 10: (a) Module injection by the HighContrast aspect.
(b) Feature model with hidden features and configuration.

CAPONE
CORE

CAPONE

CAPONE-CS

SIRIUS

«depends»

«depends»

Graphical
Aspect

FeatureIDE

Xtext I8n

Accessibility

language

parameter

Figure 11: Architecture.

Fig. 11 shows the ar-

chitecture of our tool. It

is built atop Capone, an

open-source Eclipse plu-

gin made public in [9].

Capone uses the tool

FeatureIDE [28] to han-

dle the product line and

the configurations, and

Xtext [45] to provide a DSL to specify themodules. The figure shows

our extension to Capone (Capone-CS), which relies on Sirius [40]

to define the graphical concrete syntax models and generate the

editors of the language variants. Capone-CS has an extension point

enabling the external definition of graphical aspects. Extension

point implementations may declare parameters (e.g., the interna-

tionalisation (i8n) aspect declares the language as a parameter) and

must specify how to rewrite Sirius concrete syntax models (e.g.,

translating labels into the selected language).

Fig. 12 showcases Capone-CS. It provides a textual editor to de-

fine the modules of the LPL (label 1). We have extended the existing

editor to refer to a Sirius odesign model (line 4 in the editor), write

override specifications (line 5, cf. Def. 3.6), and compose attributes

of graphical objects (e.g., labels) if needed (cf. Algorithm 1). For ex-

ample, line 5 in the editor refers to two nodes in the odesign model

by their identifier, which override their specification in all other

modules. Label 2 in the figure shows two odesign concrete sytaxes

from modules Defects and MachineDefects. The mapping 𝐼𝑁𝐶𝑆

between odesign graphical objects is given by equality of identifiers.

The mapping between attributes of graphical objects needs to be

specified in the editor with label 1.

While an LPL is being defined, the designer can check for possi-

ble graphical conflicts, as described in Section 4. In the figure, both

modules Defects and MachineDefects define a gradient shape

style with different foreground color for MachineContainer (cf.

label 2). As described in Section 4, a conflict arises because both

modules may be selected together. This kind of conflicts are shown

in the problems view (label 5). Currently, our implementation sig-

nals conflict sets of size 2. In the example, the problem would be

solved by making one override the other. In addition, Capone-CS

https://github.com/antoniogarmendia/capone-graphical-pl

Product Lines of Graphical Modelling Languages MODELS ’24, September 22–27, 2024, Linz, Austria

1

3 4

2

5

Figure 12: Capone-CS in action. (1) Specifying a module. (2) Sirius odesign concrete syntax models for two modules. (3) Feature
model generated from the LPL. (4) Choosing a language configuration. (5) Problems view with graphical conflicts.

Figure 13: Generated editor for a language variant.

provides two implementations of the Graphical Aspect extension
point for internationalisation and high-contrast accessibility. Their

application to an LPL modifies its definition, as shown in Section 5.

Once the definition of the LPL is complete, Capone-CS permits

generating a feature model that reflects the structure of its modules

(label 3). Since the structure of an LPL is slightly more flexible than

a standard feature diagram (e.g., module Factory in the running

example has both optional and alternative children modules), the

generated feature model may need to include intermediate features

(e.g., FactoriesALT). Then, a dedicated editor permits selecting

language configurations (label 4), and Capone-CS is able to build

the products – the meta-model and Sirius odesignmodel – for them,

as explained in Sections 2.2 and 3.

Finally, we have built a facility to extract a generated product

into a dedicated Sirius project, to obtain a ready-to-use graphical

editor. Fig. 13 shows a screenshot of the generated editor for one

language variant. The editor features a palette with the classes and

associations available in the variant, and properly handles other

graphical elements that may or may not be present depending on

the variant, such as layers.

7 EVALUATION
This section evaluates our approach. Firstly, we aim to assess the

benefits of our proposal (LPLs) w.r.t. a direct approach where each

language of a family is defined separately (case-by-case). Secondly,

we aim at understanding the extensibility of our proposal, also

taking a case-by-case approach as a baseline. Thus, our evaluation

is designed to answer the following research questions (RQs):

RQ1: What is the specification size reduction of LPLs compared

to a case-by-case approach?

RQ2: What is the typical effort for adding a feature to an LPL?

Experiment setup.We evaluated our approach on the running exam-

ple and three case studies from the literature [9]: language families

of networking DSLs, statecharts and Petri nets. The running ex-

ample consists of the LPL in Fig. 2, plus module Summary in Fig. 8.

Overall, the families comprise from 32 to 96 language variants.

Table 1 shows some data for these families, sorted by their num-

ber of configurations (column 2). The generated editors are available

at https://github.com/antoniogarmendia/capone-graphical-pl.

Table 1: Comparison of LPLs with a case-by-case approach.

LPL Case-by-case

Name #Cfg
#Mod
(Overr.
Rules)

AS size
(avg)

CS size
(avg)

AS size
(avg)

CS size
(avg)

% size
red.

Networking 32 8 (3) 35 (4.4) 115 (14.4) 488 (15.3) 1760 (55) 93.5%

Statecharts 48 12 (0) 46 (4.2) 145 (13.2) 720 (15) 2024 (42.2) 92.8%

Petri nets 64 13 (0) 52 (4) 188 (14.5) 864 (13.5) 4992 (78) 96.2%

Factories 96 10 (4) 43 (4.3) 191 (19.1) 1552 (16.1) 7296 (76) 97.4%

Results. To answer RQ1, we compared the specification size of the

four LPLs with the case-by-case specification of each language

variant. As Table 1 shows, the LPLs have between 8 and 13 modules,

https://github.com/antoniogarmendia/capone-graphical-pl

MODELS ’24, September 22–27, 2024, Linz, Austria A. Garmendia et al.

with 0 to 4 overriding rules; the total size of the abstract syntax

(classes, attributes and references in all meta-model fragments)

ranges between 35 and 52, with an average of ≈4 elements per

meta-model fragment; and the total size of the concrete syntax

ranges from 115 to 191 graphical objects, with average concrete

syntax model sizes between 13.2 and 19.1. In two cases, we had to

define overriding rules (3 and 4). The number of rules is not large,

considering the average number of graphical elements in each

module (14.4 and 19.1). Instead, the case-by-case approach required

creating between 32 and 96 meta-models and odesign models, the

former with between 488 and 1552 elements in total (between 13.5

and 16.1 elements per meta-model in average), and the latter with

between 1760 and 7296 graphical objects in total (between 42.2 and

78 objects per odesign model in average).

For RQ2, we looked at the typical specification sizes to create a

language feature. Using LPLs, this entails adding one module with

a small abstract syntax fragment (in our experiment, meta-models

of less than 5 elements) and a concrete syntax model fragment (in

the experiment, odesign models of less than 20 graphical objects).

Instead, a case-by-case approach requires, in theworst case, creating

𝑛 meta-models and odesign models (with 𝑛 the number of existing

features), the former with between 13.5 and 16.1 elements in our

experiment, and the latter having between 55 and 78 objects.

Answering RQ1. For each considered language family, the specifi-

cation size of its LPL is 1 or 2 orders of magnitude smaller than

the corresponding case-by-case specification. Specifically, the LPLs

resulted in a reduction in concrete syntax specification size of be-

tween 92.8% and 97.4%. The gain in specification size is typically

greater the more variants a language family includes.

Answering RQ2. Extending an LPL with a new language variant

requires substantially less specification effort than a case-by-case

approach (one module vs. tens of meta-models and odesignmodels).

Threats to validity. The main threat to external validity is the limited

number of case studies (4) of the experiment. We plan to perform

a more complete experiment with bigger families in future work.

Regarding internal validity, we (the authors) conducted the exper-

iment. This does not bias our results as the evaluation is purely

analytical, based on specification size. The later was used as a proxy

for effort, but a study with developers would be needed to better

understand the effort gain, and possible tool issues.

8 RELATEDWORK
Next, we review works related to LPLs, modularity and aspects for

modelling languages, and composition of graphical syntaxes.

Language product lines: Abstract syntax. Several authors have pro-
posed product lines of meta-models. Perrouin et al. propose feature
model types, an annotative product line of meta-models and their

operations. Similarly, Guerra et al. [19] use an annotative approach

to define meta-model product lines, and support well-formedness

and instantiability analyses at the product line level. None of these

approaches consider the concrete syntax of languages.

MMINT-PL [39] extends meta-models to support annotations at

the model level and allow building product lines of models. Our

approach works a meta-level higher, considering concrete syntax.

Language product lines: Concrete syntax. Similar to MMINT-PL,

Verso [16] is a tool that injects variability in graphical modelling

languages so that models built with those languages can be anno-

tated with presence conditions. Instead, our approach supports the

definition of product lines of graphical editors.

Concern-Oriented Language Development (COLD) [7] is a con-

ceptual proposal that fosters reusability in language development

by the notion of language concern. Concerns have fragments of

abstract syntax, concrete syntax, and semantics, providing inter-

faces to support variability, customisation and use. Our modules

are finer-grained, and our LPLs offer a variability interface but

not a customisation interface. Moreover, our approach is fully re-

alised, including mechanisms for merging the abstract and concrete

syntaxes, analysis and graphical aspects.

Product lines of textual languages have been realised in Monti-

core [3, 4], Neverlang [43] and MetaDepth [31]. MontiCore compo-

nents encapsulate textual syntax, integrity constraints, semantics

(code generators), and can declare provided/required interfaces.

Neverlang is a language workbench where modules encapsulate

textual syntax and semantic actions on abstract syntax trees. In

MetaDepth, meta-model templates define generic parameters with

requirements specified via concepts. Templates can be composed via

the parameters and a textual syntax model. In contrast, we target

graphical syntax, proposing conflict analysis and graphical aspects.

Metrics and guidelines for de-composing textual languages were

proposed by Cazzola et al. [6]. In future work, we aim at developing

guidelines specific to meta-model-based graphical languages.

Composing graphical syntaxes. The platform Gromp [29] provides a

language to compose multiple graphical languages and generate

the corresponding editors. On a more conceptual level, Pedro et
al. [36] propose rules for merging the abstract and concrete syn-

taxes of languages. Our approach uses composition mechanisms (cf.

Sections 3.2 and 3.3), but our focus is on language families rather

than on the composition of isolated languages.

Overall, to the best of our knowledge, ours is the first practi-

cal approach to define families of graphical modelling languages,

combining language product lines and language engineering.

9 CONCLUSIONS AND FUTUREWORK
In this paper, we presented an approach to define families of graph-

ical modelling languages. The approach is modular, enabling the

feature-wise definition of a language family via modules that encap-

sulate abstract and concrete syntax. A language variant is created

by selecting the desired features, and then the abstract and concrete

syntax of the variant are automatically composed. The approach

supports conflict analysis and graphical syntax aspects that inject
general styles across LPLs, e.g., for accessibility. We presented an

implementation and reported on an evaluation that yields substan-

tial specification size reduction both when building a language

family from scratch and when adding a new language feature.

We are currently developingmethods to control the quality of the

resulting graphical language variants. In particular, we are lifting

the analysis of someMoody’s principles for graphical notations [33]

to the product line level. We also plan to enable the customisability

of the composition algorithm. Finally, we will perform user studies,

both about the generated editors and the specification method.

Product Lines of Graphical Modelling Languages MODELS ’24, September 22–27, 2024, Linz, Austria

ACKNOWLEDGMENTS
This work was supported by the Spanish MICINN, with projects

PID2021-122270OB-I00 and TED2021-129381B-C21.

REFERENCES
[1] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. 2017. Model-driven software

engineering in practice, Second edition. Morgan & Claypool Publishers.

[2] Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe, and Andreas

Wortmann. 2018. Controlled and extensible variability of concrete and abstract

syntax with independent language features. In VaMoS. ACM, New York, NY, USA,

75–82.

[3] Arvid Butting, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann.

2021. Compositional modelling languages with analytics and construction infras-
tructures based on object-oriented techniques—The MontiCore approach. Springer
International Publishing, Cham, 217–234.

[4] Arvid Butting, Jerome Pfeiffer, Bernhard Rumpe, and Andreas Wortmann. 2020.

A compositional framework for systematic modeling language reuse. In MoDELS.
ACM, 35–46.

[5] Jordi Cabot, Robert Clarisó, Esther Guerra, and Juan de Lara. 2010. A UML/OCL

framework for the analysis of graph transformation rules. Softw. Syst. Model. 9, 3
(2010), 335–357.

[6] Walter Cazzola and Luca Favalli. 2022. Towards a recipe for language decom-

position: Quality assessment of language product lines. Empir. Softw. Eng. 27, 4
(2022), 82.

[7] Benoît Combemale, Jörg Kienzle, Gunter Mussbacher, Olivier Barais, Erwan

Bousse, Walter Cazzola, Philippe Collet, Thomas Degueule, Robert Heinrich,

Jean-Marc Jézéquel, Manuel Leduc, Tanja Mayerhofer, Sébastien Mosser, Matthias

Schöttle, Misha Strittmatter, and Andreas Wortmann. 2018. Concern-oriented

language development (COLD): Fostering reuse in language engineering. Comput.
Lang. Syst. Struct. 54 (2018), 139–155.

[8] Loris D’Antoni and Margus Veanes. 2021. Automata modulo theories. Commun.
ACM 64, 5 (2021), 86–95.

[9] Juan de Lara, Esther Guerra, and Paolo Bottoni. 2022. Modular language product

lines: A graph transformation approach. In MoDELS. ACM, 334–344.

[10] Juan de Lara, Esther Guerra, and Paolo Bottoni. 2024. Modular language product

lines: Concept, tool and analysis. Software and Systems Modeling to appear (2024),
29 pp. https://doi.org/10.1007/s10270-024-01179-9

[11] Juan de Lara and Hans Vangheluwe. 2008. Translating model simulators to

analysis models. In FASE (LNCS, Vol. 4961). Springer, 77–92.
[12] Juan de Lara and Hans Vangheluwe. 2010. Automating the transformation-based

analysis of visual languages. Form. Asp. Comput. 22, 3 (may 2010), 297–326.

[13] Francisco Durán, Steffen Zschaler, and Javier Troya. 2012. On the reusable

specification of non-functional properties in DSLs. In SLE (LNCS, Vol. 7745).
Springer, 332–351.

[14] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. 2006. Fun-
damentals of algebraic graph transformation. Springer.

[15] Hartmut Ehrig and Claudia Ermel. 2008. Semantical correctness and completeness

of model transformations using graph and rule transformation. In ICGT (LNCS,
Vol. 5214), Hartmut Ehrig, Reiko Heckel, Grzegorz Rozenberg, and Gabriele

Taentzer (Eds.). Springer, 194–210.

[16] Antonio Garmendia, Manuel Wimmer, Esther Guerra, Elena Gómez-Martínez,

and Juan de Lara. 2020. Automated variability injection for graphical modelling

languages. In GPCE. ACM, New York, NY, USA, 15–21.

[17] GMF. (last accessed in March 2024). https://eclipse.dev/modeling/gmp/.

[18] Esther Guerra and Juan de Lara. 2018. On the quest for flexible modelling. In

MoDELS. ACM, 23–33.

[19] Esther Guerra, Juan de Lara, Marsha Chechik, and Rick Salay. 2022. Property

satisfiability analysis for product lines of modelling languages. IEEE Trans. Softw.
Eng. 48, 2 (2022), 397–416.

[20] Felienne Hermans. 2020. Hedy: A gradual language for programming education.

In ICER. ACM, 259–270.

[21] ISO/IEC/IEEE 42010 2022. Systems and software engineering – Architecture

description. https://www.iso.org/standard/74393.html.

[22] Kyo Kang, Sholom Cohen, James Hess, William Novak, and A. Peterson. 1990.

Feature-oriented domain analysis (FODA) feasibility study. Technical Report

CMU/SEI-90-TR-021. Carnegie Mellon University.

[23] Nadine Kashmar, Mehdi Adda, and Mirna Atieh. 2020. From access control

models to access control metamodels: A survey. In FICC (LNNS, Vol. 70). Springer,
892–911.

[24] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,

Cristina Videira Lopes, Jean-Marc Loingtier, and John Irwin. 1997. Aspect-

oriented programming. In ECOOP’97 (LNCS, Vol. 1241). Springer, 220–242.
[25] Dimitrios S. Kolovos, Louis M. Rose, Saad bin Abid, Richard F. Paige, Fiona

A. C. Polack, and Goetz Botterweck. 2010. Taming EMF and GMF using model

transformation. In MoDELS (LNCS, Vol. 6394). Springer, 211–225.
[26] Saunders Mac Lane. 1971. Categories for the working mathematician. Springer.
[27] Ivano Malavolta, Patricia Lago, Henry Muccini, Patrizio Pelliccione, and Antony

Tang. 2013. What industry needs from architectural languages: A survey. IEEE
Trans. Soft. Eng. 39, 6 (2013), 869–891.

[28] Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich,

and Gunter Saake. 2017. Mastering software variability with FeatureIDE. Springer.
[29] Ivan Melo, Mario E. Sánchez, and Jorge Villalobos. 2013. Composing graphical

languages. In GlobalDSL@ECOOP. ACM, 12–17.

[30] David Méndez-Acuña, José Angel Galindo, Benoît Combemale, Arnaud Blouin,

and Benoit Baudry. 2017. Reverse engineering language product lines from

existing DSL variants. J. Syst. Softw. 133 (2017), 145–158.
[31] Bart Meyers, Antonio Cicchetti, Esther Guerra, and Juan de Lara. 2012. Compos-

ing textual modelling languages in practice. In MPM@MoDELS. ACM, New York,

NY, USA, 31–36.

[32] Hafedh Mili, Guy Tremblay, Guitta Bou Jaoude, Eric Lefebvre, Lamia Elabed,

and Ghizlane El-Boussaidi. 2010. Business process modeling languages: Sorting

through the alphabet soup. ACM Comput. Surv. 43, 1 (2010), 4:1–4:56.
[33] Daniel L. Moody. 2009. The “physics” of notations: Toward a scientific basis for

constructing visual notations in Software Engineering. IEEE Trans. Software Eng.
35, 6 (2009), 756–779.

[34] T. Murata. 1989. Petri nets: Properties, analysis and applications. Proc. IEEE 77, 4

(1989), 541–580.

[35] L. Northrop and P. Clements. 2002. Software product lines: Practices and patterns.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

[36] Luis Pedro, Matteo Risoldi, Didier Buchs, Bruno Barroca, and Vasco Amaral. 2009.

Composing visual syntax for domain specific languages. In HCI (LNCS, Vol. 5611).
Springer, 889–898.

[37] Gilles Perrouin, Moussa Amrani, Mathieu Acher, Benoît Combemale, Axel Legay,

and Pierre-Yves Schobbens. 2016. Featured model types: Towards systematic

reuse in modelling language engineering. In MiSE@ICSE. ACM, New York, NY,

USA, 1–7.

[38] José Eduardo Rivera, Esther Guerra, Juan de Lara, and Antonio Vallecillo. 2008.

Analyzing rule-based behavioral semantics of visual modeling languages with

Maude. In SLE (LNCS, Vol. 5452). Springer, 54–73.
[39] Alessio Di Sandro, Ramy Shahin, and Marsha Chechik. 2023. Adding product-line

capabilities to your favourite modeling language. In VaMoS. ACM, 3–12.

[40] Sirius. (last accessed in March 2024). https://www.eclipse.org/sirius/.

[41] Harald Störrle. 2019. Modeling moods. In MoDELS Companion. IEEE, 468–477.
[42] Javier Troya, Antonio Vallecillo, Francisco Durán, and Steffen Zschaler. 2013.

Model-driven performance analysis of rule-based domain specific visual models.

Inf. Softw. Technol. 55, 1 (2013), 88–110.
[43] Edoardo Vacchi and Walter Cazzola. 2015. Neverlang: A framework for feature-

oriented language development. Comput. Lang. Syst. Struct. 43 (2015), 1–40.
[44] Andrzej Wasowski and Thorsten Berger. 2023. Domain-specific languages - Effec-

tive modeling, automation, and reuse. Springer.
[45] Xtext. 2022. https://www.eclipse.org/Xtext/.

https://doi.org/10.1007/s10270-024-01179-9
https://eclipse.dev/modeling/gmp/
https://www.iso.org/standard/74393.html
https://www.eclipse.org/sirius/
https://www.eclipse.org/Xtext/

	Abstract
	1 Introduction
	2 Language Product Lines
	2.1 Running example
	2.2 Language product lines: Abstract syntax

	3 Graphical Concrete Syntax for LPLs
	3.1 Language product lines: Concrete syntax
	3.2 Composing concrete syntax specifications
	3.3 Overriding and graphical variants

	4 Analysis of Graphical Conflicts
	5 Graphical Language Aspects
	6 Tool Support
	7 Evaluation
	8 Related Work
	9 Conclusions and Future Work
	Acknowledgments
	References

