
Software and Systems Modeling manuscript No.
(will be inserted by the editor)

Modular Language Product Lines: Concept, Tool and Analysis

Juan de Lara · Esther Guerra · Paolo Bottoni

Received: date / Accepted: date

Abstract Modelling languages are intensively used in

paradigms like model-driven engineering to automate

all tasks of the development process. These languages

may have variants, in which case the need arises to deal

with language families rather than with individual lan-

guages. However, specifying the syntax and semantics

of each language variant separately in an enumerative

way is costly, hinders reuse across variants, and may

yield inconsistent semantics between variants.

Hence, we propose a novel, modular and composi-

tional approach to describing product lines of modelling

languages. It enables the incremental definition of lan-

guage families by means of modules comprising meta-

model fragments, graph transformation rules, and rule

extensions. Language variants are configured by select-

ing the desired modules, which entails the composition
of a language meta-model and a set of rules defining its

semantics. This paper describes: a theory for checking

well-formedness, instantiability, and consistent seman-

tics of all languages within the family; an implementa-

tion as an Eclipse plugin; and an evaluation reporting

drastic specification size and analysis time reduction in

comparison to an enumerative approach.

Juan de Lara
Modelling & Software Engineering Research Group
Universidad Autónoma de Madrid (Spain)
E-mail: Juan.deLara@uam.es

Esther Guerra
Modelling & Software Engineering Research Group
Universidad Autónoma de Madrid (Spain)
E-mail: Esther.Guerra@uam.es

Paolo Bottoni
Department of Computer Science
Sapienza University of Rome (Italy)
E-mail: bottoni@di.uniroma1.it

Keywords Model-driven engineering, Graph trans-

formation, Product lines, Meta-modelling, Software

language engineering.

1 Introduction

Modelling languages are ubiquitous in many engineer-

ing disciplines, where models represent manageable ab-

stractions of real, complex phenomena. This is no ex-

ception for software engineering, where paradigms like

model-driven engineering (MDE) [6] make intensive use

of modelling languages and models to conduct and pro-

vide automation for all phases of the development pro-

cess. These models are specified via modelling languages,

which are often domain-specific [33].

Modelling languages comprise abstract syntax (the

concepts covered by the language), concrete syntax (their

representation), and semantics (their meaning). In MDE,

the abstract syntax of modelling languages is described

by a meta-model; the concrete syntax by a model de-

scribing the rendering of the language elements; and the

semantics by model transformations [71].

Sometimes, languages that share commonalities are

organised into families. This is the case, for example,

of the more than 120 variations of architectural lan-

guages reported in [45], and the many variants of Petri

nets [49], access control languages [32] and symbolic

automata [12] proposed in the literature. Likewise, lan-

guage families can be defined to account for variants of

a language directed to different kinds of users or con-

texts of use. For example, within UML, simple versions

of class diagrams are suitable for novices; complete ver-

sions for experts; and restricted ones (e.g., with single

inheritance) for detailed design targeting programming

languages like Java. However, describing the syntax and

2 Juan de Lara et al.

semantics of each language variant separately is costly,

does not benefit from reuse across variants, and may

yield inconsistent semantics between variants.

To tackle this issue, product lines [58] have been

applied to the engineering of modelling languages [48].

Product lines permit the compact definition of a po-

tentially large set of products that share common fea-

tures. This way, earlier works have created product lines

of meta-models [14,26] and model transformations [16,

66]. However, the former do not consider semantics [14,

26], while the latter do not support meta-model vari-

ants [66], are hard to extend [16], or are not based on

formalisms that enable asserting consistency properties

over the language family [16,47].

In this work, we propose a novel modular approach

for defining language product lines, which considers se-

mantics and ensures semantic consistency across all of

the members of the language family. The approach is

based on the creation of modules encapsulating a meta-

model fragment and graph transformation rules [23].

Modules can also declare different kinds of dependency

on other modules, and extend the rules defined in those

other modules. Overall, the proposed approach enables

the definition of a large set of language variants in a

compact way, with the underlying theory ensuring the

syntactic well-formedness, instantiability and semantic

consistency of each variant. To demonstrate the prac-

ticality of our proposal, we report on its realisation on

a concrete tool called Capone1, and on an evaluation

that shows its benefits over an enumerative approach.

This work extends our previous paper [15] as fol-

lows. We support a richer notion of meta-model, includ-

ing element names, inheritance and OCL constraints.

This is supported by a more detailed formalisation of

models and meta-models (Section 4.1), which allows the

analysis of conditions for structural well-formedness of

the product line (Section 6.1). In addition, we propose

a form of lifted instantiability analysis of the product

line, to detect possible conflicts between the OCL con-

straints contributed by the modules of the product line

(Section 6.2). Finally, we extend our previous evalu-

ation with one more case study, and report on a new

experiment that shows the efficiency of our lifted instan-

tiability analysis with respect to a case-by-case analysis.

Overall, the evaluations reported in this paper aim at

answering the following research questions:

RQ1 What is the effort reduction of the approach with

respect to an explicit definition of each language

variant?

RQ2 What is the typical effort for adding a new fea-

ture to a language product line?

1 https://capone-pl.github.io/

RQ3 In which scenarios is lifted instantiability analy-

sis more efficient than a case-by-case analysis?

The rest of the paper is organised as follows. Sec-

tion 2 motivates the proposal via a running example,

while Section 3 provides an overview of the approach.

Section 4 introduces the structure of the resulting model

of product lines. Section 5 expands them to consider be-

haviour using rules. Section 6 presents methods to anal-

yse the product lines, including syntactic well-formed-

ness, instantiability, and behaviour consistency. Section

7 reports on the supporting tool and Section 8 on an

evaluation. Section 9 presents a discussion of the strong

points and limitations of the approach. Section 10 com-

pares our approach with related work, and Section 11

concludes the paper. An appendix includes the proofs

of the proposed lemmas and theorems.

2 Motivation and Running Example

We motivate our approach based on a family of domain-

specific languages (DSLs) to model communication net-

works, composed of nodes that exchange messages with

each other. We would like to support different usages of

the language family, such as: study the behaviour of net-

works with node failures, deal with message loss prob-

abilities, or consider protocols and time performance,

among others. As usual in MDE, we represent the lan-

guage syntax with meta-models, and the semantics via

(graph) transformation rules [23].

Figure 1 shows the meta-models of three language

variants within the family, and, for each of them, one ex-
ample rule capturing a small part of the associated be-

haviour (i.e., the forwarding of a message along nodes).

Variant (a) is for a language with simple links between

nodes (reference linkedTo), supporting node failures (bro-
ken) and a simple protocol (ack). Variant (b) features

rich node links (class Link) with a probability simulat-

ing communication loss (lossProb). Variant (c), in ad-

dition, includes timestamps and size for messages, and

considers the speed of links.

A naive approach would define separate meta-models

and transformation rules for each language variant. How-

ever, as Figure 1 shows, the various meta-models and

the associated rules share commonalities which one may

not want to replicate. Moreover, the language family

may need to evolve and be extended over time, so adding

new language features to it should be easy. However,

in a naive approach, incorporating an optional feature

(e.g., support for ad-hoc networks) implies duplicating

each language variant and adding the new feature to

the duplicates, entailing a combinatorial explosion of

https://capone-pl.github.io/

Modular Language Product Lines: Concept, Tool and Analysis 3

NodeMessage
to

Networking –
SimpleLink with Node
failures and acks

broken: bool

linkedTo

at
from

Link
to

ack: bool

Networking – RichLink
with communication
failures

Message Link

lossProb: double
speed: double

Networking – RichLink
with communication
failures and time

n1: Node

m: Message

at

n2: Node

move

-- ++ at

lin
ke

d
To

n1: Node

m: Message

at

n2: Node

move

-- ++ at

l: Link

random(0,1) > p

n1: Node

m: Message

at

n2: Node

-- ++ at

l: Link

random(0,1) > p

move

size = z
timeStamp = t -> t+z/s

(a) (b) (c)

from fromto to

from lossProb: double
NodeMessage

to

at
from from

to

Nodesize: int
timeStamp: double

to

at
from

lossProb=p
speed = s

lossProb=pbroken=falsebroken=false

Fig. 1: Three network language variants, and one example rule of each. (a) Simple links with node failures and

acks. (b) Rich links with communication failures. (c) Rich links with communication failures and time. Rules use

a compact notation with ++ denoting element creation, -- element deletion, and -> attribute change.

variants. Finally, evolving the rules of each variant sep-

arately may easily lead to inconsistencies between them.

An alternative solution would be to create one lan-

guage that incorporates all possible features. However,

this is not suitable either, as the language users would

need to deal with an unnecessarily complex language,

when a simpler variant would suffice. Moreover, some

language features may be incompatible if they repre-

sent alternative options (e.g., a network should not have

both simple and rich links at the same time).

We argue that a sensible solution to define and man-

age a family of languages, like the one described, should

meet the following requirements:

R1. Succinctness: Specifying a language family should

require much less effort than specifying each lan-

guage variant in isolation.

R2. Extensibility: Adding a new language variant

to the family should be easy, and should not re-

quire changing other existing variants, thus al-

lowing incremental language construction.

R3. Reusability: The specifications of language vari-

ants should be as reusable as possible, to min-

imise construction effort and avoid duplications

within and across families.

R4. Analysability: It should be possible to anal-

yse a language family to ensure both syntactic

(structural) correctness of each meta-model of

the family – including their OCL invariants –

and consistent behaviour of each language vari-

ant with the behaviour of the base language. The

analysis should be efficient, and should not rely

on a case-by-case examination of each language

variant, due to a possibly exponential number of

family members.

These requirements stem from our own experience

building language families and techniques for their en-

gineering [14,16,26], as well as on an analysis of the lit-

erature on language product line engineering [48] and

compositional language engineering [55].

In the following, starting with an overview in Sec-

tion 3, we propose a novel approach to modelling lan-

guage variants that satisfies these requirements. The

approach enables a compact, extensible specification of

the syntax of a language family (Section 4), and pro-

vides analysis methods to ensure syntactic well-formed-

ness of each meta-model in the family (Section 6.1), as

well as its instantiability (Section 6.2). It also offers

a compact, extensible specification of semantics (Sec-

tion 5) that ensures consistency across all members of

the family (Section 6.3).

3 Overview of the Approach

Figure 2 depicts our approach to defining families of

languages: each language feature is defined as a module

comprising a meta-model fragment for the syntax, and

a set of graph transformation rules for the semantics.

...

extension roles

optional

mandatory

alternative

or

M
(dependency)

MM
rule_irule_irulei

M1
(extension)

MM1
rule_irule_irulej

Mn
(extension)

MMn
rule_irule_irulek

role of Mn in dependency

glueing points for
extending MM with MMn

{C1→C3,...}{C1→C2,...}

rule extension

1

2

3

1

2

3

Fig. 2: Scheme of a modular language product line.

A set of modules M1,. . . ,Mn may extend another

module M. In such a case, module M is said to be a

dependency of M1,...,Mn, and modules M1,. . . ,Mn are

its extensions. The extensions M1,. . . ,Mn need to spec-

ify their role in the dependency (label 1 in Figure 2).

The possible roles are the standard variability options

in feature modelling [31]: optional (the extension can be

4 Juan de Lara et al.

present or not in a language variant that includes the

dependency), alternative (exactly one of the possible al-

ternative extensions must be present), OR (one or more

of the OR extensions can be present), or mandatory (if

the dependency is present, so must be the extension).

The extension also needs to specify how to merge its

structure (i.e., its meta-model) with the one in the de-

pendency module (label 2), and which of its rules ex-

tend rules in the dependency, if there is any (label 3).

Then, we define a modular language product line

(LPL) as a tree of modules, with relations from the ex-

tensions to their dependencies, and one identified root

module. A language variant can be obtained from the

LPL by making a selection of modules that satisfy the

dependencies. This induces proper compositions of the

meta-models and rules in the selected modules.

With respect to requirementsR1-R4 from Section 2,

we observe the following.

R1. Succinctness:Using product lines [50,58] avoids

defining each language variant in isolation. In-

stead, modules describe simpler language features

that can be combined to obtain the desired lan-

guage variant. In support to this claim, Section 8

describes an experiment reporting an 86%–99%

reduction on the specification sizes of language

families built with our approach, with respect to

defining each language in isolation.

R2. Extensibility: Taking inspiration from practical

component-based systems (e.g., Eclipse [22] or

OSGI [53]), our modules encapsulate syntax and

semantics, and can extend another module. This

results in an extensible design of languages, since

adding a new module to the LPL does not imply

modifying a global structure – like a “monolithic”

150% meta-model overlapping the meta-model of

all language variants [26], or a “global” feature

model describing all language variants [31]. In

addition, the experiment in Section 8 shows that

the effort of extending by a new feature a lan-

guage family built with our approach is much

lower than relying on an explicit definition of

each language in isolation (which may require du-

plicating the number of meta-models).

R3. Reusability: Extension modules can reuse the

syntax and semantics declared in their dependen-

cies, as Sections 4 and 5 will show.

R4. Analysability: We provide techniques to ensure

that each member of a product line is structurally

well-formed (cf. Section 6.1), and that it does

not present conflicts with the possible integrity

constraints that are contributed by each module

(cf. Section 6.2). In addition, we rely on graph

transformation to express the semantics of mod-

ules. This enables consistency checking across all

members of a language family (cf. Section 6.3).

All of the analysis methods we propose do not

rely on a case-by-case exploration of each family

member, but are lifted analyses [68], which are

applicable to the product-line level, thus gener-

ally resulting to be more efficient than a case-by-

case analysis (cf. Section 8.2).

4 Language Product Lines: Structure

We now proceed to formalise our approach, focusing

on the abstract syntax of the languages. Section 5 will

then expand the notion of module with rules to express

behaviour. We start by introducing the basic concepts

of models, meta-models, and morphisms in Section 4.1,

which are then used to build the notion of language

product line in Section 4.2.

4.1 Models, Meta-models and Morphisms

We use graphs to encode models and meta-models, us-

ing the notion of E-graph [23], enriched with labels [52]

and inheritance [13]. As mentioned in Section 3, our

modules are provided with a meta-model to represent

the part of the language structure contributed by the

module.

An E-graph is defined by two sets of nodes (graph

and data nodes), a set of attributes, a set of labels, and

a set of edges connecting two graph nodes (called refer-

ences). Then, functions define the source and target of

edges, the owner and values of attributes, and the la-
belling of nodes, attributes and references. In addition,

inheritance is modelled as an acyclic relation between

graph nodes. Definition 1 captures this notion.

Definition 1 (E-graph) An E-graph G is a tuple G =

⟨V,E,A,D,L, ownerE , tar, ownerA, val, nameV , nameE ,

nameA, I⟩, where:

– V , E, A are sets of vertices (or nodes), edges (or

references), and attributes, respectively. We use F

(fields) for the set E ∪A.

– D is a set of data nodes to be used for attribution,

and L is a set of labels to be used as identifiers for

nodes, references and attributes.

– ownerE : E → V and tar : E → V are functions

returning the source and target nodes of the edges

in E, respectively.

– ownerA : A → V and val : A → D are functions

returning, for each attribute, its owner node and

its value, respectively.

Modular Language Product Lines: Concept, Tool and Analysis 5

– nameX : X → L (for X ∈ {V,E,A}) are func-

tions returning the name of nodes, references and

attributes, respectively.

– I ⊆ V ×V is a relation between nodes, representing

inheritance: (v1, v2) ∈ I means v1 inherits from v2.

Given a node v ∈ V , we write sub(v) = {vs | (vs, v) ∈
I∗} for the set of nodes that inherit directly or indirectly

from v (including v), with I∗ the reflexive-transitive

closure of I.

Remark 1 Given an E-graph G, we use V , E and so on,

to refer to its components when no confusion can arise.

When considering several graphs (e.g., M , MM), we use

the graph name as superindex for the component name

(e.g., V M , V MM , EM , EMM). We also use owner for

ownerE ∪ ownerA, and name for nameE ∪ nameA.

Finally, we define the function fields : V → E ∪ A to

obtain the set of defined and inherited fields of a node,

as fields(v) = {f ∈ F | v ∈ sub(owner(f))}.

We will use E-graphs (from now on simply graphs)

to represent both models and meta-models, where nodes

denote either objects or classes, respectively. In the case

of models, we require the inheritance relation to be

empty. Graphs are often enriched with an algebra over

a data signature [61], describing the data types (strings,

integers, booleans) used for the attributes. Such graphs

are called attributed graphs, and the set D is then de-

fined as the union of the carrier sets of the algebra. In

the case of meta-models, attributes specify a data type

and do not hold values. This way, meta-models are at-

tributed graphs over a final signature, where the carrier

set of each sort has just one element.

Example 1 Figure 3 shows an example of two graphs

representing a model and a meta-model. These are de-

picted using Definition 1 in part (a), and the UML nota-

tion in part (b). The meta-model MM contains just one

class (v1) with name Node, an attribute (a1) with name

broken of type bool, and a self-reference (e1) with name

linkedTo. The model M has two objects with names n1
and n2, whose broken attribute values are false and true,
and which are connected via relation linkedTo.

Definition 2 gives some well-formedness conditions

to be satisfied by graphs used to represent meta-models.

The first condition for a meta-model to be well-formed

(wff) states that inheritance should be acyclic, the sec-

ond specifies that class names should be unique, while

the third one asserts that the names of the (defined and

inherited) fields of each class should not be repeated.

Definition 2 (Wff Meta-model) An E-graph G is

said to be a wff meta-model – written wff(G) – if:

Meta-model MM

bool
ownerA

val
ownerE tar

Meta-model MM

Graph vertex (V) d Data value (D)

Graph edge (E)

Attribute (A)
Mapping for ownerE,
tar, ownerA, val and
nameX

Legend

(a) (b)

Node

broken: bool

linkedTo

n1: Node

Model M

broken=false

linkedTo

n2: Node

broken=true

E-Graph

Graph morphism
Mapping

Label (L)

Node

broken

falseownerA val

tar

Model M

linkedTo

n1

broken

n2

trueownerA val

linkedTo

v1

v2

v3

vi

ej

e1

a2

ak

a1

a3

e2

ownerE

Fig. 3: (a) An example modelM typed over meta-model

MM using Definitions 1 and 3. (b) The same model and

meta-model using the standard UML notation.

1. I is acyclic.

2. ∀v1, v2 ∈ V ·v1 ̸= v2 =⇒ nameV (v1) ̸= nameV (v2)

3. ∀v ∈ V · ∀f1, f2 ∈ fields(v) · f1 ̸= f2 =⇒
name(f1) ̸= name(f2)

We also need to relate graphs to each other, for ex-

ample, to specify a type relationship between a model

and a meta-model, to identify a meta-model into a “big-
ger” one (which we use for extending the meta-model of

a dependency module in extension modules), or to find

an occurrence of a graph transformation rule within

a model. For this purpose, we introduce graph mor-

phisms, as a tuple of functions mapping the correspond-

ing sets of elements in the two graphs, preserving all the

functions within the graphs.

Definition 3 (Graph Morphism) Given two graphs

G and H, a graph morphism f : G → H is a tuple

f = ⟨fX : XG → XH⟩ (for X ∈ {V,E,A,D,L}) s.t.:

1. Function ownerE and tar commute, taking into

account inheritance:

∀e ∈ EG·fV (ownerGE(e)) ∈ sub(ownerHE (fE(e)) ∧
fV (tar

G(e)) ∈ sub(tarH(fE(e))

2. Function ownerA commutes, taking into account

inheritance:

∀a ∈ AG · fV (ownerGA(a)) ∈ sub(ownerHA (fA(a))

6 Juan de Lara et al.

3. Functions val and nameX (for X ∈ {V,E,A})
commute: fD ◦valG = valH ◦fA and fL◦nameGX =

nameHX ◦ fX .

Remark 2 Note that, if the target graph H of a graph

morphism has empty inheritance relation, conditions 1

and 2 in Definition 3 are equivalent to plain commuta-

tivity, since then sub(n) = {n} for every node n ∈ V .

Example 2 Figure 3 shows an example morphism rep-

resenting the conformance relation between model M

and meta-model MM. The morphism maps each ele-

ment in the sets V,E,A,D and L, making the func-

tions satisfy conditions 1–3 in Definition 3. For example,

fV (owner
M
E (e2)) = v1, owner

MM
E (fE(e2)) = v1, and

v1 ∈ sub(v1) (as required by condition 1). We also have

fV (owner
M
A (a2)) = v1, owner

MM
A (fA(a2)) = v1, and

v1 ∈ sub(v1) (as required by condition 2). Finally, we

have fL(nameMA (a3)) = broken = nameMM
A (fA(a3))

(as required by condition 3).

4.2 Language Modules and Product Lines

We now define the notion of language module as a tuple

containing a meta-model (as in Definition 1) that is

wff (as in Definition 2), a dependency, the role of the

module in the dependency, a span2 of morphisms (as in

Definition 3) identifying elements of the module meta-

model with those of its dependency, and a formula to

restrict the choice of modules in configurations.

Definition 4 (Language Module) A language mod-

ule is a tuple M = ⟨MM,MD, RO, IN, Ψ⟩, where:

– MM is a well-formed meta-model.

– MD is a module, called dependency3.

– RO ∈ {ALT,OR,OPT,MAN} is the role of M

in the dependency, one among alternative, OR, op-

tional, and mandatory.

– IN = MM ←− C −→ MM(MD) is an inclusion

span between MM and the meta-model of M ’s de-

pendency, where C is a graph made of the common

elements of MM and MM(MD).

– Ψ is a boolean formula using modules as variables.

M is said to be a top module if MD = M and Ψ = true.

We use the predicate top(M) to identify top modules:

top(M) ≜ MD(M) = M ∧ Ψ(M) = true.

2 A span consists of two morphisms from a common graph.
3 Implicitly, modules are assigned a name (e.g., M , MD,

Networking), which we use instead of the tuple contents to
refer to them. This avoids the need to include explicitly an
identifier label in the module tuple.

Remark 3 Based on Definition 4, we use the following

notation. Given a module Mi, we use MM(Mi) for the

meta-model of Mi, and similarly for the other compo-

nents of Mi (i.e., MD, RO, IN , Ψ). DEP+(Mi) de-

notes the transitive closure of its dependencies (i.e., a

set consisting of its dependency, the dependency of its

dependency, etc.). DEP (Mi) = DEP+(Mi) \ {Mi} is

the transitive closure excluding itself, which is empty

in top modules, and equal to DEP+ in non-top ones.

DEP ∗(Mi) = DEP+(Mi)∪{Mi} is the reflexive-transi-
tive closure (i.e., including the moduleMi as well). Typ-

ically, IN is the identity inclusion for top modules.

A language product line (LPL) is a set of modules

with a single top module (1), closed under the modules’

dependencies (2), and without dependency cycles (3).

Definition 5 (Language Product Line) A language

product line LPL = {Mi}i∈I is a set of modules s.t.:

∃1Mi ∈ LPL · top(Mi) ∧ (1)

∀Mi ∈ LPL · MD(Mi) ∈ LPL ∧ (2)

Mi ∈ DEP+(Mi) =⇒ top(Mi) (3)

Example 3 Figure 4 shows the LPL for the running ex-

ample. It comprises 8 modules: Networking, NodeFail-
ures, Ack, TimeStamped, SimpleLink, RichLink, Speed,
and CommFailures, each showing its meta-model inside.

Note that the LPL is just a collection of modules. Fig-

ure 4 represents the modules graphically, marked with

a name, and related by the roles they declare in their

dependencies, using the standard feature model nota-

tion shown in Figure 2. That is to say, our LPLs do not

include a separate feature model.

For extensibility, dependencies are expressed from a

module (e.g., Ack) to its dependency (e.g., Networking).
This permits adding new modules to the LPL without

modifying existing ones. Figure 4 omits the dependency

of the top module (Networking) and the span IN of each

module is implicit, given by the equality of names of

meta-model elements in both an extension module and

its dependency. For example, class Message in module

Ack is mapped to class Message in module Networking.
Module TimeStamped has a formula Ψ stating that, if

a language variant includes the module TimeStamped,
then it must also include the module Speed. For clarity,
the figure omits the formula Ψ when it is true, as is the

case for all modules but TimeStamped.

We use TOP (LPL) to denote the only top module

in LPL. Given a module Mi ∈ LPL, we define the sets

X(Mi) = {Mj ∈ LPL | MD(Mj) = Mi ∧ RO(Mj) =

X}, for X ∈ {ALT,OR,OPT,MAN}, to obtain the

extension modules of Mi with role X.

Modular Language Product Lines: Concept, Tool and Analysis 7

Networking

Message

ack: bool

Ack

Node

broken: bool

NodeFailures

Node

SimpleLink

linkedTo

Node

RichLink

Link

from

to

Link

lossProb: double

Link

speed: double

Message

size: int
timeStamp: double

TimeStamped

Speed CommFailures

TimeStamped Speed

NodeMessage

to
at

from

Fig. 4: Language product line for the example.

Example 4 The top module of the LPL of Figure 4 is

Networking. For this module, we have ALT (Networking)
= {SimpleLink, RichLink}, OPT (Networking) = {Node-
Failures, Ack, TimeStamped}, while MAN(Networking)
and OR(Networking) are empty.

Given an LPL, a specific language of the family can

be obtained by choosing a valid configuration of mod-

ules, as per Definition 6.

Definition 6 (Language Configuration) Given a lan-

guage product line LPL, a configuration ρ ⊆ LPL is a

set of modules s.t.:

TOP (LPL) ∈ ρ ∧ (1)

M ∈ ρ =⇒ (∀Mi ∈MAN(M) ·Mi ∈ ρ ∧ (2)

ALT (M) ̸= ∅ =⇒
∃1Mi ∈ ALT (M) ·Mi ∈ ρ ∧ (3)

OR(M) ̸= ∅ =⇒
∃Mi ∈ OR(M) ·Mi ∈ ρ ∧ (4)

MD(M) ∈ ρ) ∧ (5)∧
Mi∈LPL

Ψ(Mi)[true/ρ, false/(LPL \ ρ)] = true (6)

We use CFG(LPL) to denote the set of all config-

urations of LPL.

A configuration ρ should contain the top module of

the LPL (1) and, if ρ includes a module, then it should

also include: all of its mandatory extension modules

(2), exactly one of its alternative extension modules (3),

at least one of its OR extension modules (4), and its

dependency (5). Recall that the top module has itself as

its only dependency. Finally, the formulae of all modules

in the LPL should evaluate to true when substituting

the modules that the configuration includes by true,

and the rest by false (6).

Example 5 The LPL of Figure 4 admits 24 configu-

rations, including ρ0 = {Networking, SimpleLink} (the

smallest configuration), ρ1 = {Networking, SimpleLink,
NodeFailures, Ack}, ρ2 = {Networking, RichLink, Comm-
Failures}, and ρ3 = {Networking, RichLink, CommFailures,

TimeStamped, Speed}. Due to Ψ(TimeStamped), a con-

figuration that selects TimeStamped must select Speed
as well. Configurations can include zero or more mod-

ules ofOPT (Networking), and must include one or more

modules of OR(RichLink) when RichLink is selected.

Given an LPL and a set S ⊆ LPL, we use the

predicate validLPL(S) to check if there is a language

configuration on which the modules in S appear to-

gether: validLPL(S) ≜ ∃ρ ∈ CFG(LPL) ·S ⊆ ρ. In our

example, we have, e.g., validLPL({Speed, Ack}), but

¬validLPL({SimpleLink, RichLink}).
Given a configuration ρ, we derive a product meta-

model by merging the meta-models of all the modules

in ρ, using the inclusion spans as glueing points. This is

formalised through the categorical notion of co-limit [40],

which creates an E-graph using all the meta-models of

the selected modules, and merging the elements that

are identified by the morphisms.

Definition 7 (Derivation) Given a language prod-

uct line LPL and a configuration ρ ∈ CFG(LPL), the

product meta-model MMρ is given by the co-limit ob-

ject of all meta-models and spans in the set {IN(Mi) =

⟨MM(Mi)←− C −→MM(MD(Mi))⟩ |Mi ∈ ρ}.
We use PR(LPL) = {MMρ | ρ ∈ CFG(LPL)} for

the set of all derivable product meta-models of LPL.

Example 6 Figures 1(a)-(c) from Section 2 show the

product meta-models MMρ1 , MMρ2 and MMρ3 , re-

spectively. Figure 5 details the calculation of MMρ1
us-

ing a co-limit. It shows the meta-model of each module

in the configuration ρ1 (i.e., Networking, NodeFailures,
Ack and SimpleLink), the intermediate E-graphs of the

inclusion spans (CMi,MD(Mi)), and the morphisms. The

co-limit objectMMρ1
includes all elements in the meta-

models, merging those identified by the morphisms (i.e.,

those with the same name), and s.t. each triangle or

square of morphisms commute. For readability, we omit

the identity span of the top module Networking.

The behaviour associated with modules is specified

through graph transformation rules (see Section 5.2).

Hence, given a language product line LPL and a mod-

ule M ∈ LPL, we need to derive the meta-model used

to type the rules of M . This meta-model – called the

effective meta-model of M – is composed of the meta-

models of the modules included in all configurations

that includeM . This way, we define the set CDEP (M) =⋂
{ρ ∈ CFG(LPL) | M ∈ ρ}, which is the intersection

of all configurations that include M , and comprises the

explicit module dependencies of M (i.e., DEP ∗(M)) as

well as the implicit dependencies due to the formula

Ψ in modules. Then, the effective meta-model of M ,

8 Juan de Lara et al.

Networking

Message

ack: bool

Ack

Node

broken: bool

NodeFailures

Node

SimpleLink

linkedTo

NodeMessage

to
at

from

Node Message Node

NodeMessage

to

at

from
broken: boolack: bool

linkedTo

CNodeFailures,

Networking
CAck, Networking

CSimpleLink,

Networking

MM1

Fig. 5: Derivation of MMρ1 using a co-limit.

noted EFF (M), is MMCDEP (M), calculated as in Def-

inition 7 but using CDEP (M) instead of a configura-

tion ρ. Intuitively, EFF (M) is the common slice of any

product meta-model MMρ s.t. M ∈ ρ.

Example 7 The effective meta-model of CommFailures
is MMρ2

in Figure 1(b), as CDEP (CommFailures) =

{CommFailures, RichLink, Networking}. In turn, CDEP (

TimeStamped) = {TimeStamped, Networking, Speed, Ri-
chLink}, since Speed appears in every configuration that

includes TimeStamped – due to the formula in the latter

module – while RichLink belongs to any configuration

containing Speed.

In our formalisation of LPL, we purposely mix the

product space (i.e., the modules) and the variability

space (i.e., the feature model). One can see our mod-

ules as features, and derive a feature model from their

dependencies, which then can be used to select a con-

figuration, as shown in Section 7.

An important property to be analysed of an LPL is

whether all its derivable meta-modelsMMρ ∈ PR(LPL)

are well-formed meta-models. We defer the analysis of

this property of LPLs to Section 6.1.

5 Language Product Lines: Behaviour

Next, we extend LPLs with behaviour. First, Section 5.1

defines rules and extension rules, which Section 5.2 uses

to extend modules and LPLs with behaviour.

5.1 Rules and Extension Rules

We use graph transformation rules to express module

behaviour. Following the double pushout approach [23],

a rule is defined by a span of three graphs: a left-hand

side graph L, a right-hand side graph R, and a kernel

graph K identifying the elements of L and R that the

rule preserves. In addition, a rule has a set of negative

application conditions (NACs), as Definition 8 shows.

Definition 8 (Graph Transformation Rule) A rule

r = ⟨L l←− K
r−→ R, NAC = {L ni−→ Ni}i∈I⟩ consists

of an injective span of (E-graph) morphisms and a set of

negative application conditions, expressed as injective

(E-graph) morphisms.

Remark 4 We use rules over typed E-graphs, with each

of L, K, and R having a type morphism to a common

meta-model.

Example 8 Figure 6(a) shows a rule example (depict-

ing the transfer of a message from a sending node to a

receiving one) according to Definition 8. Morphisms l, r

identify elements with equal name. The rule is applica-

ble on any model that contains two nodes, one of them

having a message (graph L). Applying the rule deletes

the edge from the message to the first node (graph K)

and creates an edge from the message to the second

node (graph R). We adopt a compact notation for rules,

like that used in the Henshin [2] tool (cf. Figure 6(b)),

where all graphs L, K, R and Ni are overlapped. El-

ements in L \K (those deleted) are marked with −−,
those in R\K (those created) are marked with ++, and

those in a NAC (those forbidden) are marked with !!

plus a subindex in case the rule presents several NACs.

n1: Node

m: Message

at

n2: Node
-- ++at

n1: Node

m: Message

at

n2: Node n1: Node

m: Message

n2: Node n1: Node n2: Node

L K R

l r

(a) (b)

m: Message

l r

L K R

(a)

(b)

n1: Node

m: Message

at

n2: Node n1: Node

m: Message

n2: Node n1: Node

m: Message

n2: Node

at

Fig. 6: (a) Rule move from module Networking using

Definition 8. (b) Compact notation for rules.

To enable the reuse of the rule-based behaviour de-

fined for one module in its extensions, we propose a

mechanism for rule extension that is based on higher-

order rules [69]. Our extension rules add elements to a

base rule. We support two kinds of extension rules: ∆-

rules, adding elements to L,K and R, and NAC-rules,

adding extra NACs. Definition 9 starts with ∆-rules.

Modular Language Product Lines: Concept, Tool and Analysis 9

Definition 9 (∆-rule) A ∆-rule ∆r = ⟨L l←− K
r−→

R,∆L
∆l←− ∆K

∆r−→ ∆R,m = ⟨mX : X → ∆X⟩ (forX ∈
{L,K,R})⟩ is composed of two spans and a triple m =

⟨mL,mK ,mR⟩ of injective morphisms s.t. all squares

commute (mL ◦ l = ∆l ◦mK , mR ◦ r = ∆r ◦mK).

Example 9 Figure 7(a) shows an example ∆-rule, aug-

menting any rule having two nodes in its left-hand side,

with a link between them. We use a compact notation

for ∆-rules – illustrated by Figure 7(b) – where the

added elements are enclosed in regions labelled as ∆

followed by the place of addition: {preserve} for L, K

and R; {delete} for L; {create} for R. Thus, the ∆-rule

in Figure 7(a) adds a Link node and two edges to the

L, K, and R components of a rule.

n1: Node n2: Node

l: Link

from to

{preserve}

n1: Node n2: Node n1: Node n2: Node n1: Node
l r n2: Node

L K R

n1: Node n2: Node

L

l: Link

from to
l

n1: Node n2: Node

K

l: Link

from to

n2: Node

R

l: Link

from to

n1: Node

mL mK mR
= =

(a)

(b)

r

Fig. 7: (a) ∆-rule ∆move-rl from module RichLink. (b)
Compact notation for ∆-rules.

A ∆-rule is applied to a standard rule via three in-

jective morphisms, by calculating pushouts (POs), as

per Definition 10. A PO is a glueing construction – a

form of co-limit – that merges two graphs through the

common elements identified via a third graph [40].

Definition 10 (∆-rule Application) Given a∆-rule

∆r, a rule r′, and a triple n = ⟨nX : X → X ′⟩ (for
X ∈ {L,K,R}) of injective morphisms s.t. the back

squares (1) and (2) in Figure 8 commute, applying ∆r

to r′ (noted r′
∆r=⇒ r′′) yields rule r′′ = ⟨L′′ l′′←− K ′′ r′′−→

R′′, NAC ′′ = {L′′ n′′
i−→ N ′′

i }i∈I⟩, built as follows:

1. Span L′′ l′′←− K ′′ r′′−→ R′′ is obtained by the POs of

the spans X ′ nX←− X
mX−→ ∆X (for X∈{L,K,R}),

where morphisms l′′ and r′′ exist due to the uni-

versal PO property (over K ′′)4.

4 l′′ uniquely exists since we have K′ ll◦l′−−−→ L′′ n′
L
◦∆l

←−−−−−
∆K, and similarly for r′′.

2. The set NAC ′′ is obtained by the POs of the spans

N ′
i

n′
i←− L′ ll−→ L′′ (square (3) in Figure 8) for every

L′ n′
i−→ N ′

i in NAC ′.

L

nL

��

mL
""

(1)
Kloo r //

nK

��

mK
##

(2)
R

nR

��

mR
""

∆L

n′
L

��

∆K∆loo ∆r //

n′
K

��

∆R

n′
R

��

N ′
i

m′
N !!

(3)

L′

ll

n′
i

oo K′
l′oo r′ //

kk
!!

R′

rr
!!

N ′′
i L′′n′′

i
oo K′′

l′′oo r′′ // R′′

Fig. 8: ∆-rule application to a rule.

Example 10 Figure 9 illustrates the application of a

∆-rule to a rule. In particular, the figure shows the

application of the ∆-rule ∆move-rl (from RichLink) to

rule move (from Networking), which were shown in Fig-

ures 6 and 7. The ∆-rule ∆move-rl is applicable at

match n = ⟨nL, nK , nR⟩, since move has two nodes

in L, K and R. Applying ∆move-rl produces another

rule ⟨L′′ l′′←− K ′′ r′′−→ R′′, NAC ′′ = ∅⟩ that increases

rule move with the Link object connecting both nodes.

Hence, the resulting rule can move the message between

the nodes, only if they are connected by a Link.

A ∆-rule ∆′
r can also be applied to another ∆-rule

∆r yielding a composed ∆-rule that performs the ac-

tions of both ∆-rules. The main idea is to match ∆′
r on

∆L ← ∆K → ∆R of ∆r, and compose the actions of

both rules, as per Definition 11.

Definition 11 (∆-rule Composition) Let ∆r and

∆′
r be two ∆-rules, and n = ⟨nX : X ′ → ∆X⟩ (for X =

{L,K,R}) be a triple of morphisms s.t. the squares (1)

and (2) at the top of Figure 10 commute. The composi-

tion of ∆′
r and ∆r through n, written ∆′

r+n∆r, is a ∆-

rule ⟨L l←− K
r−→ R,∆L′′ ∆l′′←− ∆K ′′ ∆r′′−→ ∆R′′,m′′ =

⟨m′′
L,m

′′
K ,m′′

R⟩⟩ where the span ∆L′′ ∆l′′←− ∆K ′′ ∆r′′−→

∆R′′ results from the POs of spans ∆X
nX←− X ′ m′

X−→
∆X ′ (forX∈{L,K,R})5, andm′′

X : X → ∆X = ∆mX◦
mX (for X = {L,K,R}).

Given a ∆-rule ∆r and a rule r (∆- or standard), we

write n : ∆r → r to denote the morphism triple between

∆r and r. NAC-rules rewrite standard rules by adding

them a NAC, as per Definition 12.

5 Morphisms ∆l′′ and ∆r′′ uniquely exist by the uni-
versal PO property of ∆K′′: ∆l′′ uniquely exists since

∆K
∆mL◦∆l−−−−−−−→ ∆L′′ n′

L
◦∆l′

←−−−−− ∆K′, and similarly for ∆r′′.

10 Juan de Lara et al.

n1: Node n2: Node n1: Node n2: Node n1: Node
l r n2: Node

L K R

n1: Node n2: Node

L

l: Link

from to
l

n1: Node n2: Node

K

l: Link

from to

n2: Node

R

l: Link

from to

n1: Node

mL mK mR

n1: Node

m: Message

at

n2: Node n1: Node

m: Message

n2: Node n1: Node

m: Message

n2: Node

L’ K’ R’

l’ r’
at

nL nK

r

nR

n1: Node

m: Message

at

n2: Node n1: Node

m: Message

n2: Node n1: Node

m: Message

n2: Node

L’’ K’’ R’’

l’’ r’’
l: Link

from to

l: Link

from to

l: Link

from to

ll kk rrn'L n’K n’R

at

Fig. 9: Applying ∆-rule ∆move-rl (from RichLink) to rule move (from Networking).

L

mL

��

m′′
L

��

Kloo r //

mK

��

m′′
K

��

R

mR

��

m′′
R

��

∆L

∆mL

��

(1)

∆K∆loo ∆r //

∆mK

��

(2)

∆R

∆mR

��

L′

nL

dd

m′
L

��

K′
l′oo r′ //

m′
K

��

nK

ee

R′

m′
R

��

nR

dd

∆L′′ ∆K′′
∆l′′oo ∆r′′ // ∆R′′

∆L′

n′
L

dd

∆K′
∆l′oo ∆r′ //

n′
K

ee

∆R′

n′
R

dd

Fig. 10: ∆-rule composition.

Definition 12 (NAC-rule and Application) ANAC-

rule Nr = ⟨n : NL → N⟩ consists of an injective mor-

phism. Given a NAC rule Nr, a rule r = ⟨L l←− K
r−→

R,NAC⟩, and an injective morphism m : NL→ L, ap-

plying Nr to r via m (written r
Nr=⇒ r′) yields r′ =

⟨L l←− K
r−→ R,NAC ∪ {L n′

−→ N ′}⟩, where N ′ is the

PO object of N
n←− NL

m−→ L (see diagram below).

NL

n

��

m //

P.O.

L

n′

��

Kloo r // R

N m′ // N ′

Example 11 Figure 11 shows examples of applications

of ∆- and NAC-rules. ∆-rule (a) – called ∆move-cf –
is provided by module CommFailures, and adds an at-

tribute lossProb and a condition. NAC-rule (b) – called

NAC-broken – is provided by module NodeFailures, and
adds a NAC that forbids the Node from being broken.

For illustration of Definition 11, ∆-rule (c) is the re-

sult of the composition of the ∆-rules ∆move-rl (shown
in Figure 7) and ∆move-cf, via the Link identified by

l. Specifically, ∆move-cf is applied on the ∆{preserve}
part of ∆move-rl. The resulting ∆-rule performs all ac-

tions of the two ∆-rules.

Figure 11(d) is the rule resulting from applying ∆-

rule (c) to the rule move in Figure 6, so that additional

preserved elements are added to it (cf. Definition 10).

Finally, the rule in Figure 11(e) results from applying

NAC-rule (b) to rule (d) twice (cf. Definition 12). This

adds two NACs to (d) via two different morphisms: one

identifying n with n1, and another identifying n with

n2. These NACs are marked with !!1 and !!2.

Remark 5 The application of NAC- and ∆-rules to a

given rule, and the composition of ∆-rules, are inde-

pendent of the order of execution:

– Given a rule r and a set D = {mi : ∆ri → r}i∈I

of morphism triples from ∆-rules into r, we can

apply each ∆-rule in D to r in any order, yielding

the same result since ∆-rules are non-deleting and

there is no forbidding context for their application.

We use the notation r
D
=⇒ r′ for the sequential

application r
∆r0=⇒ r0

∆r1=⇒ . . . r′ of each ∆-rule in D

starting from r.

– The result of the composition of a set of ∆-rules

(∆ri) with a ∆-rule (∆r) is independent of the

application order. Given a set D = {mi : ∆ri →
∆r}i∈I , ⨿D denotes the ∆-rule that results from

composing each∆ri (throughmi) to∆r in sequence.

Modular Language Product Lines: Concept, Tool and Analysis 11

(b) NAC-broken
[in NodeFailures]

(a) move-cf
[in CommFailures]

{preserve}

l: Link

lossProb=p
random(0,1) > p

n: Node

broken=true

{forbid}

(c) move-rl+move-cf

n1: Node n2: Node

l: Link

from to

random(0,1) > p

lossProb=p

{preserve}

(e) move’’

n1: Node n2: Node

l: Link
from to

random(0,1) > p

lossProb=p

m: Message
at at
-- ++

broken=truebroken=true

(d) move’

n1: Node n2: Node

l: Linkfrom to

lossProb=p

m: Message
at at
-- ++

random(0,1) > p

!!1 !!2

Fig. 11: (a) ∆-rule from module CommFailures. (b)

NAC-rule from module NodeFailures. (c) ∆-rule result-

ing from composing ∆-rules (a) and ∆move-rl in Fig-

ure 7. (d) Result of applying ∆-rule (c) to rule move in

Figure 6. (e) Result of applying NAC-broken to rule (d)

twice.

– The result of the application of NAC-rules is inde-

pendent of the application order. Given a set N of

morphisms from NAC-rules into a rule r, we write

r
N
=⇒ r′ to denote the sequential application of each

NAC-rule in N starting from r.

5.2 Behavioural Language Product Lines

To add behaviour to LPLs, we incorporate into mod-

ules a set R of rules, two sets ∆R and NR of extension

rules (which are ∆-rules and NAC-rules, respectively),

and two sets EX and NEX of morphisms from the ex-

tension rules to (standard and ∆-) rules in the module

dependencies. This is captured by the next definition.

Definition 13 (Behavioural Module) A behavioural

module extends Definition 4 of language module as fol-

lows. A behavioural module M = ⟨MM,MD, RO, IN,

Ψ,R,∆R,NR, EX,NEX ⟩ consists of:

– MM , MD, RO, IN and Ψ as in Definition 4.

– Sets R = {ri}i∈I of rules, ∆R = {∆rj}j∈J of ∆-

rules, and NR = {Nrh}h∈H of NAC-rules, all typed

by the effective meta-model of M , EFF (M).

– A set EX = {mij : ∆ri → rj | ∆ri ∈ ∆R ∧ rj ∈
(R(Mj)∪∆R(Mj))∧Mj ∈ DEP (M)} of morphism

triples mij mapping each ∆ri ∈ ∆R to at least a

(∆- or standard) rule rj in some module Mj of M ’s

dependencies.

– A set NEX = {mij : NLi → Lj | Nri ∈ NR ∧
rj ∈ R(Mj) ∧Mj ∈ DEP (M)} of morphisms mij

mapping each NAC-rule Nri = ⟨ni : NLi → Ni⟩ ∈

NR to at least a rule rj (with LHS Lj) in some

module Mj of M ’s dependencies.

Remark 6 Definition 13 uses R(Mj) (resp. ∆R(Mj)) to

refer to the set R (resp. ∆R) within the behavioural

module Mj . In the following, we will use a similar nota-

tion for the other components of behavioural modules.

Since the sets EX and NEX in Definition 13 contain

morphisms to (∆-)rules inDEP (M), it follows that top

modules cannot define extensions for their own rules.

We omit the definitions of behavioural LPL, config-

uration of a behavioural LPL and CFG since they are

the same as in Definitions 5 and 6, but only consider-

ing behavioural modules instead of modules. However,

we need to provide a new notion of behavioural deriva-

tion that complements that of Definition 7 (yielding a

meta-model) with rule composition via the extension

rules (yielding a set of rules).

First, Definition 14 characterises the sets of exten-

sion rules that apply to a given (standard or ∆-) rule.

Definition 14 (Rule Extensions) Given a behavioural

language product lineBPL, a behavioural moduleMi ∈
BPL, a rule r ∈ R(Mi), and a ∆-rule ∆r ∈ ∆R(Mi),

we define the sets:

– EX (∆r) = {mj : ∆rj → ∆r | Mj ∈ BPL ∧Mi ∈
DEP (Mj)∧mj ∈ EX (Mj)} of all morphism triples

from every ∆-rule ∆rj rewriting ∆r.

– CEX (r) = {mj : ⨿EX(∆rj
) → r | Mj ∈ BPL ∧

Mi ∈ DEP (Mj) ∧ ∆rj → r ∈ EX (Mj)} of all

morphism triples from every ∆-rule ∆rj (composed

with all the extensions in EX(∆rj)) rewriting r.

– NEX (r) = {m : NL → L | Mj ∈ BPL ∧ Mi ∈
DEP (Mj)∧m ∈ NEX (Mj)} of all morphisms from

every NAC-rule Nr adding a NAC to r.

Given a behavioural LPL and a configuration, we

can perform a behavioural derivation. This yields the

set of rules in the selected modules, extended by the

rule extensions defined in those modules.

Definition 15 (Behavioural Derivation) Given a

behavioural product line BPL and a configuration ρ ∈
CFG(BPL), we obtain the set R = {r′′i }i∈I , where

each rule r′′i is obtained by the rewriting ri
CEX (ri)
======⇒

r′i
NEX (ri)
======⇒ r′′i of each rule ri ∈

⋃
Mj∈ρ R(Mj) defined

by the modules included in the configuration. We may

also use the notation ρ(ri) for the resulting rule r′′i .

Example 12 Consider the configuration ρ = {Networking,
NodeFailures, RichLink, CommFailures} and the rules of

Figures 7 and 11. Then, EX (∆move-rl) = {∆move-
cf→∆move-rl}, with the ∆-rule ⨿EX(∆move−rl) shown

12 Juan de Lara et al.

in Figure 11(c). Now, CEX (move) = {⨿EX(∆move−rl)→
move}, and rule move' in Figure 11(d) results from the

derivation move
CEX (move)
========⇒move'. Note that EX (Rich-

Link) contains a morphism triple from∆move-rl tomove.
Composing∆move-rl with all extensions in EX (∆move-
rl) preserves such morphism triples (since composition

adds elements to the ∆ part of the rule only), which

are then used in set CEX (move). Finally, NEX (move)
contains two morphisms from NAC-broken in module

NodeFailures to move. Thus, move'' (cf. Figure 11(e)) is

obtained by move'
NEX (move)
========⇒move''. The morphisms

in NEX , from NAC-broken to move, are also valid mor-

phisms from NAC-broken into move’, since the deriva-

tion via CEX only adds elements to move.

6 Language Product Lines: Analysis

We now describe some analysis methods for LPLs. We

start in Section 6.1 with the most basic structural prop-

erty: well-formedness. Then, to enhance the applicabil-

ity of our approach, Section 6.2 expands our notion of

meta-model with OCL integrity constraints, and pro-

poses methods to detect conflicts between the OCL

constraints declared in different modules. Finally, Sec-

tion 6.3 analyses behavioural consistency of the LPL,

i.e., checking that the behaviour of every language does

not contradict that of simpler language versions.

6.1 LPL Well-formedness

A desirable property of LPLs is that every derivable

meta-model be wff, according to Definition 2. Hence,

we define the notion of well-formed LPL as follows.

Definition 16 (Wff Language Product Line) A

language product line LPL is well-formed if ∀MM ∈
PR(LPL)· wff (MM).

According to Definition 2, three conditions are re-

quired in a wff meta-model: unique class names, unique

field names and acyclic inheritance. However, generat-

ing and checking the conditions in each product meta-

model may be highly inefficient, since the number of

derivable meta-models may be exponential in the num-

ber of modules. Therefore, this section proposes analysing

those properties at the product-line level through a

lifted analysis [68].

Our proposed analyses rely on the notion of 150%

meta-model (150MM in short)6, which is the overlap-

6 The term 150% is standard in product line engineering to
denote the superimposition of all variants of a given artefact:
a software system [4,63], a model [60], or a meta-model [26].

ping of the meta-models of all modules, where each el-

ement (class, attribute, reference, inheritance relation)

is annotated with the module that produces it. We call

such annotations presence conditions (PCs).

Definition 17 (150% Meta-model) Given a language

product line LPL, its 150% meta-model 150MMLPL

is a tuple 150MMLPL = ⟨MMLPL, ΦX : XMMLPL →
LPL⟩ (for X ∈ {V,E,A, I}) with:

– MMLPL = Co-limit of {IN(Mi) = ⟨MM(Mi)←−
Ci −→MM(MD(Mi))⟩ |Mi ∈ LPL}

– ∀c ∈ XMMLPL · ΦX(c) = Mi (for X ∈ {V,E,A, I})
iff ∃c′ ∈ XMM(Mi) · fi(c′) = c ∧ (¬top(Mi) =⇒
̸ ∃z ∈ XCi · gi(z) = c), with fi and gi morphisms

used to create MMLPL (see diagram below).

MM(Mi)

fi =

��

Ci
oo //

|
gi

ww

MM(MD(Mi))

MMLPL

Example 13 Figure 12 shows the 150MM for the run-

ning example. Each element c in the 150MM is tagged

with the module originating it, ΦX(c), which is its PC.

Since Networking is a top module, its elements (Mes-
sage, Node, to, at, from) are tagged with [Networking];
for example, ΦV (Message) = Networking. Each non-top

module M becomes the PC of the elements mapped

from its meta-model, but not from the meta-model of

its dependency. Intuitively, spans can be seen as graph

transformation rules that add elements to the 150MM,

and those added elements receive the originating mod-

ule as PC. For example, module Speed only adds the

attribute speed, since it is the only element in mor-

phism fi which is not in gi (cf. Figure 12), and so, the

attribute is annotated with the PC Speed.

Remark 7 Each function ΦX is well defined. First, each

element c in MMLPL is mapped from some element

in the meta-model of some module. This means that

ΦX(c) has at least one candidate module. Actually, it

has exactly one module, since c is produced either by a

single top module, or by a non-top one. By the co-limit

construction, no two different modules may introduce

the same element, as this would then be replicated in

MMLPL. Notationally, as with other functions, we use

ΦF for ΦA∪ΦE , and omit the subindex when it is clear

from the context.

As an additional remark, MMLPL may not be a wff

meta-model, since it may have repeated class and field

Modular Language Product Lines: Concept, Tool and Analysis 13

Networking

Message

ack: bool

Ack

Node

broken: bool

Node
Failures

Node

SimpleLink

linkedTo

Node

RichLink

Link

from

to

Link

lossProb: double

Link

speed: double

Message

size: int
timeStamp: double

TimeStamped

Speed

CommFailures

NodeMessage

to
at

from

Message Node

to

at

from broken: boolack: bool
size: int
timeStamp: double

linkedTo

Link
speed: double
lossProb: double

to from

150MM

Node

Message

Message Node Node

Link Link

[Networking] [Networking]

[Ack]

[TimeStamped]

[TimeStamped]

[Networking]

[Networking]

[Networking]

[NodeFailures]

[SimpleLink]

[RichLink] [RichLink]

[RichLink]

[Speed]

[CommFailures]

gi

fi

Fig. 12: 150% meta-model for the running example.

names, as well as inheritance cycles. This is natural,

since it is the overlap of all meta-models in the language

family. Instead, we are rather interested in checking if

all derivable meta-models are wff, hence, if the LPL

itself is wff. We can exploit the 150MM for this purpose.

For a start, Lemma 1 states the conditions for an

LPL to produce meta-models with distinct class names.

Lemma 1 (Unique Class Names) Given a language

product line LPL, each meta-model product MMρ ∈
PR(LPL) has unique class names iff:

∀vi, vj ∈ V MMLPL ·
vi ̸= vj ∧ nameV (vi) = nameV (vj) =⇒
¬validLPL({ΦV (vi), ΦV (vj)})

Proof In appendix.

Example 14 Figure 13(a) shows a variation of the run-

ning example to illustrate Lemma 1. Here, the modules

MessageLength and MessageContent provide two pairs

of classes with same name (Node and Message), as the
150MM depicted in Figure 13(b) shows. However, since

both modules cannot belong together in a configuration

(i.e., ¬validLPL({MessageLength,MessageContent})), the
conditions for Lemma 1 are satisfied and the LPL does

not generate meta-models with repeated class names.

One could observe that a more sensible design of the

LPL would be to move the Message class and the at ref-
erence to module Networking', leaving in MessageLength
and MessageContent only the addition of the respective

Networking’

Node

MessageLength

Node

MessageContent

Message

length: int

at

Node

body: String

at

Message

Node
[Networking’]

body: String

Message
[MessageContent]

[MessageContent]

length: int

Message
[MessageLength]

[MessageLength]

at

at [MessageLength]

[MessageContent]

(a) (b)

Fig. 13: (a) Variation of the running example to illus-
trate class name uniqueness. (b) Its 150MM.

attributes length and body. This would minimise repeti-

tion across modules, and improve reuse of meta-model

elements. We foresee the introduction of heuristics and

guidelines for LPL designs in future work.

Lemma 2 deals with uniqueness of field names. The

lemma ensures that any class in any derivable meta-

model cannot have two fields with the same name within

its set of declared and inherited fields. For this purpose,

it creates the 150MM and checks that if a class has two

different fields with equal name, they come from in-

compatible modules (i.e., modules that cannot appear

together in a configuration).

Lemma 2 (Unique Field Names) Given a language

product line LPL, each derivable meta-model MMρ ∈

14 Juan de Lara et al.

PR(LPL) has unique field names iff:

∀v ∈ V MMLPL ,∀f1, f2 ∈ fields(v)·
f1 ̸= f2 ∧ name(f1) = name(f2) =⇒
¬validLPL({ΦF (fi), ΦF (fj)})

Proof In appendix.

Networking’’

Node

Server

Server

broken: bool

broken: bool

ServerFailure

(a) (b)

Node

Server

broken: bool

broken: bool

[Networking’’]

[Networking’’]

[Networking’’]

[Networking’’]

[ServerFailure]

Fig. 14: (a) Variation of the running example to illus-

trate field name uniqueness. (b) Its 150MM.

Example 15 Figure 14(a) shows another variation of

the running example to illustrate Lemma 2. In this case,

the optional module ServerFailure adds the attribute

broken to class Server. Since its superclass Node also

has an attribute with the same name, the meta-model

product for configuration {Networking'', ServerFailure}
is not wff. This can be detected using the 150MM in

Figure 14(b). The condition in the lemma takes the

modules supplying each attribute and, since we have

validLPL({Networking'', ServerFailure}), then we also

have that the configuration {Networking'', ServerFail-
ure} yields a non-wff meta-model product.

We now tackle inheritance cycles similarly as before:

looking for cycles on the 150MM and then checking that

the modules contributing to each cycle cannot appear

together in a configuration.

Lemma 3 (No Inheritance Cycles) Given a lan-

guage product line LPL, each derivable meta-model MMρ

∈ PR(LPL) is free from inheritance cycles iff for each

cycle C ⊆ IMMLPL , we have ¬validLPL({ ΦI((v1, v2)) |
(v1, v2) ∈ C}).

Proof In appendix.

Example 16 Figure 15(a) shows another variation of

the running example to illustrate Lemma 3, where each

module adds an inheritance relationship. Part (b) of

the figure shows the 150MM, which has one inheri-

tance cycle C for the set of contributing modules S =

{Networking''', AllNodesAreRouters, RoutersAreServers}.
Since we have that validLPL(S), there is a cycle in ev-

ery configuration that includes S.

Networking’’’

AllNodesAreRouters

Node

RoutersAreServers

Server

Router

Server

RouterNode

Router

Node

Server

Router
[Networking’’’]

[AllNodesAreRouters]

[RoutersAreServers]

(a) (b)

[Networking’’’]

[Networking’’’]

[Networking’’’]

Fig. 15: (a) Variation of the running example to illus-

trate the analysis of inheritance cycles. (b) Its 150MM.

Finally, we are ready to characterise wff LPLs in

terms of the lifted analyses provided by Lemmas 1–3,

instead of resorting to a case-by-case analysis of each

derivable meta-model.

Theorem 1 (Wff Language Product Line) A lan-

guage product line LPL is well formed iff it satisfies

Lemmas 1–3.

Proof Direct consequence of Lemmas 1–3.

6.2 LPL Instantiability

In practice, meta-models are frequently assigned in-

tegrity constraints that restrict the models considered

valid [6]. In MDE, such constraints are normally ex-

pressed in the Object Constraint Language (OCL) [51].

To keep the formalisation as simple as possible, we

omitted OCL constraints so far, since they do not play

a significant role in the structural and behavioural con-

cepts we wanted to introduce. However, since OCL in-

variants are common within language engineering [6],

we now consider them, and propose analysis techniques

to detect possible inconsistencies among the constraints

introduced by different modules of the LPL.

In the following, we first extend LPLs with OCL

integrity constraints (Section 6.2.1), and then, we pro-

vide an overview of the analysis process (Section 6.2.2),

which is based on an encoding of the LPL in a so-called

feature-explicit meta-model (Section 6.2.3).

Modular Language Product Lines: Concept, Tool and Analysis 15

Networking

Node

HomeNodes

Node

SimpleLink

linkedTo Node

RichLink

Link
from

to

Link

lossProb: double

Link

speed: double

Speed CommFailures

NodeMessage

to
at

from

loop inv: Link.allInstances()→
exists(l | l.from=self and l.to=self)

Link

BiDir

bidir inv:
Link.allInstances()→

exists(l | l<>self and
l.from=to and
l.to=from)

nonRedundant inv:
Link.allInstances()→

forAll(l | l<>self implies
(l.from<>from or l.to<>to))

NodeMessage

to
at

from

Linkfrom

to

nonRedundant inv: …
bidir inv: …

loop inv: …

MM{Networking, RichLink, BiDir, HomeNodes}

: Node : Link: Link
to

from

to

from

«conforms»

(a) (b)

*
*

*

*

*
*
*

*
*
*

*

*

Fig. 16: (a) Language product line with OCL invariants. (b) A non-instantiable meta-model product.

6.2.1 Extending LPLs with OCL constraints

We now extend meta-models within modules so that

they may declare OCL invariants, as Definition 18 shows.

Definition 18 (Constrained Meta-model) A con-

strained meta-model CMM = ⟨G,C, ctx⟩ consists of:

– An E-graph G, as in Definition 1.

– A set C of integrity constraints.

– A function ctx : C → V assigning a context vertex

v ∈ V (i.e., a class) to each constraint c ∈ C.

When using this notion to derive a meta-model prod-

uct, the co-limit simply puts together the constraints

defined in each class. Interestingly, cardinality constraints

can be expressed using OCL constraints, and therefore,

we use them in meta-models in the following. In the fig-

ures, we depict cardinality constraints using the stan-

dard UML notation, where absent cardinalities mean

“exactly 1”. Moreover, we represent the function ctx

by showing a link from a note with the name and text

of the constraint, to the class to which it refers, as is

customary in UML diagrams.

Example 17 Figure 16(a) shows a modification of the

running example, where the meta-model of some mod-

ules declare OCL constraints. In particular, module Rich-
Link adds the invariant nonRedundant to Link, which

forbids the presence of two links with same from and

to nodes. Module BiDir adds the invariant bidir, which
demands each Link object to have some dual one con-

necting the same nodes but in the opposite direction.

Finally, the invariant in HomeNodes demands each node

to have a self-loop link. Please note that, in an LPL, in-

variants are typed by the effective meta-model EFF (M)

of the module M in which they are included.

We observe that any configuration that includes mod-

ules {Networking, RichLink, BiDir, HomeNodes} (of which
there are four) yields a meta-model product that is

not instantiable: there is no valid non-empty model

that satisfies all constraints (cf. Figure 16(b)). This

instantiability problem originates from the fact that,

when creating a Node, invariant loop requires a self-

loop. But then, invariant BiDir requires a different link

in the opposite direction, which in this case is also a

self-loop. Finally, invariant nonRedundant forbids Link
objects between the same nodes, hence rendering the

model invalid. Since the from and to references of Link
are mandatory, then there cannot be isolated Link ob-

jects either, and similarly for Message objects. This

means that the meta-models of these four language vari-

ants are not instantiable due to the incompatibility of

the three constraints. Removing the inequality l<>self
from invariant BiDir would solve this problem.

6.2.2 Checking LPL instantiability: Overview

The instantiability of a meta-model can be checked via

model-finding [27,38]. This technique encodes the meta-

model and its constraints as a satisfaction problem,

which is fed into a model finder. Then, the finder re-

turns a valid model (i.e., conformant to the meta-model

and satisfying its OCL constraints) if one exists within

the search scope.

However, checking the instantiability of each deriv-

able meta-model product of an LPL is costly, since there

may be an exponential number of configurations, mak-

ing it necessary to call the model finder for each one of

them. Instead, we propose lifting instantiability anal-

ysis to the product-line level, in order to reduce the

number of calls to the model finder. For this purpose,

16 Juan de Lara et al.

feature-explicit MM

compile

«conforms»

«conforms»

3

[yes]

[no]

end

«configuration»

4

:Node

:Node

:FMC

Networking=true
SimpleLink=true
RichLink=false
BiDir=false
Speed=false
CommFailures=false
HomeNodes=false

feature-explicit model

:Node

:Node

meta-model

«product of»

p
ro
d
u
ces

model
finder

more
solutions?

extend femm

feature-explicit mm
negated configuration

6

+ extract

LPL
co
m
p
ile

1

150MM

: l
in

ke
d

To

: l
in

ke
d

To

MM

M

5

start

in
p
u
t

2
rename

Fig. 17: LPL instantiability analysis process.

we use a technique similar to the one proposed in [26],

but adapted to modular LPLs.

Figure 17 shows the steps in the instantiability anal-

ysis process. First, the process derives the 150MM out

of the LPL, as per Definition 17. We assume a wff LPL

to start with, but recall that the resultingMMLPL may

contain repeated class or field names and inheritance

cycles, whenever they are produced by modules belong-

ing to different configurations. Hence, in step 2, the

process suitably renames classes and fields having equal

names to avoid duplicates, and modifies OCL invariants

if needed. Note that the analysis of 150 meta-models

with inheritance cycles is currently not supported.

In step 3, the 150MM and the LPL are compiled into

a so-called feature-explicit meta-model (FEMM) [26].

The latter is similar to the 150MM, but, in addition,

it embeds the structure of the feature space (i.e., the

structure of the modules), and expresses the presence

conditions of the 150MM as OCL constraints. To this

end, a class FMC contains as many boolean attributes

as modules in the LPL, and an OCL constraint restricts

the possible values that the attributes can take to be

exactly those in CFG(LPL). Section 6.2.3 will provide

more details on the construction of the FEMM.

In step 4, the process relies on a model finder to

discover valid instances of the FEMM. These instances

comprise two parts (cf. step 5): an FMC instance, whose

boolean values yield a configuration ρ, and a valid in-

stance of the meta-model product MMρ. This solving

process can be iterated to find instantiations of other

meta-model products by adding the negated found con-

figuration as a constraint of FMC (step 6).

6.2.3 The feature explicit meta-model (FEMM)

Constructing the FEMM involves the logical encoding

of the feature space of the LPL in a propositional for-

mula ΛLPL whose variables are the modules in the LPL,

and such that ΛLPL evaluates to true exactly on the

configurations of the LPL [3].

Definition 19 (Logical Encoding of LPL) Given

a language product line LPL = {Mi}i∈I , its logical

encoding ΛLPL is given by:

ΛLPL = TOP (LPL) ∧
∧

Mi∈LPL

Λ(Mi) ∧
∧

Mi∈LPL

Ψ(Mi)

with

Λ(M) = M =⇒
(
MD(M) ∧∧

Mi∈MAN(M)

Mi ∧
⊕

Mi∈ALT (M)

Mi ∧
∨

Mi∈OR(M)

Mi

)
where ⊕ is the xor operation.

Example 18 The (simplified) logical encoding of the LPL

in Figure 16(a) is:

Networking ∧
(Networking =⇒ SimpleLink ⊕ RichLink) ∧
(SimpleLink =⇒ Networking) ∧

Modular Language Product Lines: Concept, Tool and Analysis 17

Message Node

to

at

from

linkedTo

Link
speed: double
lossProb: double

to

from
* *

*

*

BCFMC

Networking: bool
SimpleLink: bool
RichLink: bool
BiDir: bool
Speed: bool
CommFailures: bool
HomeNodes: bool

[1..1]
fm

*

*

*

LPL inv: Networking and
((SimpleLink and not RichLink) or
(not SimpleLink and RichLink)) and
(RichLink implies (BiDir or …)) and …

LPL formula

bidir inv:
fm.BiDir implies
Link.allInstances()→

exists(l | l<>self and
l.from=to and
l.to=from)

nonRedundant inv:
fm.RichLink implies
Link.allInstances()→forAll(l |

l<>self implies
(l.from<>from or l.to<>to))

PCs for invariants

wc-linkedTo inv:
not fm.SimpleLink implies
linkedTo→size()=0
loop inv:
fm.HomeNodes implies
Link.allInstances()→exists(l |

l.from=self and l.to=self)

PCs for reference and invariant
wc-Link inv: not RichLink implies
Link.allInstances()→size()=0

PC for class Link

wc-speed inv:
if not fm.Speed then
speed.oclIsUndefined()
else not speed.oclIsUndefined() endif
wc-lossProb inv:
if not fm.CommFailures then
lossProb.oclIsUndefined()
else not lossProb.oclIsUndefined() endif
wc-from inv:
not fm.RichLink implies from→size()=0
wc-to inv:
not fm.RichLink implies to→size()=0

PCs for fields

11

1 2

2

2

2

2

2

3

3

3

Fig. 18: Feature explicit meta-model for the LPL in Figure 16(a). Numbers depict the step in the process where

the elements are created.

(RichLink =⇒ (Networking ∧
(BiDir ∨ Speed ∨ CommFailures))) ∧
(BiDir =⇒ RichLink) ∧
(Speed =⇒ RichLink) ∧
(CommFailures =⇒ RichLink) ∧
(HomeNodes =⇒ RichLink)

Lemma 4 states the desired consistency between

ΛLPL and CFG(LPL).

Lemma 4 (Correctness of LPL Logical Encod-

ing) Given a language product line LPL, then CFG(LPL)

and ΛLPL are consistent with each other:

∀ρ ⊆ LPL · ρ ∈ CFG(LPL) ⇐⇒
ΛLPL[true/ρ, false/(LPL \ ρ)] = true

Proof In appendix.

Next, we present the process to generate the FEMM,

for which we adapt the procedure in [26]. We use as an

example the generation of the FEMM for the LPL in

Figure 16(a), whose result is in Figure 18.

1. Merging of modelling and feature space. The

FEMM includes the 150MM and a mandatory class,

called FMC, holding the information of the feature

space. In particular, FMC has a boolean attribute

for each module in the LPL, such that the values

of these attributes indicate a selection of modules.

In addition, FMC has an OCL constraint (the OCL

encoding of the formula ΛLPL from Definition 19)

restricting the values the attributes can take to

exactly the valid configurations of the LPL. Each

class of the 150MM with no superclasses is added

a new (abstract) superclass BC with a reference fm
to FMC, so that each class can access the configu-

ration.

Example In Figure 18, the FEMM generation pro-

cess creates classes BC and FMC. The latter de-

clares seven boolean attributes corresponding to

the seven modules in the LPL, as well as an OCL

invariant corresponding to the logical encoding of

the LPL formula (cf. Example 18). The interval

[1..1] in class FMC stipulates that exactly one in-

stance of the class is required.

2. Emulating the PCs. The classes and fields (i.e.,

attributes and references) of the FEMM may only

be instantiated in configurations where they ap-

pear. To this end, the PCs in the 150MM are en-

coded as OCL constraints governing whether the

classes can be instantiated, or whether the fields

may hold values, depending on the value of FMC
attributes. For optimisation purposes, no such OCL

constraints are produced for the elements intro-

duced by the top module, as they are available in

all configurations.

Example In Figure 18, the invariants wc-speed and

wc-lossProb in class Link control whether the at-

tributes speed and lossProb should have a value

or not. Specifically, they can only hold a value if

modules Speed or CommFailures are selected, re-

spectively. A similar approach is used for the refer-

ences to and from of Link, and linkedTo of Node. All
elements introduced by the top module (Network-
ing) are available in all configurations, and so, no

OCL constraints are included for them. Addition-

ally, since module RichLink introduces class Link,

18 Juan de Lara et al.

class FMC is added the invariant wc-Link requiring

zero instances of Link if the configuration does not

select RichLink (i.e., the attribute RichLink is false).
3. Invariants. Similar to classes and fields, modules

can introduce invariants. To ensure such invariants

are enforced only when the owner module M is in

the configuration, they become prefixed by “fm.M
implies...”.
Example Invariants bidir and nonRedundant of Link,
as well as loop of Node, get rewritten to be enforced

only when modules BiDir, RichLink and HomeNodes
are in the configuration, respectively.

4. Inheritance. Modules may add inheritance rela-

tions. This is translated as an invariant in the sub-

class requiring that any field inherited through the

added inheritance has no value when the module

is not part of the configuration. For each incom-

ing reference to the superclass or an ancestor, ad-

ditional invariants are generated to check that the

reference does not contain instances of the subclass

in configurations where the module is not selected.

Server

Node

broken: bool

BCFMC

ClientServer: bool
ServersAsNodes: bool

[1..1]
fm

LPL inv: ClientServer

wc-inh inv:
if not fm.ServersAsNodes then
broken.oclIsUndefined()
else not broken.oclIsUndefined() endif
wc-serves inv:
not fm.ServersAsNodes implies
serves→forAll(s|not s.oclIsKindOf(Server))

PCs for inheritance

11

1

4

4

ClientServer

Node

Server

broken: bool

ServersAsNodes

Node

Server

serves*

(a) (b)

serves*

Fig. 19: (a) Example LPL illustrating inheritance. (b)

Resulting FEMM. Numbers depict the step in the pro-

cess where the elements are created.

Example Since Figure 18 does not have inheritance,

Figure 19 illustrates this case. Part (a) of the figure

depicts a simple LPL, where the optional module

adds an inheritance relation between Server and

Node. Part (b) shows the resulting FEMM, where

class Server is added two invariants. Invariant wc-
inh ensures that, if ServerAsNodes is not selected,

then the broken attribute has no value (since Server
would not inherit from Node). In turn, invariant

wc-serves guarantees that, if ServerAsNodes is not

selected, then reference serves contains no Server

objects. The reader may consult more details of

this step in [26].

As explained in Section 6.2.2, if the FEMM is in-

stantiable, then the model finder will produce a model

that encodes a valid configuration ρ in the attributes

of the unique FMC object, and that includes an in-

stance of MMρ. Subsequently, the other configurations

can be traversed by adding a new clause that negates

the configuration found. This iterative process permits

identifying all configurations that produce instantiable

meta-models. When the process finishes – because the

model finder does not find any more instances – then

the configurations of the LPL not found in the pro-

cess are those producing non-instantiable meta-models.

Section 8.2 will illustrate the effectiveness of this tech-

nique to analyse the instantiability of the languages in

an LPL.

6.3 Behavioural Consistency

Regarding behavioural product lines, we would be in-

terested in checking whether the behaviour of each lan-

guage variant – given by configuration ρ – is consistent

with the behaviour of any “smaller” language variant,

i.e., defined by ρ′ ⊆ ρ. This means that for any applica-

tion of a rule ρ(r) in a language variant, which extends

a base rule r, there is a corresponding application of r

in the smaller language variant.

Hence, we distinguish a particular class of extension

rules, calledmodular extensions, which only incorporate

into another rule elements of meta-model types added

by the module. That is, modular extensions do not add

elements of types existing in the meta-model of a depen-

dency, since this would risk changing the semantics of

the extended rules. Instead, modular extensions “deco-

rate” existing rules with elements reflecting the seman-

tics of the new elements added to the meta-model.

Definition 20 (Modular Extension) Given a be-

havioural product line BPL and a behavioural module

M = ⟨MM,MD, RO, IN, Ψ,R,∆R,NR,EX,NEX⟩ ∈
BPL:

1. A ∆-rule ∆r ∈ ∆R is a modular extension if each

element in ∆X \X (for X ∈ {L,K,R}) is typed by

MM \ C (for IN = ⟨MM ← C →MM(MD)⟩).
2. A NAC-rule Nr ∈ NR is a modular extension if

each element in N \NL is typed by MM \ C (for

IN = ⟨MM ← C →MM(MD)⟩).
3. Given a rule ri ∈ R and a rewriting ri

CEX (ri)
======⇒

r′i
NEX (ri)
======⇒ ρ(ri), we say that ρ(ri) is a modular

extension of r if all rule extensions in CEX(ri) and

NEX(ri) are modular extensions.

Modular Language Product Lines: Concept, Tool and Analysis 19

Given a ∆- or NAC-rule r, we use predicate mod −
ext(r) to indicate that r is a modular extension.

Remark 8 The composition of two modular extensions

is a modular extension, by transitivity of items 1 and 2

in Definition 20.

Example 19 The ∆-rule ∆move-rl in Figure 7 is a mod-

ular extension, since it adds a node of type Link and

edges of types from and to, belonging to the meta-

model of RichLink but not to that of Networking. This
∆-rule would not be a modular extension if it added,

e.g., a Message node, as this may change the semantics

of the base rule on models typed by the meta-model

of Networking (so that the semantics of those models

would be different in languages that include module

RichLink and in those not including it). Instead,∆move-
rl adds extra elements that only affect models typed by

EFF (RichLink).
Similarly, the NAC-rule NAC-broken in Figure 11(b)

is a modular extension, since it adds an attribute of

type broken, which belongs to the meta-model in Node-
Failures but not to the one in Networking. Finally, rule
move'' in Figure 11(e) is a modular extension of rule

move (Figure 6), since ∆move-rl, ∆move-cf and NAC-
broken are modular extensions.

Modularly extended rules become of special interest

in our setting, since they do not change the semantics of

the base rule in models conformant to simpler language

versions. Theorem 2 captures this property.

Theorem 2 (Consistent Extension Semantics) Let:

BPL be a behavioural LPL; ρ ∈ CFG(BPL) be a con-

figuration; r ∈ R(Mi) be a rule in some behavioural

module Mi of the configuration ρ; and Gρ be a model

typed by MMρ. Then, for every direct derivation Gρ
ρ(r)
=⇒

Hρ, there is a corresponding direct derivation G
r

=⇒ H,

if ρ(r) is a modular extension of r (and where G, Gρ,

H and Hρ are models related as Figure 20 shows).

Proof In appendix.

MM(Mi) //

PB

MMρ MM(Mi) // MMρ

G

t

OO

g //

PB

Gρ

tρ

OO

H

tH

OO

h //

(1) PB

Hρ

tHρ

OO

D

dd

��

d // Dρ

dd

&&
L

m

OO

l′ 55
H

h ,,Lρ(r)

mρ

OO

Hρ

K

l

dd

OO

k′ //

r
��

Kρ(r)

lρ

dd

OO

rρ

%%

R

OOOO

r′ // Rρ(r)

OO

Fig. 20: Consistent extension.

Example 20 Figure 21 shows a consistent extension. Given

the configuration ρ2 = {Networking, CommFailures, Rich-
Link}, since the extended rule ρ2(move) (Figure 11(e))

is applicable to a model like Gρ2
in the figure, the rule

move (the base rule in Networking) is applicable to the

model deprived of the elements introduced by MM ρ2
.

MM(Networking) MM2

G

PB

h

move 2(move)

g

t t2

n1: Node

m: Message

at

n2: Node

H n1: Node

m: Message

at

n2: Node

G2 n1: Node

m: Message

at n2: Node

l :Link

lossProb=0.001

from to

H2
n1: Node

m: Message

at n2: Node

l :Link

lossProb=0.001

from to

Node Message

to
at

from from

Link
to

Node Message

to

at
from lossProb: double

Fig. 21: Consistent extension example: Applying rule

ρ2(move) to Gρ2 implies that applying move to G is

possible.

The next corollary summarises the implications of

Theorem 2.

Corollary 1 Given a behavioural LPL BPL, a config-

uration ρ ∈ CFG(BPL), and a rule r ∈ R(Mi) with

Mi ∈ ρ and mod− ext(ρ(r)):

1. ρ(r) does not delete more elements with types of
EFF (Mi) than r (implied by item (2) in the proof

of Theorem 2).

2. ρ(r) does not create more elements with types of

EFF (Mi) than r (implied by item (3) in the proof

of Theorem 2).

3. ρ(r) is not applicable more often than r (implied

by item (1) in the proof of Theorem 2).

Finally, we define consistent behavioural LPLs as

those where all extension rules of each module are mod-

ular extensions, and only the top module defines rules.

Definition 21 (Consistent Behavioural LPL) A

behavioural LPL BPL is consistent if ∀Mi ∈ BPL ·
¬top(Mi) =⇒ (R(Mi) = ∅∧∀ri ∈ ∆R(Mi)∪NR(Mi)·
mod− ext(ri)).

Consistent LPLs do not allow language variants to

incorporate new actions (i.e., new rules) in the seman-

tics of the top module, and all extensions are required

to be modular. Even if this requirement might be too

20 Juan de Lara et al.

strong for some language families, the result permits

controlling and understanding potential semantic in-

consistencies between language variants. We leave for

future work the investigation of finer notions of (in-

)consistency.

Example 21 The running example (cf. Figure 4) is not

a consistent LPL. The top module declares three rules:

send, move and receive. While all modules define mod-

ular extensions, module Ack needs to introduce a new

rule to send back ack messages (cf. Figure 23, label 2).

Using our approach, the designer of the language family

can identify the non-consistent variants with the base

behaviour and the reasons for inconsistency.

7 Tool Support

We have realised the presented concepts in a tool called

Capone (Component-bAsed PrOduct liNEs), which is

freely available at https://capone-pl.github.io/. It

is an Eclipse plugin with the architecture depicted in

Figure 22.

CAPONE CORE

FEATUREIDE

WFF
ANALYSER

feature
model configuration

HENSHIN

Standard//
NAC-rules

CAPONE
EDITOR(XTEXT)

CAPONE
modules

«imports»

CONSISTENCY
ANALYSER

INSTANTIATION
ANALYSER

USE
VALIDATOR

ge
n
er
at
es

CAPONE
COMPOSER

composer
EMF

ECORE
meta-
models

«imports» CAPONE PROJECT

ge
n
er
at
es

ECORE
meta-model

Henshin
rules

PRODUCT

Witness

«
co
n
fi
g
o
f»

Fig. 22: Architecture of Capone.

Capone relies on EMF [65] as the modelling tech-

nology and Henshin [2] for the rules (standard, ∆- and

NAC-rules). In addition, it extends FeatureIDE [46] –

a framework to construct product-line solutions – to

support the composition of language modules, Henshin

rules, and EMF meta-models, for a language configura-

tion selection. This is performed by implementing the

extension point composer offered by FeatureIDE.

We have designed a textual DSL to declare Capone

modules, and built an editor for the DSL using the

Xtext framework [76]. Modules may reference both Ecore

meta-models and Henshin rules. The core of Capone

supports all the analyses presented in Section 6. For

the instantiability analysis, we rely on the USE Valida-

tor [38], a UML/OCL tool that permits finding valid ob-

ject models (so called witnesses) when fed with a UML

class model with OCL constraints. Generally, model-

finders are configured with a search scope, so that if

no solution is found within the given bounds, one may

still exist outside (i.e., it is a semi-decidable analysis

method). However, the widely accepted small-scope hy-

pothesis in software testing argues that a high pro-

portion of bugs can be found within a small search

scope [28]. In practice, we heuristically set a search

bound for the solver [9], but the user can modify it.

Technically, to integrate the USE Validator, we needed

to bridge between EMF and the format expected and

produced by USE.

Figure 23 shows Capone in action. The view with

label 1 shows the definition of a module using the DSL

we have designed. The editor permits declaring the meta-

model fragment referencing an existing ecore file, and

instead of requiring explicit meta-model mappings, it

relies on equality of names (of classes, attributes, ref-

erences) for meta-model merging. Modules can also de-

clare a formula and a dependency, and refer to a henshin

file with their rules (see view with label 2 for an exam-

ple henshin file). The editor suggests possible rules to

extend, obtained from the module’s dependencies re-

cursively (shown in the pop-up window with label a).

To compose Henshin rules, Capone relies on equality

of object identifiers. Interestingly, the implementation

need not distinguish NAC- from ∆-rules, since NACs in

Henshin are expressed as elements tagged with forbid.

FeatureIDE contributes the views with labels 3 and

4. The view with label 3 contains the feature model

capturing the module structure of the LPL. Our tool

generates this model automatically out of the module

structure. Feature models in FeatureIDE are more re-

stricted than the ones we support. In particular, fea-

tures cannot mix groups of OR/ALT children features

with other types of features. Hence, the resulting fea-

ture model introduces intermediate features for this (cf.

NetworkingALT in the view with label 3). Finally, the

Ψ formulae of the modules are added as cross-tree con-

straints of the feature model (cf. label (b) in the figure).

Overall, users can select a specific configuration of

the generated feature model (view 4). Then, Capone

uses this configuration to merge the meta-models and

rules corresponding to the language variant selected.

Alternatively, it is possible to generate the meta-models

and rules for all language variants.

8 Evaluation

In this section, our aim is answering three research ques-

tions (RQs), which assess the satisfaction of require-

ments R1–R4 stated in Section 2:

https://capone-pl.github.io/

Modular Language Product Lines: Concept, Tool and Analysis 21

1 2

3 4

b

a

Fig. 23: Capone in action: (1) Defining a module. (2) Module’s rules. (3) Derived feature model. (4) Selecting a

variant.

RQ1 What is the effort reduction of the approach with

respect to an explicit definition of each language

variant?

RQ2 What is the typical effort for adding a new fea-

ture to an LPL?

RQ3 In which scenarios is lifted instantiability analy-

sis more efficient than a case-by-case analysis?

To answer these questions, we have used our module-

based approach to build a synthetic language family

plus five additional ones inspired by existing works in

the literature [26,43]. Then, we have compared the spec-

ification effort and the analysis time of our approach,

with respect to an enumerative approach. In the follow-

ing, Section 8.1 deals with RQ1 and RQ2, Section 8.2

answers RQ3, and Section 8.3 discusses threats to va-

lidity. The data of the experiments are available at

https://capone-pl.github.io/examples.html.

8.1 RQ1 & RQ2: Specification Effort

To answer RQ1 and RQ2, we have compared five LPLs

built using our approach, with respect to an enumera-

tive approach that would create each language variant

separately from scratch.

Experiment setup. We have created five behavioural

LPLs: Networking (the running example in Figure 4);

Graphs (with language variants like un-/directed edges

and node hierarchy) along with a transformation imple-

menting a breadth-first traversal; State machines (with

variants like hierarchy, parallelism and time) plus a sim-

ulator; Petri nets (with variants like bounded places, in-

hibitor and read arcs, and attribute or object tokens)

plus a simulator; and Automata (with variants like in-

puts, outputs, initial and final states, determinism, hi-

erarchy and the availability of a stack) plus a simulator.

The examples are from the product line literature [16,

43].

Results. Table 1 displays the results. The first two col-

umns show the language family name and the number

of configurations (i.e., language variants). The remain-

ing ones show the size reduction of the structural part

(meta-model) and the behavioural part (rules) achieved

by the LPLs, compared to an enumerative approach.

For structure (columns 3–6), the table reports: num-

ber of modules in the LPL; total (and average) meta-

model size in each module, as given by the number of

classes, attributes and references in each meta-model;

total (and average) meta-model size in each language

variant of the enumerative approach; and total meta-

model size reduction (%) that our approach brings.

For behaviour (columns 7–11), the table shows: num-

ber of Henshin rules in the LPL (and average per mod-

ule); total (and average) size of the rules, as given by

the number of objects, attributes and references in each

rule; number of rules in the enumerative approach (and

average per language variant); total (and average) added

size of all rules; and total rule size reduction that the

LPL approach brings.

https://capone-pl.github.io/examples.html

22 Juan de Lara et al.

Table 1: Metrics comparing LPLs (left) and behavioural LPLs (right) with respect to an enumerative approach.

LPL (structure) Enumerative app. Behavioural LPL Enumerative app.

LPL #Configs #Mods MMs size (avg) MMs size (avg)
% Size
reduc.

#Rules (avg) Rules size (avg) #Rules (avg) Rules size (avg)
% Size
reduc.

Graphs 16 8 28 (3.5) 200 (12.5) 86.0% 10 (1.25) 63 (6.3) 56 (3.5) 760 (13.57) 91.7%

Networking 24 8 25 (3.13) 324 (13.5) 92.3% 15 (1.85) 58 (3.87) 108 (4.5) 936 (8.67) 93.8%

State machines 48 11 38 (3.45) 864 (18) 95.6% 13 (1.62) 68 (5.23) 160 (3.3) 2312 (14.45) 97.1%

Petri nets 64 13 49 (3.77) 1440 (22.5) 96.6% 27 (2.07) 125 (4.63) 768 (12) 5504 (7.16) 97.7%

Automata 1440 16 80 (5) 45120 (31.3) 99.82% 16 (1) 124 (7.75) 7776 (5.4) 97488 (12.5) 99.87%

Answering RQ1. In the study, our approach reduces

the specification size of the structure by 86%–99.82%,

and the rules size by 91.7%–99.87%. This reduction is

correlated with the size of the language family (number

of configurations/language variants).

Answering RQ2. In the study, adding a new module

requires meta-models of size 3 to 5 (cf. column 4 of

Table 1, value in parentheses). The effort is consider-

ably larger in the enumerative approach, where meta-

model sizes range between 12.5 and 31.3 (column 5)

and adding a new optional module implies doubling

the number of language variants. For the semantics,

each module has between 1 and 2.07 rules on average

(column 7), with size between 3.87 and 7.75 (column

8). Instead, each variant in the enumerative approach

requires between 3.3 and 12 rules (column 9), with size

between 7.16 and 14.45 (column 10). Hence, extending

a language family built with an enumerative approach

requires creating more and bigger rules.

8.2 RQ3: Instantiability Analysis

Next, we investigate the performance of the lifted in-

stantiability analysis presented in Section 6.2, in com-

parison with a case-by-case, enumerative approach.

Experiment setup. In this experiment, we have mea-

sured the time needed to assess whether a given LPL

has instantiable meta-models, and to find a configura-

tion that yields one of such. For this purpose, we have

performed both lifted and enumerative instantiability

analysis on the five case studies used in Section 8.1,

and on an additional synthetic LPL example with 1295

configurations. In the lifted analysis, a single solving

suffices to assess the LPL instantiability. In the enu-

merative case, instead, it is necessary to generate and

analyse each product meta-model, until an instantiable

one is found. In the best case, the first analysed prod-

uct meta-model is instantiable, which finishes the anal-

ysis. In the worst case, there are no instantiable meta-

models, which can only be assessed generating and in-

stantiating each derivable product. To avoid spurious

results, we repeated each lifted an enumerative analy-

sis 20 times, and took the average. For the enumerative

case, in addition, products were generated (and pro-

cessed) in random order. The experiments were per-

formed on a Windows 11 computer, with an i7-1260P

processor and 16Gb of RAM memory.

Results. Table 2 summarises the results. It shows: name

of the LPL (column 1); its number of configurations

(column 2); lifted analysis time (column 3); time to

process all meta-model products in the enumerative ap-

proach, which corresponds to the worst-case scenario

(column 4); speedup of the lifted analysis in the worst-

case scenario (column 5); time to process one meta-

model by the enumerative approach, which corresponds

to the best-case scenario (column 6); slow-down of the

lifted analysis w.r.t. the enumerative approach in the

best-case scenario (column 7); number of meta-models

that the enumerative approach needs to process to be

slower than the lifted analysis (column 8); and same in-

formation expressed as a percentage on the total num-

ber of configurations (column 9).

The lifted case only needs to find an instance of the

FEMM to show that the LPL is instantiable, which re-

quires from 94.65 to 706.75 ms for the analysed LPLs.

For the enumerative case, we iterated on each configura-

tion randomly, invoking the solver to analyse each prod-

uct meta-model. This corresponds to the worst-case sce-

nario, which requires visiting each configuration to find

an instantiable meta-model. In this worst-case scenario

for the enumerative approach, solving times vary be-

tween around 510 ms and 6.5 minutes, and so, the lifted

analysis achieves speedups of 5× up to 554.3×. The ta-
ble also reports the first solving time of the enumerative

approach, which corresponds to the best-case scenario

(the first solving discovers an instantiable meta-model).

In this case, the analysis times range from 31.4 to 76

ms, which means our lifted analysis entails a slow-down

from 63.25 to 630.75 ms in the best-case scenario, com-

pared to the enumerative approach. Finally, the last two

columns report the number of configurations the enu-

merative approach needs to analyse to be slower than

the lifted analysis. This value ranges from 2 to 10, which

corresponds to 0.35% to 25% of the configurations.

Figure 24(a) shows a graphic comparing the analysis

times of the enumerative and lifted approaches for the

synthetic example. As expected, the time of the enu-

Modular Language Product Lines: Concept, Tool and Analysis 23

Table 2: Instantiability analysis results.

LPL #Configs
Lifted

time (ms)
Enumerative time
worst-case (ms)

Speedup
worst-case

Enumerative
best-case (ms)

Slow-down
best-case (ms)

Lifted solving
payoff

Percentage
payoff

Graphs 16 94.65 510.65 5.4× 31.4 63.25 4 25%

Networking 24 198.25 2135.9 10.8× 75.95 122.3 2 8.3%

State machines 48 130 1664.05 12.8× 32.6 97.4 5 10.4%

Petri nets 64 105.5 2294.35 21.75× 38.9 66.6 3 4.7%

Synthetic 1295 190.55 19040.75 99.93× 31.45 159.1 10 0.8%

Automata 1440 706.75 391733.7 554.3× 76 630.75 5 0.35%

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

so
lv

in
g

ti
m

e
 (

m
s)

number of solvings

enumerative

lifted

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

1

4
6

9
1

1
3
6

1
8
1

2
2
6

2
7
1

3
1
6

3
6
1

4
0
6

4
5
1

4
9
6

5
4
1

5
8
6

6
3
1

6
7
6

7
2
1

7
6
6

8
1
1

8
5
6

9
0
1

9
4
6

9
9
1

1
0
3
6

1
0
8
1

1
1
2
6

1
1
7
1

1
2
1
6

1
2
6
1

so
lv

in
g

ti
m

e
 (

m
s)

number of solvings

enumerative

lifted

(a) (b)

Fig. 24: (a) Instantiability analysis time of an enumerative approach vs. our lifted approach for an LPL with 1295

configurations. (b) Detail of the first 25 solvings.

merative approach is linear on the number of configu-

rations that need to be analysed (i.e., on the number of

solvings required) to assess the LPL instantiability. Fig-

ure 24(b) zooms into the first 25 solvings, which shows

a cut-off of 10 solvings, after which using the lifted ap-

proach is faster than the enumerative one.

Answering RQ3. We observe that, if we need to evaluate

more than a few configurations (over the range of 2
to 10, representing between the 0.35% and the 25% of

all configurations of the LPL) for instantiability, the

lifted approach is faster. In the worst case, the lifted

analysis achieves speedups of more than 5×, and up to

554.3× for the Automata LPL. Since the analysis time

in the enumerative approach is linear with the number

of configurations, we can also observe that this speedup

is larger the more configurations the LPL has.

If just one meta-model needs to be analysed (e.g.,

because we are interested in finding just one instan-

tiable meta-model within the LPL, and the first prod-

uct is instantiable) then the enumerative approach is

slightly faster. This is so, since the lifted approach solves

a more complicated problem: it contains all OCL ex-

pressions and all meta-models of the family overlapped.

However, since this overhead is only up to around 630

ms in the worst case, we argue that using a lifted anal-

ysis is generally beneficial, since typically one does not

know a-priori how many meta-models need to be tested

before the first (un-)instantiable one is hit.

8.3 Threats to Validity

Next, we analyse threats to the validity of our two ex-

periments.

Construct validity. For RQ1 and RQ2, the results are

very promising, evincing substantial size reduction when

defining a language family with our proposal. However,

experiments with real developers are needed to assess
the correlation between this size reduction and the ac-

tual effort to build the LPLs.

Internal validity. For RQ3, we measured the solving

time of processing each meta-model product in the enu-

merative case, and calculated the number of solvings

necessary for the lifted case to become faster. For the

enumerative approach, this measurement is dependent

on the order in which the meta-model products are

visited. To avoid spurious effects caused by particular

meta-models being difficult or easy to analyse, we used

a random order for generating the products, and 20

repetitions.

External validity. For RQ1 and RQ2, we have used five

LPLs with 16 up to 1440 configurations. While we spec-

ulate that other language families may yield similar re-

sults (maintaining the correlation of size with number of

configurations), more extensive experiments are needed

for extra confidence in our claims. To reduce this risk,

24 Juan de Lara et al.

for RQ3, in addition, we created an additional synthetic

LPL, which yielded similar results to the other ones.

9 Discussion

Next, we provide a discussion on the limitations, de-

sign choices and perspectives of our approach, along

eight axes: encapsulation, reuse, module composition,

cross-cutting language concerns, practical LPL design,

analysis, behaviour correctness, and concrete syntax.

Encapsulation. Our approach does not include a mech-

anism to restrict which elements within a module may,

may not, or should be extended. Instead, a module

can extend any element in the meta-model of a depen-

dency module. This is so as the meta-models (and rules)

within modules lack a proper interface. Hence, our ap-

proach is white-box, since adding a module requires in-

specting the existing modules to determine which of

their elements are to be extended (and similarly for

cross-tree constraints). Still, this constitutes an exten-

sible mechanism, since adding a new feature to the lan-

guage does not require modifying the existing speci-

fication. While at this stage, we opted for a simple,

lightweight approach that favours flexibility, specifying

such interfaces in modules can be done by identifying

subsets of the meta-model elements that may, may not,

or should receive extensions (and a similar mechanism

could be followed for the module behaviour). Studying

the suitability of this extension is up to future work.

Reuse. A module encapsulates structure and behaviour,

and declares how it extends a given dependency module

within the LPL. Therefore, it can reuse and extend the

structure and behaviour of its dependency. To reuse

a module in another LPL, its dependency should be

modified to point to the new dependency module, and

its extension role might also change, but its structure

and behaviour can be reused as they are. We deem this

small, required change as acceptable, compared to the

effort needed to declare and maintain an explicit feature

model externally (if the extension role is extracted from

modules).

Module composition.As the evaluation shows, our merg-

ing construction for modules simplifies the construction

of language families. Together with negative variabil-

ity, this is one of the most used approaches in product

lines [1]. Regarding other composition mechanisms [55],

our approach can, e.g., emulate embedding (composing

two meta-models by adding an association) by just ex-

tending a suitable class in the dependency module with

the association. We cannot claim that our solution is the

most appropriate one for all scenarios (cf. next point).

In future work, we will explore the introduction of new

mechanisms driven by the practical use of our approach.

Cross-cutting language concerns.Aspect orientation [34]

claims that some concerns cross-cut software systems

and cannot be easily embedded as standard object-

oriented or procedural abstractions. Hence, it proposes

modularity mechanisms (the aspects) that can be flexi-

bly weaved into several places of a system. In our case,

to use the same structure in several places of a language,

the module realising it should be cloned and replicated

in the LPL. We are currently working on generalising

our approach to support extension modules with sev-

eral dependencies, whereby an LPL may span a directed

acyclic graph instead of a tree [64].

Practical LPL design. Proper engineering of effective

modelling languages is not easy [71], especially in the

case of language families. Our modular approach en-

ables decomposing a language family into features, and

describing the family as a product line of modules. Still,

mechanisms facilitating its use in practice are required,

including design guidelines (e.g., akin to [19], but in

our setting), refactorings (as hinted at in Section 6.1),

or techniques to reverse-engineer a set of language vari-

ants into an LPL (in the style of [47]).

Analysis. Section 6 has provided some methods to anal-

yse LPL instantiability. However, if some language vari-

ant of the LPL is not satisfiable, the designer still needs

to find the causes of inconsistency by analysing the con-

straints of the modules selected by the configuration. To

facilitate this task, constraint debugging techniques [25,

74], e.g., based on finding the unsatisfiable core of the

constraint set [59], could be used.

Behaviour correctness. Our analysis technique for be-

haviour consistency ensures that “bigger” languages of

the family are consistent with “smaller” ones. Still, the

behaviour of the LPL needs to be properly tested. Hence,

we aim at developing efficient testing techniques for

LPLs in the future, based on approaches to test soft-

ware product lines [18].

Concrete syntax. This work has not covered the con-

crete syntax of LPLs, which is left for future work.

We aim at graphical syntaxes, where modules include

models of their graphical syntax, possibly with vari-

ants. Such models would be composed with the syntax

models of the dependency modules, for which we are

investigating suitable composition mechanisms.

10 Related Work

We now examine related works on modelling language

engineering (Section 10.1) and review approaches to

Modular Language Product Lines: Concept, Tool and Analysis 25

transforming rewrite rules (Section 10.2) and analysing

product lines (Section 10.3).

10.1 Modelling Language Engineering

Product lines have been used to define the abstract syn-

tax of language families concisely. For example, Mer-

lin [26] supports the definition of product lines of meta-

models and the efficient analysis of their well-formedness

properties. Merlin is not compositional, but it over-

laps all meta-models in a 150MM, where elements at-

tach formulae stating the configurations they belong

to. MetaDepth [14] uses multi-level modelling to define

language families, and product lines for their customi-

sation. The proposal is backed by a formal theory that

guarantees correctness. None of these works considers

semantics, and languages cannot be defined incremen-

tally by composing modules.

Other proposals based on product lines consider se-

mantics. Leduc et al. [41] define languages via extensi-

ble meta-models, and use the Visitor pattern (combined

with Java or an action language) for the semantics,

hampering analysis. They also lack means, like our con-

figurations, to select between possible language exten-

sions. In [16], a 150MM captures variability within a do-

main, and defines transformations on top in a modular

way. Being based on a 150MM, extension is challenging,

and analysis is complex since transformations are writ-

ten in the Epsilon Object Language (EOL) [37]. Méndez

et al. [47] reverse engineer LPLs from DSL variants.

Their LPLs consider syntax and operational semantics.

Compatibility of operations is checked by comparing

their signatures and ASTs, but truly behavioural anal-

yses are difficult since operations are expressed through

Java-like methods.

Regarding language composition, Durán and Zschaler

[20,21] combine definitions of languages and their rule-

based behaviour to build more complex languages. While

this is achieved using an amalgamation construction,

akin to our ∆-rules, there is no notion of product line,

language module, dependency, or configuration. Being

based on graph transformation [77], their approach sup-

ports analysing whether the rule behaviour is protected

at the level of traces, and not only on individual rules

as we do. We will take inspiration on that approach for

its application to LPLs, where languages are composed

in more intricate ways out of fragments.

Concern-oriented design [36] (an evolution of the

reusable aspect models approach [35]) supports com-

ponents encapsulating design concerns plus a feature

model as the configuration interface. Concerns are com-

posed incrementally via configuration selections, but

compositional semantics is not considered. Concern-Or-

iented Language Development (COLD) [10] is a con-

ceptual proposal inspired by the latter trend of works.

It fosters reusability in language development by the

notion of language concern. Concerns are reusable lan-

guage fragments consisting of abstract syntax, concrete

syntax, and semantics, and which provide interfaces to

support variability, customisation and use. In compar-

ison, our modules are finer grained than concerns. Our

LPLs offer a variability interface, but as discussed in

Section 9, our modules lack a customisation interface

stating the elements that need to be extended.

In the Kermeta language workbench [29], the oper-

ational semantics of languages is defined using the K3

meta-language in the form of aspects that are stati-

cally woven into the language syntax. While the Ker-

meta workbench enables a modular language definition,

it lacks an explicit variability model, which prevents

the construction of language families. GEMOC Stu-

dio/Melange [17] improves the Kermeta workbench by

supporting language families and variation points, but

the analysis of the composed language is limited to type

checking to ensure type safety.

Jurack et al. [30] define algebraic component con-

cepts for (EMF) models with well-defined interfaces,

but components lack a specification of their seman-

tics. LanGems [72] uses roles to define interfaces for

language modules, but lacks product-line capabilities.

Moreover, semantics is specified by operations in meta-

classes, which is challenging to analyse.

Both MontiCore [8] and Neverlang [70] enable com-

ponent-based language definition. MontiCore compo-

nents encapsulate textual syntax, integrity constraints,

semantics (via code generators), and can declare pro-

vided/required interfaces. Components can be organ-

ised into a product line (to support closed variability)

and be customised through their interfaces (to support

open variability). Language families explicitly declare a

feature diagram, and provide bindings to specific com-

ponents. In turn, Neverlang is a textual language work-

bench, in which modules encapsulate textual syntax

and semantic actions on abstract syntax trees. Sim-

ilar to MontiCore, it allows provided/required inter-

faces. Modules can be combined by slices, and language

descriptors indicate which slices should be combined

to generate a language interpreter. Neverlang is able

to extract a feature model out of the language defini-

tions [24], from which specific language configurations

can be selected. In comparison to MontiCore and Nev-

erlang, our approach is meta-model-based, supports the

analysis of integrity constraints, and relies on graph

transformation to define the language semantics. We

target closed variability (language families), and so, our

26 Juan de Lara et al.

modules lack interfaces. Regarding MontiCore, our def-

inition of product lines is slightly more direct – mod-

ules are features – which permits extending the family

without changing existing definitions. Our modules are

agnostic on the concrete syntax, which will facilitate

incorporating several types of it (textual, graphical) to

the LPL. Regarding semantics, we would like to explore

the possibility to add code generators to modules, tak-

ing inspiration from [7].

Delta-oriented programming [62] permits building

software products by defining a core module and a set

of delta modules that specify changes to the core mod-

ule. A software product is built by applying the delta

modules to the core one. While this approach is highly

expressive, ensuring confluence or semantic consistency

is not possible in general. Hence, in the context of delta-

oriented modelling, Pietsch et al. [56,57] formalise delta

operations as transformation rules and provide tech-

niques for analysis, measurement and refactoring. Our

approach works one meta-level up, but it would be in-

teresting to consider their quality assurance techniques

in our future work.

10.2 Rule Transformation

Rule rewriting can be considered a particular realisa-

tion of rule inheritance/refinement (see [75] for a sur-

vey). It has been extensively studied in the literature.

For instance, Parisi-Presicce [54] rewrites graph gram-

mars by introducing high-level replacement systems where

the productions are grammars and graph morphisms.

Bottoni et al. [5] propose an incremental view on the

syntax-directed construction of semantics of visual lan-

guages, which involves modifying triple graph rules where

patterns declare conditions that a model must satisfy.

The notion of higher-order transformation proposed in [44]

permits applying transformations to rewriting rules, and

obtain a valid graph rule. Our extension rules also rewrite

rules, though their actions are limited to rule/NAC ex-

tension (i.e., they are non-deleting).

Differently from the approaches mentioned above,

variability-based rules [66] encode several rules into a

single specification. The authors also propose a merg-

ing algorithm to build a variability-based rule from sev-

eral standard ones. While we could use variability-based

rules to specify semantic variants, we opted for a mod-

ular approach to allow an incremental rule construc-

tion. In [73], regular outplace transformations are ap-

plied to models with variability, and this variability is

propagated to the target models a-posteriori. In our

case, variability is specified externally to meta-models

via modules and dependencies, and rules are applied to

models without variability.

Besides to rule rewriting, transformations have also

been applied to product line rewriting. Taentzer et al.

[67] use category theory to formalise the notion of trans-

formation of software product lines, which combines

modifications of feature models and product domain

models. These transformations are proven to be sound.

Instead, our extension rules modify rules, but preserve

the domain meta-models and module dependencies.

10.3 Analysing Product Lines

Product lines are hard to analyse due to the possibly

exponential number of derivable products. Hence, in-

stead of a case-by-case approach, lifted analyses are of-

ten proposed [68]. These adapt techniques – originally

developed to analyse a single product – to the product-

line level, enabling the analysis of all products of the

family at once, and avoiding the generation and analy-

sis of each product in isolation.

In our case, we have lifted both syntactical analyses

(cf. Section 6.1) and instantiability analysis based on

model-finding (cf. Section 6.2) to the product-line level.

For the latter, we follow an approach similar to the one

in [26], where a feature-explicit meta-model is derived

from a 150MM, and then analysed with model finders.

In our case, we derive a 150MM from an LPL, and

a logical encoding of its variability space. While [26]

analysed further properties – beyond instantiability –

and proposed the use of partial configurations for faster

analysis, this is up to future work in our case.

Some works propose lifted analysis of well-formedness

for product lines of models. For example, Lienhardt et

al. [42] define product lines of statecharts using delta-

modelling and analyse well-formedness of each deriv-

able statechart at the product-line level. In a more gen-

eral setting, Czarnecki and Pietroszek [11] propose a

method to analyse product lines of models to check if

each derivable one conforms to its meta-model, which

includes OCL constraints. Our lifted instantiability anal-

ysis is defined at the meta-model level, and can be used

to check if each product meta-model is instantiable.

In [16], a notion of transformation product line is

proposed, following an annotative approach based on a

150MM. Transformations are defined using EOL, com-

plemented with contracts in OCL. Model finders can

then be used to analyse the consistency of the contracts,

but the transformations themselves are not analysed,

since they are written in EOL. In contrast, via graph

transformations, we are able to analyse semantic con-

sistency for all members of the family (cf. Section 6.3).

Modular Language Product Lines: Concept, Tool and Analysis 27

11 Conclusions and Future Work

We have presented a new modular approach to defin-

ing modelling language families that considers both ab-

stract syntax and semantics. The approach is based

on product line techniques and involves the definition

of language modules with interdependencies. Modules

comprise a meta-model fragment (which may contain

OCL constraints), rules, and extension rules that ex-

pand the rules of other dependency modules. We have

developed analysis techniques for LPL syntactic well-

formedness, instantiability, and behaviour consistency;

demonstrated the applicability of the approach by an

implementation atop Eclipse; and reported on an eval-

uation showing size and analysis time reductions.

In the future, on the practical side, we plan to ap-

ply the approach to industry cases and enhance our

tooling, e.g., with refactoring suggestions to improve

the quality of the product line. On the theoretical side,

we plan to lift existing analysis techniques for graph

transformation (e.g., conflicts, dependencies [39]) to the

product-line level, develop finer granular analysis of (in-

)consistency, devise effective testing techniques for LPLs,

consider other satisfiability properties beyond instan-

tiability, and improve satisfiability analyses with partial

configurations, in the style of [26]. We will also consider

generalising the approach to support extension modules

with several dependencies, whereby an LPL may span

a directed acyclic graph instead of a tree [64], and en-

able modules with several alternative/OR groups. In

addition, we are studying the addition of module in-

terfaces restricting the structural and behavioural ele-

ments within a module that may, may not, or should be

extended. Finally, we are currently exploring the pos-

sibility to associate code generation templates to mod-

ules, in the style of [7], as well as (graphical) concrete

syntax descriptions.

Acknowledgements We thank the reviewers for their use-
ful comments. This work has been partially supported by
Sapienza Visitor Programme, a visitor grant by Department
of Computer Science at Sapienza, and the Spanish Ministry
of Science (PID2021-122270OB-I00, PID2021-122270OB-I00,
and RED2022-134647-T).

Appendix: Proofs

Proof of Lemma 1: Unique Class Names.

Proof ⇒) We will proceed by contradiction. Assume

there is a meta-model MMρ ∈ PR(LPL) having

two classes vi and vj with the same name. Then,

such classes are present in the 150MM and therefore

in V MMLPL . This means that {ΦV (vi), ΦV (vj)} ⊆

ρ, and therefore validLPL({ΦV (vi), ΦV (vj)}), in con-

tradiction with the condition of the lemma.

⇐) Assume there are two distinct classes vi and vj in

V MMLPL with the same name s.t. ¬validLPL({ΦV (

vi), ΦV (vj)}). But then, there cannot be any config-

uration ρ ∈ CFG(LPL) s.t. {ΦV (vi), ΦV (vj)} ⊆ ρ;

hence, no meta-model MMρ ∈ PR(LPL) can have

classes with same name.

Proof of Lemma 2: Unique Field Names.

Proof The proof is similar to the one for Lemma 1:

⇒) We will proceed by contradiction. Assume there is

a meta-model MMρ ∈ PR(LPL) having a class v

that holds two fields f1 and f2 with the same name.

Then, both v and f1, f2 are present in the 150MM

and therefore inMMLPL. But then, {ΦF (f1), ΦF (f2
)} ⊆ ρ, and so validLPL ({ΦF (f1), ΦF (f2)}) holds,
in contradiction with the condition of the lemma.

⇐) Assume any two distinct fields f1 and f2 with same

name, belonging to the same class v, in MMLPL,

s.t. ¬validLPL({ΦF (f1), ΦF (f2)}). But then, there
cannot be any configuration ρ ∈ CFG(LPL) s.t.

{ΦF (f1), ΦF (f2)} ⊆ ρ, and therefore no meta-model

MMρ ∈ PR(LPL) can have a class with two fields

with same name.

Proof of Lemma 3: No Inheritance Cycles.

Proof The proof is similar to those of Lemmas 1 and 2.

⇒) We will proceed by contradiction. Assume there is

a meta-model MMρ ∈ PR(LPL) having an in-

heritance cycle C ⊆ IMMρ . Then, the cycle C is

present in the 150MM and therefore in MMLPL.

This means that {ΦI(v1, v2) | (v1, v2) ∈ C} ⊆ ρ,

and therefore validLPL ({ΦI(v1, v2) | (v1, v2) ∈ C}),
in contradiction with the condition of the lemma.

⇐) Assume there is an inheritance cycle C ∈ IMMLPL

s.t. ¬validLPL({ΦI(v1, v2) | (v1, v2) ∈ C}). But

then, there cannot be any configuration ρ ∈ CFG(

LPL) s.t. {ΦI(v1, v2) | (v1, v2) ∈ C} ⊆ ρ, and there-

fore no meta-model MMρ ∈ PR(LPL) can have an

inheritance cycle.

Proof of Lemma 4: Correctness of Logical Encoding of

LPL.

Proof ⇒) Any ρ ∈ CFG(LPL) should satisfy Defini-

tion 6, which means that:

(1) TOP (LPL) ∈ ρ, hence the term TOP (LPL) of

ΛLPL evaluates to true,

(2) M ∈ ρ =⇒ ∀Mi ∈ MAN(M) ·Mi ∈ ρ, hence

the term M =⇒
∧

Mi∈MAN(M)

Mi of Λ(M) eval-

uates to true,

28 Juan de Lara et al.

(3) M ∈ ρ =⇒ (ALT (M) ̸= ∅ =⇒ ∃1Mi ∈
ALT (M) · Mi ∈ ρ), hence the term M =⇒⊕
Mi∈ALT (M)

Mi of Λ(M) evaluates to true,

(4) M ∈ ρ =⇒ (OR(M) ̸= ∅ =⇒ ∃Mi ∈
OR(M) · Mi ∈ ρ), hence the term M =⇒∨
Mi∈OR(M)

Mi of Λ(M) evaluates to true,

(5) M ∈ ρ =⇒ MD(M) ∈ ρ, hence the term

M =⇒ MD(M) of Λ(M) evaluates to true,

(6)
∧

Mi∈LPL Ψ(Mi)[true/ρ, false/(LPL\ρ)] = true

makes the term
∧

Mi∈LPL

Ψ(Mi) of Λ(M) evaluate

to true.

Conversely, if some ρ ̸∈ CFG(LPL), then some of

the items 1–6 in Definition 6 evaluates to false, and

so does the corresponding item in Definition 19.

⇐) Follows an analogous reasoning to⇒, due to the 1-1

mapping between terms in Definitions 6 and 19.

Proof of Theorem 2: Consistent Extension Semantics.

Proof Model G in Figure 20 is a pullback (PB) object,

containing exactly the elements of Gρ that are typed by

the meta-model in module Mi. The spans L← K → R

and Lρ(r) ← Kρ(r) → Rρ(r) of rules r and ρ(r) are

shown at the bottom, where morphisms l′, k′ and r′ ex-

ist because ρ(r) is an extension of r (cf. Definition 10).

Spans G ← D → H and Gρ ← Dρ → Hρ result from

the direct derivations of r and ρ(r). We need to show

that: (1) morphism m : L → G exists and r is applica-

ble, i.e., NACs are satisfied, (2) morphisms d : D → Dρ

and h : H → Hρ exist, and (3) square (1) is PB.

1. Morphism m : L→ G exists since L is the PB ob-

ject of G→ Gρ ← Lρ(r). Indeed, on the one hand,

ρ(r) is a modular extension of r, so Lρ(r)\L is typed

by MMρ \MM(Mi). On the other hand, G only

contains the elements of Gρ typed by MM(Mi).

Hence, the PB object of G→ Gρ ← Lρ(r) contains

exactly the elements of Lρ(r) typed by MM(Mi),

i.e., L.

If ρ(r) is applicable, all of its NACs are satisfied

(Gρ has no occurrence of them). NACs in ρ(r) may

either have been added by a NAC-rule, or have

existed in r. In the first case, the NAC-rule should

be a modular extension adding elements typed by

MMρ\MM(Mi) and therefore not present in G. In

the second case, the NAC of ρ(r) may have been

enlarged by modular extensions, whose elements

cannot be in G either.

2. Since ρ(r) is a modular extension of r, both rules

delete the same elements typed by MM(Mi). In

addition, ρ(r) may delete more elements typed by

MMρ \MM(Mi). Therefore, there must be a mor-

phism d : D → Dρ.

Morphism h : H → Hρ exists because of the uni-

versal pushout property. Since H is a pushout ob-

ject, and we have K → D → Dρ → Hρ and

K → R → Rρ(r) → Hρ, there is a unique mor-

phism H → Hρ as required.

3. Square (1) would not be a PB if rule ρ(r) created

elements typed by MMρ\MM(Mi). However, this

is not possible since ρ(r) is a modular extension.

References

1. S. Apel, D. Batory, C. Kästner, and G. Saake. Basic
concepts, classification, and quality criteria. In Feature-
Oriented Software Product Lines: Concepts and Im-
plementation, pages 47–63. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

2. T. Arendt, E. Biermann, S. Jurack, C. Krause, and
G. Taentzer. Henshin: Advanced concepts and tools for
in-place EMF model transformations. In MoDELS, vol-
ume 6394 of LNCS, pages 121–135. Springer, 2010.

3. D. Benavides, P. Trinidad, and A. Ruiz-Cortés. Auto-
mated reasoning on feature models. In CAiSE, volume
3520 of LNCS, pages 491–503. Springer, 2005.

4. D. Beuche, M. Schulze, and M. Duvigneau. When 150%
is too much: Supporting product centric viewpoints in an
industrial product line. In SPLC, pages 262–269. ACM,
2016.

5. P. Bottoni, E. Guerra, and J. de Lara. Enforced gen-
erative patterns for the specification of the syntax and
semantics of visual languages. J. Vis. Lang. Comput.,
19(4):429–455, 2008.

6. M. Brambilla, J. Cabot, and M. Wimmer. Model-driven
software engineering in practice, second edition. Morgan
& Claypool Publishers, 2017.

7. A. Butting, R. Eikermann, O. Kautz, B. Rumpe, and
A. Wortmann. Modeling language variability with
reusable language components. In SPLC, pages 65–75.
ACM, 2018.

8. A. Butting, J. Pfeiffer, B. Rumpe, and A. Wortmann.
A compositional framework for systematic modeling lan-
guage reuse. In MoDELS, pages 35–46. ACM, 2020.

9. R. Clarisó, C. A. González, and J. Cabot. Smart bound
selection for the verification of UML/OCL class dia-
grams. IEEE Trans. Software Eng., 45(4):412–426, 2019.

10. B. Combemale, J. Kienzle, G. Mussbacher, O. Barais,
E. Bousse, W. Cazzola, P. Collet, T. Degueule, R. Hein-
rich, J. Jézéquel, M. Leduc, T. Mayerhofer, S. Mosser,
M. Schöttle, M. Strittmatter, and A. Wortmann.
Concern-oriented language development (COLD): Fos-
tering reuse in language engineering. Comput. Lang.
Syst. Struct., 54:139–155, 2018.

11. K. Czarnecki and K. Pietroszek. Verifying feature-
based model templates against well-formedness OCL con-
straints. In GPCE, pages 211–220. ACM, 2006.

12. L. D’Antoni and M. Veanes. Automata modulo theories.
Commun. ACM, 64(5):86–95, 2021.

13. J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange,
and G. Taentzer. Attributed graph transformation with
node type inheritance. Theor. Comput. Sci., 376(3):139–
163, 2007.

14. J. de Lara and E. Guerra. Language family engineering
with product lines of multi-level models. Formal Aspects
Comput., 33(6):1173–1208, 2021.

Modular Language Product Lines: Concept, Tool and Analysis 29

15. J. de Lara, E. Guerra, and P. Bottoni. Modular lan-
guage product lines: A graph transformation approach.
In MoDELS, pages 334–344. ACM, 2022.

16. J. de Lara, E. Guerra, M. Chechik, and R. Salay. Model
transformation product lines. In MoDELS, pages 67–77.
ACM, 2018.

17. T. Degueule, B. Combemale, A. Blouin, O. Barais, and
J. Jézéquel. Melange: A meta-language for modular and
reusable development of DSLs. In SLE, pages 25–36.
ACM, 2015.

18. I. do Carmo Machado, J. D. McGregor, Y. C. Cavalcanti,
and E. S. de Almeida. On strategies for testing software
product lines: A systematic literature review. Inf. Softw.
Technol., 56(10):1183–1199, 2014.

19. F. Drux, N. Jansen, and B. Rumpe. A catalog of de-
sign patterns for compositional language engineering. J.
Object Technol., 21(4):4:1–13, Oct. 2022.

20. F. Durán, A. Moreno-Delgado, F. Orejas, and S. Zschaler.
Amalgamation of domain specific languages with be-
haviour. J. Log. Algebraic Methods Program., 86(1):208–
235, 2017.

21. F. Durán, S. Zschaler, and J. Troya. On the reusable
specification of non-functional properties in DSLs. In
SLE, volume 7745 of LNCS, pages 332–351. Springer,
2012.

22. Eclipse. https://www.eclipse.org/, 2022.
23. H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fun-

damentals of Algebraic Graph Transformation. Springer,
2006.

24. L. Favalli, T. Kühn, and W. Cazzola. Neverlang and
FeatureIDE just married: Integrated language product
line development environment. In SPLC, pages 1–11.
ACM, 2020.

25. J. A. Gómez-Gutiérrez, R. Clarisó, and J. Cabot. A
tool for debugging unsatisfiable integrity constraints in
UML/OCL class diagrams. In BPMDS/EMMSAD, vol-
ume 450 of LNBIP, pages 267–275. Springer, 2022.

26. E. Guerra, J. de Lara, M. Chechik, and R. Salay. Prop-
erty satisfiability analysis for product lines of modelling
languages. IEEE Trans. Softw. Eng., 48(2):397–416,
2022.

27. D. Jackson. Software Abstractions - Logic, Language,
and Analysis. MIT Press, London, England, 2006. See
also http://alloy.mit.edu/.

28. D. Jackson and C. Damon. Elements of style: Analyzing
a software design feature with a counterexample detector.
IEEE Trans. Software Eng., 22(7):484–495, 1996.

29. J. Jézéquel, B. Combemale, O. Barais, M. Monperrus,
and F. Fouquet. Mashup of metalanguages and its im-
plementation in the Kermeta language workbench. Softw.
Syst. Model., 14(2):905–920, 2015.

30. S. Jurack and G. Taentzer. A component concept for
typed graphs with inheritance and containment struc-
tures. In ICGT, volume 6372 of LNCS, pages 187–202.
Springer, 2010.

31. K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peter-
son. Feature-oriented domain analysis (FODA) feasibility
study. Technical Report CMU/SEI-90-TR-021, Carnegie
Mellon Universit, 1990.

32. N. Kashmar, M. Adda, and M. Atieh. From access control
models to access control metamodels: A survey. In FICC,
volume 70 of LNNS, pages 892–911. Springer, 2020.

33. S. Kelly and J. Tolvanen. Domain-Specific Modeling -
Enabling Full Code Generation. Wiley, 2008.

34. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In ECOOP, volume 1241 of LNCS, pages
220–242. Springer, 1997.

35. J. Kienzle, W. A. Abed, F. Fleurey, J. Jézéquel, and
J. Klein. Aspect-oriented design with reusable aspect
models. LNCS Trans. Aspect Oriented Softw. Dev.,
7:272–320, 2010.

36. J. Kienzle, G. Mussbacher, P. Collet, and O. Alam. De-
laying decisions in variable concern hierarchies. InGPCE,
pages 93–103. ACM, 2016.

37. D. S. Kolovos, R. F. Paige, and F. Polack. The Epsilon
Object Language (EOL). In ECMDA-FA, volume 4066
of LNCS, pages 128–142. Springer, 2006.

38. M. Kuhlmann and M. Gogolla. From UML and OCL to
relational logic and back. In MoDELS, volume 7590 of
LNCS, pages 415–431. Springer, 2012.

39. L. Lambers, D. Strüber, G. Taentzer, K. Born, and
J. Huebert. Multi-granular conflict and dependency anal-
ysis in software engineering based on graph transforma-
tion. In Proc. ICSE, pages 716–727. ACM, 2018.

40. S. M. Lane. Categories for the Working Mathematician.
Springer, 1971.

41. M. Leduc, T. Degueule, B. Combemale, T. van der Storm,
and O. Barais. Revisiting visitors for modular extension
of executable DSMLs. In MoDELS, pages 112–122. IEEE
Computer Society, 2017.

42. M. Lienhardt, F. Damiani, L. Testa, and G. Turin. On
checking delta-oriented product lines of statecharts. Sci.
Comput. Program., 166:3–34, 2018.

43. R. E. Lopez-Herrejon and D. Batory. A standard problem
for evaluating product-line methodologies. In GCBSE,
pages 10–24. Springer Berlin Heidelberg, 2001.

44. R. Machado, L. Ribeiro, and R. Heckel. Rule-based trans-
formation of graph rewriting rules: Towards higher-order
graph grammars. Theor. Comp. Sci., 594:1–23, 2015.

45. I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and
A. Tang. What industry needs from architectural lan-
guages: A survey. IEEE Trans. Soft. Eng., 39(6):869–891,
2013.

46. J. Meinicke, T. Thüm, R. Schröter, F. Benduhn, T. Le-
ich, and G. Saake. Mastering Software Variability with
FeatureIDE. Springer, 2017.

47. D. Méndez-Acuña, J. A. Galindo, B. Combemale,
A. Blouin, and B. Baudry. Reverse engineering language
product lines from existing DSL variants. J. Syst. Softw.,
133:145–158, 2017.

48. D. Méndez-Acuña, J. A. Galindo, T. Degueule,
B. Combemale, and B. Baudry. Leveraging software
product lines engineering in the development of external
DSLs: A systematic literature review. Comput. Lang.
Syst. Struct., 46:206–235, 2016.

49. T. Murata. Petri nets: Properties, analysis and applica-
tions. Proceedings of the IEEE, 77(4):541–580, 1989.

50. L. Northrop and P. Clements. Software Product Lines:
Practices and Patterns. Addison-Wesley Longman Pub-
lishing Co., Inc., Boston, MA, USA, 2002.

51. OCL. http://www.omg.org/spec/OCL/, 2014.
52. F. Orejas and L. Lambers. Lazy graph transformation.

Fundam. Informaticae, 118(1-2):65–96, 2012.
53. OSGi working group. OSGi: The dynamic module system

for java. https://www.osgi.org/, 2022.
54. F. Parisi-Presicce. Transformations of graph gram-

mars. In TAGT, volume 1073 of LNCS, pages 428–442.
Springer, 1994.

55. J. Pfeiffer, B. Rumpe, D. Schmalzing, and A. Wortmann.
Composition operators for modeling languages: A litera-
ture review. J. Comput. Lang., 76:101226, 2023.

56. C. Pietsch, U. Kelter, T. Kehrer, and C. Seidl. Formal
foundations for analyzing and refactoring delta-oriented
model-based software product lines. In SPLC, pages
30:1–30:11. ACM, 2019.

https://www.eclipse.org/
http://alloy.mit.edu/
http://www.omg.org/spec/OCL/
https://www.osgi.org/

30 Juan de Lara et al.

57. C. Pietsch, D. Reuling, U. Kelter, and T. Kehrer. A
tool environment for quality assurance of delta-oriented
model-based spls. In VaMoS, pages 84–91. ACM, 2017.

58. K. Pohl, G. Böckle, and F. J. v. d. Linden. Software
Product Line Engineering: Foundations, Principles and
Techniques. Springer-Verlag, Berlin, Heidelberg, 2005.

59. N. Przigoda, R. Wille, and R. Drechsler. Analyzing incon-
sistencies in UML/OCL models. J. Circuits Syst. Com-
put., 25(3):1640021:1–1640021:21, 2016.

60. D. Reuling, C. Pietsch, U. Kelter, and T. Kehrer. To-
wards projectional editing for model-based SPLs. In Va-
MoS. ACM, 2020.

61. D. Sannella and A. Tarlecki. Foundations of Algebraic
Specification and Formal Software Development. Mono-
graphs in Theoretical Computer Science. An EATCS Se-
ries. Springer, 2012.

62. I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tan-
zarella. Delta-oriented programming of software prod-
uct lines. In SPLC, volume 6287 of LNCS, pages 77–91.
Springer, 2010.

63. A. Schlie, S. Schulze, and I. Schaefer. Recovering vari-
ability information from source code of clone-and-own
software systems. In VaMoS. ACM, 2020.

64. P. Schobbens, P. Heymans, J. Trigaux, and Y. Bontemps.
Generic semantics of feature diagrams. Comput. Net-
works, 51(2):456–479, 2007.

65. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks.
EMF: Eclipse Modeling Framework, 2nd Edition.
Addison-Wesley Professional, 2008.

66. D. Strüber, J. Rubin, T. Arendt, M. Chechik,
G. Taentzer, and J. Plöger. Variability-based model
transformation: Formal foundation and application. For-
mal Asp. Comput., 30(1):133–162, 2018.

67. G. Taentzer, R. Salay, D. Strüber, and M. Chechik.
Transformations of software product lines: A generaliz-

ing framework based on category theory. In MoDELS,
pages 101–111. IEEE, 2017.

68. T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake.
A classification and survey of analysis strategies for soft-
ware product lines. ACM Comput. Surv., 47(1):6:1–6:45,
2014.

69. M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin.
On the use of higher-order model transformations.
In ECMDA-FA, volume 5562 of LNCS, pages 18–33.
Springer, 2009.

70. E. Vacchi and W. Cazzola. Neverlang: A framework for
feature-oriented language development. Comput. Lang.
Syst. Struct., 43:1–40, 2015.

71. A. Wasowski and T. Berger. Domain-Specific Languages
- Effective Modeling, Automation, and Reuse. Springer,
2023.

72. C. Wende, N. Thieme, and S. Zschaler. A role-based
approach towards modular language engineering. In SLE,
volume 5969 of LNCS, pages 254–273. Springer, 2009.

73. B. Westfechtel and S. Greiner. From single- to multi-
variant model transformations: Trace-based propagation
of variability annotations. In MoDELS, pages 46–56.
ACM, 2018.

74. R. Wille, M. Soeken, and R. Drechsler. Debugging of
inconsistent UML/OCL models. In DATE, pages 1078–
1083. IEEE, 2012.

75. M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger,
J. Schönböck, W. Schwinger, D. S. Kolovos, R. F. Paige,
M. Lauder, A. Schürr, and D. Wagelaar. Surveying rule
inheritance in model-to-model transformation languages.
J. Object Technol., 11(2):3: 1–46, 2012.

76. Xtext. https://www.eclipse.org/Xtext/, 2022.
77. S. Zschaler and F. Durán. GTSMorpher: Safely com-

posing behavioural analyses using structured operational
semantics. In Composing Model-Based Analysis Tools,
pages 189–215. Springer International Publishing, 2021.

https://www.eclipse.org/Xtext/

	Introduction
	Motivation and Running Example
	Overview of the Approach
	Language Product Lines: Structure
	Language Product Lines: Behaviour
	Language Product Lines: Analysis
	Tool Support
	Evaluation
	Discussion
	Related Work
	Conclusions and Future Work

