
Integrating Measures and Redesigns
in the Definition of Domain Specific Visual Languages

Esther Guerra1, Juan de Lara2, Paloma Díaz1

1Ingeniería Informática, Universidad Carlos III (Madrid, Spain)
2Ingeniería Informática, Universidad Autónoma de Madrid (Madrid, Spain)

eguerra@inf.uc3m.es, jdelara@uam.es, pdp@inf.uc3m.es

Abstract
The goal of this work is to facilitate the task of integrating measurement and redesign tools in
modelling environments for Domain Specific Visual Languages (DSVLs), reducing or
eliminating the necessity of coding. With this purpose, we have created a DSVL called
SLAMMER that includes generalizations of some of the more used types of product metrics and
frequent model manipulations, which can be easily customised for any other DSVL in a
graphical way. The metric customisation process relies on visual patterns for the specification of
the elements that should be measured in each metric type, while redesigns (as well as other
actions) can be specified either personalizing generic templates or by means of graph
transformation systems. The provided DSVL also allows creating new metrics, composing
metrics, and executing actions guided by measurement values.

The approach has been empirically validated by its implementation in a meta-modelling tool,
which has been used for several DSVLs. In this way, together with the DSVL specification, a
SLAMMER model can be provided containing a suite of metrics and actions that will become
available in the final modelling environment. In this chapter we show a case study for a notation
in the web engineering domain.

As ensuring model quality is a key success factor in many computer science areas, even crucial
in model-driven development, we believe that the results of this work benefit all of them by
providing automatic support for the specification, generation and integration of measurement
and redesign tools with modelling environments.

Keywords: Quality, Metrics, Redesign, Domain Specific Visual Language, Meta-Modelling,
Graph Transformation.

Introduction
Diagrammatic notations are pervasive in software development, e.g. to specify, understand and
reason about the system to be built. When the notations are constrained to a particular
application domain, they are called Domain Specific Visual Languages (DSVLs) (Gray et al.,
2004). These provide high-level, domain-specific, graphical primitives, having the potential to
increase the user productivity for the specific modelling task. Being so restrictive they are less
error-prone than general-purpose languages, and easier to learn.

DSVLs are frequently used in Model-Driven Software Development (MDSD) (Kent, 2002) as a
means to capitalize the knowledge in a certain application domain. MDSD seeks increasing
quality and productivity in software development by considering models as the primary asset,
from which the application code is generated. Although its steep learning curve has been
pointed out as one of its main disadvantages, its benefits outweigh the drawbacks, and the use of
appropriate modelling tools can help developers to overcome this and other problems. Thus,
many efforts are being currently spent in order to provide adequate tool support for the
specification and generation of rich modelling environments for DSVLs (DSLTools, 2007;
GMF, 2007; Lédczi et al., 2001; Pohjonen & Tolvanen, 2002) encompassing aspects of the

MDSD process, such as facilities for code generation, reporting, formal verification, or quality
assessment (Guerra et al., 2006), which is the topic of the present chapter.

Software quality is defined as “the totality of features and characteristics of a software product
that bear on its ability to satisfy stated or implied needs” (ISO/IEC 9126, 1991). By stated
needs we refer to explicit system requirements, mostly functional. Quality features of this type
are product correctness, completeness and reliability, and the use of formal methods can help to
achieve them. Implied needs are those ones that, although may be incomplete or not specified, if
they are not present in the final product then this is considered to have less quality. Some
features of this type are efficiency, usability, maintainability, extensibility or cohesion. Product
metrics (Fenton, 1996) measure such features in order to control and improve the quality of
software products. In this chapter, we are interested in generating tools to measure the quality of
software system designs specified using any arbitrary (domain specific) visual notation. We will
use the term “model quality” to refer to the quality properties of the software system that a
model represents. Note that, as in MDSD code is generated from models, it is natural to lift up
the mechanisms to check the quality and correctness of applications from code to models.

However, even if measurement is a key quality control activity in most engineering domains
(Basili et al., 1994; Whitmire, 1997), this is sometimes neglected in Software Engineering. A
factor that may attract a more widespread use is its support by tools, which is even more critical
for automation-based processes such as MDSD. Its use helps detecting defects prior to
implementation, saving time and budget. The problem is that adapting, implementing and
integrating measurement mechanisms for the plethora of DSVLs and tools is costly and time-
consuming, and usually does not take advantage of previous developments. Our goal is to
reduce such cost, by making the customisation of measures for any kind of DSVL easy.

Additional techniques to enhance system quality from its very design are redesigns and design
patterns. Redesigns are design modifications that do not change the functionality but improve
model quality. This concept is similar to the concept of refactoring for code (Fowler, 1999).
Design patterns (Gamma et al., 1995) are a catalog of best practices that can be applied in order
to solve specific problems in software design. Again, the proliferation of notations and tools can
hamper the automated application of redesigns and the use of patterns.

In this chapter we propose a novel DSVL called SLAMMER (Specification LAnguage for
Modelling MEasures and Redesigns). The language allows the customisation of general
predefined measures and actions to be applied to a specific DSVL. Measurement and redesign
tools are automatically generated from SLAMMER models and integrated in the DSVL
modelling environment. SLAMMER contains the main types of product metrics we have
identified. The user can customise these metrics with visual patterns or create new ones. In
addition, it is possible to specify threshold values for the metrics. Thresholds may have an
associated action described either using a programming language, a graph transformation
system (Ehrig et al., 2006) or customising a generic predefined template. This is useful if the
action executes known redesigns that improve the model quality.

These ideas have been implemented in the AToM3 tool (de Lara & Vangheluwe, 2002), which
allows the description of DSVLs by means of meta-modelling. We illustrate its use by defining
a set of metrics and redesigns for Labyrinth (Díaz et al., 2001), a DSVL in the web domain.

Chapter organization. The chapter starts by studying related work. Then, it gives an
introduction on meta-modelling for the generation of environments for DSVLs, and presents an
example of environment generation for Labyrinth. Next section introduces the main concepts of
measurement and redesign. Then, SLAMMER is presented using examples with Labyrinth.
After that, we show how SLAMMER was integrated in AToM3 and used to improve the
environment for Labyrinth. Then, some methodological issues are discussed, regarding the use
of these concepts in MDSD. Finally, the chapter ends with future trends and the conclusions.

State of the Art
As stated in the introduction, the purpose of the work presented in this chapter is to facilitate the
generation of visual environments integrating mechanisms to quantify and improve model
quality, regardless of the DSVL in which these models are specified. Therefore, the required
mechanisms must be general enough to be reused or adapted to any notation. In this respect,
some proposals for generic measurement and redesign are found in the literature, although they
are usually oriented to a specific domain and focused on the implementation phase. For example
(Mens & Lanza, 2002; Misic & Moser, 1997) present meta-model based approaches in order to
specify generic metrics for object-oriented systems. They define meta-models that include
domain abstract concepts, such as class or attribute. A generic metric is defined by using the
meta-model concepts, and customised for a specific language by mapping the language concepts
and the meta-model ones. However, these approaches are domain dependent as the calculation
of the metrics depends on the concepts defined on the “generic” meta-model. They don’t exploit
metrics as software remodelling tools that allow guiding redesign execution either. The
approach followed in SPQR/20 (SPQR/20, 1995) also provides an implementation of the
measurement function (an extended version of function points) applicable to different
languages. Finally, it is also worth mentioning the attempts to define ontologies for software
measurement (García et al., 2006; Martín & Olsina, 2003).

With respect to the notion of generic refactoring, this is presented in (Lämmel, 2002). The
framework consists of meta-programs written in Haskell that can be instantiated for different
programming languages by means of parameters. However, the parameterisation is complex and
implies knowing Haskell and the abstract syntax of the specific language. Search of candidate
code to refactoring is exhaustive (consuming-time) and not guided by mechanisms that help to
guide its application by detecting bad smells.

Recently, the necessity of new tools for modernization and evolution of software has been
recognised by the OMG with its Architecture-Driven Modernization (ADM) Task Force. It has
published a Request for Proposal (RFP) for Metrics and Refactoring Packages with the purpose
of defining a meta-model that enables the interchange of metrics and refactorings, respectively,
being flexible enough to adopt any new kind of metric. Its main goal is to facilitate the analysis,
visualization, refactoring and transformation of existing software systems.

There are a variety of modelling tools that incorporate functionalities for obtaining
measurements. Nonetheless, the provided metrics are usually hard-coded, oriented to a specific
domain, and the extension possibilities are very limited. One exception is the SDMetric tool
(SDMetric), which allows the definition of metrics for UML models using a relational-like
language based on XML. In ATHENA (Tsalidis et al., 1992) the set of predefined metrics can
be extended by using a textual language. The Moose Reengineering Environment (Lanza &
Ducasse, 2002) implements an engine for language-independent object-oriented software
metrics. It provides more than 30 predefined software object-oriented metrics with no
possibility of extension, but that can be customised for any object-oriented language by its
mapping to a language independent representation called FAMIX. As it can be seen, there is a
need of more general approaches neither restricted to UML nor object orientation, being more
easily adaptable and intuitive.

Regarding redesign capabilities, the ones provided by modelling tools are usually oriented to a
specific language, with no possibility of extension, and the parts that need to be redesigned have
to be detected by hand (e.g. the Refactoring Browser (Roberts et al., 1997) for Smalltalk code or
Together Technologies for Java and UML models). There are only a few that allow an
automatic detection of model refactoring opportunities, such as SOUL (Tourwé & Mens, 2003).
This is a language built on the VisualWorks Smalltalk environment that detects existing bad
smells by using logic meta-programming, and then proposes a set of appropriate refactorings

that can solve them. Again, this tool is domain specific and the set of bad smells and
refactorings cannot be enhanced.

In the area of meta-CASE tools, although there is a plethora of them (e.g. GME (Lédczi et al.,
2001), MetaEdit+ (Pohjonen & Tolvanen, 2002) or the Eclipse Generic Modelling Framework
(GMF)), to our knowledge none of them support the definition and customisation of metrics.
Even though GMF provides a “metrics” package, it only allows defining metrics from scratch
by coding them in OCL, making the process tedious, hard and time consuming. In order to
define redesigns, some of them provide some transformation language, but in any case they do
not provide support for the detection of the parts that should be reworked.

Meta-Modelling for Domain Specific Visual Languages
A meta-model is a model of a modelling language (Favre, 2004). That is, in order to describe a
modelling language, one can make a model (e.g. using class or entity relationship diagrams) to
describe the language abstract syntax. This contains the main concepts of the language and their
relations. In addition, in order to restrict the number of valid models defined by meta-models,
they may contain additional constraints expressed in textual languages such as OCL (Warmer &
Kleppe, 2003).

As an example, Figure 1 shows an excerpt of the meta-model for Labyrinth, a DSVL oriented to
the design of web applications (Díaz et al., 2001). In Labyrinth, a web application is modelled
as a set of nodes where contents are located. Nodes and contents can be composed in order to
create complex information structures. Navigation is expressed through anchors and links: a link
defines a possible navigation path between nodes or contents, and the source and target of a link
is defined through anchors. Besides, users can assume roles and belong to different teams from
which they receive a set of permissions concerning the nodes and contents they are allowed to
visit. These roles and teams can be nested in hierarchical structures where permissions assigned
to more general roles are inherited by more specific roles, and permissions assigned to teams are
propagated to their members.

SemanticObject

+identifier:String

DynamicObject Subject

NodeComponent

+isHome:Boolean

ContentComponent

HMObject

Team

Role

*

*

*

PA

**

generalization

<< Enum >>
RelationType

+aggregation:0
+generalization:1

CompositeNode Node Content CompositeContent

Anchor

+position:int

*

*

refersToN

*

*

refersToC

Link

+direction:Boolean * *target
* *source

abstraction

+type:RelationType

*

_ _ _
abstraction

+type:RelationType

*

_ _ _

** location

Figure 1: An Excerpt of the Labyrinth Meta-model

The meta-model of a DSVL has to be provided with information about the visualization of each
one of its elements, which is known as its concrete syntax (de Lara & Vangheluwe, 2002). The
simplest way is to assign an icon-like visualization to classes and arrow-like to associations.

Meta-modelling tools allow specifying the concrete and abstract syntax of a certain DSVL, and
they automatically generate a modelling tool where end-users are allowed to edit models written
in such notation. In this chapter, our purpose is to provide a mechanism to enrich such generated
environment with capabilities for model quality measurement and improvement.

Multi-View Domain Specific Visual Languages
As systems become more complex, there is a trend to split their specification in smaller models,
each one of them built by using the most appropriate notation. The family of notations that are
used in combination for the description of the aspects of a system is called Multi-View DSVL
(MV-DSVL). UML (UML, 2006) is one of its most prominent examples, although for a broader
domain. It provides different diagram types for the specification of the static (e.g. class and
object diagrams) and dynamics (e.g. statecharts and sequence diagrams) of a system. Similarly,
the Ariadne Development Method (Díaz et al., 2005) defines a set of diagram types based on the
Labyrinth meta-model to deal with various concerns of a web design, such as the information
structure, navigation paths, presentation features and access control policies.

Modelling environments for MV-DSVLs must ensure not only intra-diagram consistency (i.e.
conformance of a model to its meta-model), but also inter-diagram consistency for those cases
when the same element belongs to different diagrams, therefore changes in one of them should
be propagated to the others. Our approach (implemented in AToM3) for the specification of
such environments is to first define the meta-model of the complete language, and then define
each diagram type as a subset of it (Guerra & de Lara, 2007). From this specification, a multi-
view environment is generated where the end-user builds models conforming to some diagram
type. Inter-diagram consistency is achieved by building a repository made of the gluing of the
system models, from where changes are propagated to the rest of the views, as done in the
Model-View-Controller pattern. This behaviour is performed by triple graph transformation
(TGT) rules (Schürr, 1994) derived from the meta-model information (Guerra & de Lara, 2006).
The generated multi-view environment can also check the inter-diagram semantic consistency
by translating the repository into a semantic domain, executing an analysis method, and back-
annotating the results into the original notation (Guerra et al., 2007).

For example, Figure 2 shows the generated multi-view modelling environment for Labyrinth by
using AToM3. The background window allows defining system diagrams of different types. One
diagram called Role Hierarchy of type Users Diagram is being edited. The control dialog
(named “Edit value”) allows setting the property values for this “view” of the system, including
the corresponding model (i.e. a role hierarchy), which is shown in the right-most window.

Figure 2: Generated Multi-View Modelling Environment for Labyrinth

In multi-view environments, measurement becomes more complex because the information
needed for its calculation is scattered in several models (of the same or different type).
Similarly, certain redesigns or model refactorings may imply parallel modifications to several of
the system models. Finally, after a redesign, changes should be appropriately propagated to the
rest of the models so as to recover the inter-diagram consistency.

In following sections we present our proposal for the definition of measures and redesigns for
single and multi-view DSVLs, and show how using it for enriching the previously presented
environment for Labyrinth. Before, we give an introduction to measurement and redesign.

Measurement and Redesign
Measurement is a basic tool for quality control in many engineering disciplines (Basili et al.,
1994; Whitmire, 1997). Engineers make use of measures in order to provide feedback and assist
in evaluation, creating a corporate memory and helping answering questions about the object
being measured. In software engineering, the measurable objects are usually processes,
resources, products (Fenton, 1996) and projects (Whitmire, 1997). Our work is focussed to
measuring products, and in particular models, as they are the key concept in MDSD.

Products (and in general any measurable object) contain internal and external attributes. The
former can be measured in terms of the product itself (e.g. its size). External attributes can only
be measured with respect to how the product relates to its environment (e.g. its cognitive
complexity, usability or maintainability), and are obtained by testing, operating and observing
the executable software. Our work is directed to measuring internal attributes, as they apply on
the system models instead on the system itself.

Measurement can be direct or indirect. In the first case, the value is derived from an attribute
that does not depend upon any other measure. Sometimes they are also called base measures.
Indirect (or derived) measures are obtained by combining several direct or indirect measures.
The term indicator is sometimes used to refer to indirect measures that have an associated
analysis model made of a calculation procedure with decision criteria. The criteria can be a
threshold, a target or a pattern used to determine the need for action or further investigation
(García et al., 2006). As we will see in next section, SLAMMER supports direct and indirect
measures, as well as indicators with thresholds. Thresholds indicate anomalies in the metric
values (e.g. extreme values) and may trigger redesigns for improving the quality of the model.

Further classification of measures includes the objectivity, that is, whether they involve human
(subjective) judgement, or they are quantifications based on numerical rules (i.e. objective
methods). Finally, regarding the automatization degree, measurement methods can be
automatic, semi-automatic or manual. Our approach is aimed at the automatization of the
measurement in tools, thus we only consider objective metrics (as subjective measures cannot
be made fully automatic).

Redesigns are changes in a design model for improving some quality attribute, such as
understandability, performance, cohesion or coupling. When the redesign preserves the intended
meaning (or behaviour) of the model, it is called model refactoring (Mens, 2006). Refactorings
(Fowler, 1999) were originally defined as changes to software code in order to make it easier to
understand and modify, without changing its observable behaviour. Model refactoring shifts
code refactoring techniques to the model level. In MDSD, this is the right abstraction level, as
the application code is generated from the models, which is then frequently treated as a “black
box” (i.e. the generated code is not manually adapted).

The need for performing refactorings and redesigns is commonly detected through so-called
“bad smells” (Fowler, 1999). They informally describe some design or code problem, and have
a number of associated actions (one or more refactorings) to help in its solution. Some efforts

have been recently placed in formally defining such smells through the use of metrics (Munro,
2005). In our proposal, we follow this trend by using thresholds associated to metrics in order to
detect product anomalies, and possibly correct them through redesigns. Although automated,
these redesigns usually require human supervision, either for additional input or simply for
confirming that they are adequate in the given situation.

SLAMMER: Specification LAnguage for
Modelling MEasures and Redesigns

SLAMMER is a novel DSVL that tries to facilitate the definition of measures and redesigns for
a given DSVL, as well as to provide a framework for the automatic (model-driven) generation
of measurement and redesign tools that can be integrated in the final modelling environment for
the DSVL. SLAMMER can be used for any kind of DSVL (which may be used for describing
structure, behaviour, or any other system perspective). SLAMMER has been defined by means
of a meta-model that takes into account related works on ontologies for software measurement
(García et al., 2006), as well as on the international standard for software quality ISO 15939
(ISO/IEC 15939, 2002). In addition, it is based on the use of visual techniques (e.g. graphical
patterns, graph transformation) to achieve its purposes.

In this section, we start by introducing the concept of graphical pattern and its instantiation in
the context of SLAMMER, as patterns will be used to configure measures and redesigns. Then,
we present the part of the SLAMMER meta-model for the definition of measures and actions.
We illustrate the SLAMMER concepts with examples for Labyrinth.

Graphical Patterns in SLAMMER
In SLAMMER, the simplest form of pattern is a single positive graph. The application of a
pattern to a model gives as result all occurrences of the positive graph in the model. The pattern
can be initialised with a partial match, given as an argument of the pattern, and the output can be
filtered in order to return a subgraph of the positive graph occurrences. Figure 3 shows to the
left an example pattern. The positive graph is made of objects Role and Node related through a
permission assignment (relationship PA). To the right, the pattern is instantiated in graph G. In
step (i) the match is initialised with the role r1, which is received as argument. In step (ii) the
match is extended to the complete positive graph of the pattern. Two occurrences of the positive
graph are found in G: one relating role r1 to node n1, and another one relating it with node n2.
In step (iii) the matchings are filtered so that only the elements specified as output in the pattern
are obtained as result. Thus, as the pattern specified node n as the output, only nodes n1 and n2
in the matchings are given as result.

Pattern InstantiationPattern
r:Role

n:Node

:PA

arguments: [r]
output: [n]

(i) initial match r1

:generalization

r2:Role

r1:Role n2:Node

:PA

:PA

n1:Node

r3:Role

:generalization

:PA

G m1

m2

(iii) filter

n1:Node

m1

n2:Node

m2

(ii) match extension

:generalization

r2:Role

r1:Role n2:Node

:PA

:PA

n1:Node

r3:Role

:generalization

:PA

G
Pattern InstantiationPattern

r:Role

n:Node

:PA

arguments: [r]
output: [n]

Pattern
r:Role

n:Node

:PA

arguments: [r]
output: [n]

(i) initial match r1

:generalization

r2:Role

r1:Role n2:Node

:PA

:PA

n1:Node

r3:Role

:generalization

:PA

G m1

m2

(iii) filter

n1:Node

m1

n2:Node

m2

(ii) match extension

:generalization

r2:Role

r1:Role n2:Node

:PA

:PA

n1:Node

r3:Role

:generalization

:PA

G

Figure 3: Example of Graph Pattern and Instantiation

The number of instantiations of a pattern can be restricted by means of one or more application
conditions (Ehrig et al., 2006). These are made of a premise graph and a set of consequence
graphs. If a pattern specifies some application condition, the pattern instantiation process is as
follows. First, all occurrences of the positive graph are found in the model. Then, for each
application condition, if an occurrence of the premise graph is found then some of the

consequence graphs have also to be found for the occurrence of the positive graph to be
considered valid. There are two special cases of application conditions. If only a premise is
specified and no consequence, then it is called a negative application condition (NAC), and
finding the premise in the model makes invalid the positive graph occurrence. On the other
hand, if the premise is isomorphic to the positive graph and some consequence is specified, it is
called a positive application condition (PAC). In this case, some of the consequences have to be
found on the model for the positive graph occurrence to be valid.

Figure 4 shows to the left an example of pattern with two application conditions. Its positive
graph is made of an object Node, the PAC specifies that an object Team must have permission
to access the node, and the NAC forbids an object Role to have access to the node. To the right,
the pattern is instantiated in graph G. In step (i) all the matches of the positive graph are found.
As the pattern has no arguments, there is no starting initial match, and thus all nodes in G are
valid instantiations of the positive graph. In step (ii) the application conditions are evaluated for
each match. An occurrence of the PAC and no occurrence of the NAC are found for match m1,
therefore the match is valid. For match m2 no occurrence of the PAC is found, thus the match is
discarded. Finally, for match m3 the PAC is satisfied, but an occurrence of the NAC is found,
thus the match is also discarded. This is why in step (iii) only match m1 is obtained as result.

Pattern Instantiation

(i) initial match + match extension (iii) filter

n1:Node

m1

Pattern

arguments: []
output: [n]

n:Node
n:Node

:Team

:PA

PAC
n:Node

:Role

:PA

NAC t1:Team

n2:Node

:PA

n1:Node

G

m1 m2
(ii) condition evaluation

t1:Team

n2:Node

:PA

n1:Node

G

m1 m2

m3

r1:Role

:PA

:PA
m3

r1:Role
:PA

:PA n3:Noden3:Node

AND

Pattern Instantiation

(i) initial match + match extension (iii) filter

n1:Node

m1
n1:Node

m1

Pattern

arguments: []
output: [n]

n:Node
n:Node

:Team

:PA

PAC
n:Node

:Role

:PA

NAC t1:Team

n2:Node

:PA

n1:Node

G

m1 m2
(ii) condition evaluation

t1:Team

n2:Node

:PA

n1:Node

G

m1 m2

m3

r1:Role

:PA

:PA
m3

r1:Role
:PA

:PA n3:Noden3:Node

AND

Figure 4: Example of Graph Pattern with Positive and Negative Application Conditions and Instantiation

Figure 5 shows the package of the SLAMMER meta-model dealing with pattern definition. In
SLAMMER we use patterns in order to customise generic measures and task templates for
concrete DSVLs. Patterns allow visually specifying how model attributes (i.e. features that are
going to be measured or modified) are expressed in a DSVL, as next subsection explains.

Pattern

ApplicationCondition

Pattern

+arguments:identifier[]
+output:identifier[]

*applicationConditions

PatternGraph

+name:String {keyword}
+graph:Model
+attributeCondition:String

0..1

*

consequences

0..1

0..1

premise

0..1 positiveGraph

Figure 5: Domain Specific Visual Language SLAMMER. Package “Pattern”

Specification of Measures in SLAMMER
A measure can be specified by providing the set of entities that are going to be characterized by
the measurement (the domain), the relevant attributes for the measurement method, the
measurement method itself (a function in the case of indirect metrics), the scale (the range of
values it can take) and, in case of scales of type interval or ratio, a measurement unit (e.g.
number of classes, lines of code). In addition, measures may include information about normal
or unusual value ranges, pointing to threshold values in the measurement scale. It must be noted
that the measurement method is domain independent and remains always the same. On the
contrary, the domain, the properties to be measured and the threshold values are domain

dependent, and have to be specified for each DSVL where we want to perform the
measurement. SLAMMER uses this idea in order to specify a set of predefined generic metric
templates that hide the measurement function and can be customised by providing only the
domain-specific information in each case. The metric domain is specified as the list of types that
conform the domain space, the attributes to be measured are given as a set of patterns, the units
are given as text, and the thresholds are boolean conditions evaluated on the metric value.

The package of the SLAMMER meta-model concerning the definition of measures is shown in
Figure 6. Concrete classes inheriting from class Measure define metric templates that can be
customised by giving the domain and properties for a specific DSVL. All measures contain a
unique identifier name and a goal. Attribute domain is used to specify the metric domain as a
list of types. Attribute subtypeMatching specifies if objects in the domain must have exactly the
type specified in attribute domain, or also any of its subtypes is allowed. This makes measures
more reusable, being defined once for a type, and used for all its subtypes. Attributes scale and
unit are used to specify the range of values the measure can take and its magnitude, respectively.
In addition, relation dependency allows a measure to use results calculated by other ones and
thus metrics composition. In this way, measures can be reused and composed in order to build
more complex composite ones. A meta-model constraint forbids cycles of recursive
dependencies. A measure may have any number of threshold values, which are extreme values
for it. A threshold has a name, a description and a condition. The latter is a logical expression
over values of the measure.

Measures

NumberOfElements

+scale:String="[0,N]"

ModelOriented

+domain:NULL

ElementOriented

+domain:String

PathOriented

+type:String

GroupOriented

RelatedElements

+scale:String="[0,N]"

CyclomaticNumber

+scale:String="[0,N]"

InheritedElements

+scale:String="[0,N]"

DepthOfPath

+scale:String="[0,N]"

DistanceBasedSimilarity

+scale:String="[0,1]"

Distance

+scale:String="[0,N]"

Pattern

*

cycle relatedElementelement

step

element

DirectConnections

+scale:String="[0,N]"

<< Enum >>
ComparisonType

+reference:0
+value:1

StartPoints

+scale:String="bool"

Measure

+name:String {keyword}
+goal:String
+domain:String[]
+subtypeMatching:Boolean
+scale:String
+unit:String

UserDefined

+calculation:String

measurementFunction

Threshold

+name:String
+description:String
+condition:String

1..* *
*

*
dependency

property

+order_type:int
+comparison:ComparisonType

domain

_ _

Figure 6: Domain Specific Visual Language SLAMMER. Package “Measures”

Concrete measures in the SLAMMER meta-model are organized depending on its domain
dimension and on the measurement function used to calculate the metric value. From the
domain dimension point of view, they can be model-oriented if they take measures of global
model properties (such as number of cycles and size); element-oriented if they refer to element
features (e.g. permissions assigned to a role); and group-oriented if they measure features of
groups of elements (e.g. their similarity or coupling). From the measurement function point of
view, we sort out them either as path-oriented if they use a measurement function that traverses
paths between elements of the same type (e.g. a navigation path joins nodes by means of
anchors and links, and an inheritance path joins subjects or classes by means of inheritance
relations) or any of their subtypes, which is specified by attribute type; or as user-defined if the
measurement function is provided by the user (and is different from the ones already provided
by the SLAMMER meta-model).

SLAMMER contains generalizations or abstractions of some of the more used types of metrics
in software engineering, together with mechanisms for their combination. That is, we are not
inventing new metrics, but reusing metrics that have been validated by other researchers and
shown to work for specific purposes. In SLAMMER metrics are visually customised for a given
DSVL by means of graphical patterns (class Pattern in the meta-model) that identify how
domain specific features are expressed in such language. The arguments of the pattern
correspond to a value in the metric domain, and the output is the set of model attributes we want
to obtain. In the remaining of this subsection, we explain the generic metrics included in
SLAMMER.

NumberOfElements allows counting the number of elements of certain type in a model. This is
a model-oriented measure because it calculates a property of the model itself, and thus it is not
necessary to specify the domain (i.e. it is the complete model). The type of the element to be
counted is given as a pattern. As patterns are indeed models plus application conditions, we can
count not only elements of a certain type, but also complex structures made of sets of different
related elements.
As an example, the Number of Navigational Contexts (NNC) (Abrahao et al., 2003) is used in
the web domain as indicator of the navigational model size. In Labyrinth, a navigational context
is a node component that participates in a navigational link through the corresponding anchor.
We can use SLAMMER in order to adapt the NNC to Labyrinth by customising a measure of
type NumberOfElements with the pattern shown in Figure 7. This pattern has an application
condition which allows counting the number of node components (simple and composite, see
Labyrinth meta-model in Figure 1) that are source (consequence graph 1) or target (consequence
graph 2) of a navigational link. Thus, one of the consequence graphs of the application
condition has to be found, and we indicate it with an “OR”. The output of the pattern is the
element to be counted, that is, the node component.

n:Node Component
<ANY>

arguments: []
output: [n]

consequence1

n:Node Component
<ANY>

<ANY>

consequence2

n:Node Component
<ANY>

<ANY>

Application Condition:

OR
n:Node Component
<ANY>

arguments: []
output: [n]

consequence1

n:Node Component
<ANY>

<ANY>

consequence2

n:Node Component
<ANY>

<ANY>

Application Condition:

OR

Figure 7: Customisation Pattern for Metric “Number of Navigational Contexts”

CyclomaticNumber counts the number of cycles in a model, thus being model-oriented. In this
case a pattern showing the structure of a cycle in the given DSVL must be provided.

RelatedElements counts how many elements are related to a given element type, which is
specified by attribute domain. This measure is element-oriented, and thus, it is calculated for
each element of the specified type in a given model. The relation between the elements is given
as a pattern, which allows expressing complex relations made of several elements as well.
For example, we can instantiate a measure of this type for Labyrinth, and customise it so as to
count the number of nodes each role has permission to access. In this case attribute domain
should contain type “Role”, and the related element should be specified by the pattern shown in
Figure 3. The metric is calculated for each role in the model and, in each case, the metric value
is calculated as the number of times the pattern gets instantiated (two for role r1).

DistanceBasedSimilarity compares how similar a set of entities is by studying the set of
attributes they share (Simon et al., 1999). It can take values in the interval [0, 1]: the higher the
value, the bigger the distance between the entities, and the less similar they are. The types of the
entities to compare are given as a list in attribute domain. For each one of the types, it must also

be specified which are the properties used for the comparison. This is done with a pattern for
each property (qualified relation property in the meta-model). The properties define an attribute
order_type that relates them with the corresponding type in the list given by attribute domain.
The comparison can be made either by reference (i.e. two objects are considered equal if they
are the same) or by value (i.e. two objects are equal if all their fields have the same value).
This measure can be applied to Labyrinth in order to analyse how similar are each two roles in
the system, and thus detect redundancies in the defined security policy (Guerra et al., 2006). In
this case, the domain contains type Role twice and the properties that make similar two roles are
the permissions they define (expressed with a pattern).

Distance, as well as the following measures, allows measuring different properties of path-like
structures where the nodes in the path have the same type and are connected through some
specific relation. For example, the structure of a web navigation map is path-like, since we have
information nodes that are connected through anchors and links. Another example is the users’
hierarchy provided by Labyrinth, which contains subjects (i.e. roles and teams) connected by
means of inheritance relations. In this measure, as well as in the remaining ones, it must be
specified the element type to which the measure applies (attribute domain), as well as the
fundamental step (e.g. the inheritance relationship in the users’ hierarchy), which is specified as
a pattern. Thus, the measure calculates the minimum number of necessary steps to reach each
element from the other ones. From the point of view of the domain dimension, it is a group-
oriented metric as it measures a property of a group of two model elements.
For example, Figure 8 shows a pattern specifying what a step is in the Labyrinth navigation map
(i.e. two nodes related through a link and two anchors). The target node of a navigation step
(output) is the source of the following step (argument). We may use such pattern to customise
Distance so as to define the Minimum Path Between Navigational Contexts (MPBNC)
(Abrahao et al., 2003) for Labyrinth. This gives a measure of the usability of a navigational map
by counting the number of links that must be traversed to reach certain information node from
another one, and can be used to detect unreachable nodes. In the present example, assigning
type “Node Component” as metric domain and selecting subtype matching would complete the
customisation process.

arguments: [n1]
output: [n2]

n1:Node Component
<ANY>

<ANY> n2:Node Component
<ANY>

arguments: [n1]
output: [n2]

n1:Node Component
<ANY>

<ANY> n2:Node Component
<ANY>

Figure 8: Customisation Pattern for Metric “Minimum Path Between Navigational Contexts”

StartPoints identifies all elements where a path begins, but to which no path arrives. These are
the base classes in object-oriented notations.

DepthOfPath counts the minimum number of steps that are necessary in order to reach an
element from a starting point. For example, it can be used to calculate the depth of the
inheritance tree in object-oriented notations, or the Depth of a Node (D) (Botafogo et al., 1992)
in web notations, which is the distance from the root node to a particular node in a navigation
map. The bigger the distance, the harder becomes to reach the node. In order to adapt metric D
for Labyrinth, it should be specified what a step is in the Labyrinth navigation map, which can
be done with the same pattern that was shown in Figure 8.

InheritedElements applies to notations having some concept of inheritance. It calculates how
many elements of certain type are inherited through the inheritance hierarchy. In this case,
together with the type and the fundamental step, a pattern must be specified with the element to
be inherited.
For example, Figure 9 shows the two necessary patterns for the definition of the metric Subject
Inherited Permissions, which counts the number of inherited permissions through the hierarchy

of roles and teams defined in Labyrinth. The pattern to the left specifies what a step in such
hierarchy is, that is, two subjects joined by either a generalization (consequence graph 1) or an
aggregation (consequence graph 2). The pattern to the right indicates which is the inherited
element, that is, the permission to access a hypermedia object (i.e. a node or a content).

arguments: [s1]
output: [o]

s1:Subject
<ANY>

o:HMObject

arguments: [s1]
output: [s2]

s1:Subject
<ANY>

s2:Subject
<ANY>

s2:Role
<ANY>

s2:Subject
<ANY>

consequence1 consequence2

Application Condition:

OR

s1:Role
<ANY>

s1:Team
<ANY>

arguments: [s1]
output: [o]

s1:Subject
<ANY>

o:HMObject

arguments: [s1]
output: [s2]

s1:Subject
<ANY>

s2:Subject
<ANY>

s2:Role
<ANY>

s2:Subject
<ANY>

consequence1 consequence2

Application Condition:

OR

s1:Role
<ANY>

s1:Team
<ANY>

Figure 9: Customisation Patterns for Metric “Subject Inherited Permissions”

Finally, DirectConnections calculates the number of elements than can be directly reached in
one step in a path-like structure. As before, only the type to which the measure applies as well
as the fundamental step must be specified. This measure can be used by Labyrinth, for example,
to calculate how many members belong to a team. Note that this information can be scattered in
different user diagrams.

Specification of Actions in SLAMMER
Figure 10 shows the portion of SLAMMER dealing with actions. These are usually redesigns,
although other tasks (e.g. generating a report or printing a model) can be specified. Actions are
made of reusable tasks expressed either procedurally, by means of a graph grammar (Ehrig et
al., 2006), or by customising task templates. They can be applied either when some measure
reaches certain threshold value (relation fires) or directly by the end-user independently from
metric values. In the first case, the action is executed for each value in the domain for which the
measure makes the threshold condition true. Attribute execution in class Action selects whether
this action is automatically executed, or it needs human supervision to confirm it.

Actions

Merge

+rel_duplication:Boolean
+att_merging:Boolean

<< Enum >>
ExecutionType

+automatic:0
+guided:1

<< Enum >>
OverwritingPolicy

+duplicate:0
+overwrite:1
+none:2

<< Enum >>
DistributionType

+duplicate:2

Split

+rel_distribution:DistributionType

Move

+relation:String
+rel_overwriting:OverwritingPolicy

Pull

TaskTemplate

+action:Template
+type:String
+subtypeMatching:Boolean

TaskGG

+action:GraphGrammar

TaskText

+action:Text

Task

+name:String {keyword}

Action

+name:String {keyword}
+execution:ExecutionType

1..*

{ordered}

1..*
Threshold

(from Measures)

0..1

constraint

Pattern
(from Pattern)

1..* 0..1fires

pull_relation

Figure 10: Domain Specific Visual Language SLAMMER. Package “Actions”

SLAMMER defines four customisable tasks: merge, split, move and pull. Merge collapses two
elements into a single one that brings together all the relationships of the formers. If the original
entities defined the same relation, the merged entity contains it twice. Attribute rel_duplication
allows selecting whether this is allowed or if duplicated relationships are deleted after the

merging. Attribute att_merging specifies the attribute merging mechanism as the concatenation
of the original values or taking one of them. For example, this task can be used to compact two
consecutive Labyrinth nodes with little information, so as to make the navigation lighter.

Split divides in two an entity of the specified type. Relations of the original element are
redistributed between the new ones either randomly in equal parts or guided by the user
(controlled by attribute rel_distribution). The task could be used, for example, in order to divide
nodes with a large amount of information, so as to avoid a cognitive overload to the user.

Move moves relationships between entities of the same type. In addition to the entity type, it is
necessary to specify the relation type to be moved (attribute relation), and the overwriting
policy in case the relation already exists in the target entity (attribute rel_overwriting). Possible
values for the overwriting policy are duplicate if we want to move the relation maintaining the
existing one in the target; overwrite if the relationship is moved and overwrites the one in the
target; and none if the relation is not moved. It is possible to restrict the number of relations to
be moved by means of a pattern that receives as arguments the elements that take part in the
action (i.e. the relation to move and the source and target elements). In this case the action is
applied only if the pattern is satisfied.

Finally, Pull specializes task Move to those cases where the involved entities must be related.
The relation is specified as a pattern with the entities as arguments and no output.
As an example, we can customise a task Pull for Labyrinth so as to pull up permissions to a
parent role if all its direct children already define them. This is a model refactoring with the aim
of promoting reuse of permissions by taking advantage of the inheritance concept. The task
should be defined for type “Role” and relation “PA” (the one used for permission assignment in
the Labyrinth meta-model). In order to pull up a permission, an inheritance relation must exist
between the source and target roles, which is specified by the pattern to the left in Figure 11.
This pattern corresponds to relation pull_relation in the SLAMMER meta-model. In addition, as
we only want to pull up those permissions defined by all children roles, we constraint the
applicability of the task by means of the pattern to the right in the same figure, which
corresponds to relation constraint in the SLAMMER meta-model. The pattern receives the
permission to move and the source and target roles as input. The application condition checks
the existence of such permission in each target role’s child. Note that the model refactoring
should be completed with an additional task that removes permissions in children roles if
defined by their parents. The second task could be defined by means of a graph grammar, and
be combined with the previous task to conform a single action.

arguments: [r1,r2]
output: []

r1:Role
<ANY>

r2:Role
<ANY>

arguments: [r1, r2, o]
output: []

r1:Role
<ANY>

r2:Role
<ANY>

o:HMObject

premise

Role
<ANY>

consequence

o:HMObject

Application Condition:

⇒

r1:Role
<ANY>

r1:Role
<ANY>

Role
<ANY>

arguments: [r1,r2]
output: []

r1:Role
<ANY>

r2:Role
<ANY>

arguments: [r1, r2, o]
output: []

r1:Role
<ANY>

r2:Role
<ANY>

o:HMObject

premise

Role
<ANY>

consequence

o:HMObject

Application Condition:

⇒

r1:Role
<ANY>

r1:Role
<ANY>

Role
<ANY>

Figure 11: Specification of Pull Task

In order to specify tasks by means of graph transformation we can use TaskGG objects. For
example, Figure 12 shows a graph grammar task made of a rule that creates a navigational path
from the root node of a web design (with attribute isHome to true) to a given node which is not
root. The elements to be added by the rule application are shown in a coloured polygon and
labelled as “new”. These elements form also a NAC, and thus the rule is not applied if such path
already exists. We can use this task to create direct links from the home page of a web

application to those nodes that are not reachable or where a high number of navigational steps
are required to access them. In addition, it is possible to use a metric to detect to which nodes
apply this redesign. For example, a customisation of DepthOfPath can be defined so as to count
the number of steps to reach any node starting from the home page. Then, if we associate an
appropriate threshold value to the metric (e.g. 0, which means that it is not possible to reach the
node), we can detect the candidate nodes, and thus automatically fire the action on them.

Node Component
isHome = true

{new, nac}

Rule: Create Path

TaskGG: Create path from root

Node Component
isHome = false

Node Component
isHome = true

{new, nac}

Rule: Create Path

TaskGG: Create path from root

Node Component
isHome = false

Figure 12: Specification of Graph Grammar Task

Implementation in AToM3
Starting from the meta-models shown in previous sections, we have built a tool for SLAMMER
that allows complementing a DSVL meta-model with a SLAMMER model, and generating a
measurement and redesign tool for the given DSVL. For this purpose we took advantage of the
code generation capabilities provided by AToM3. Thus, we defined the SLAMMER meta-model
in AToM3, and automatically obtained a tool for building SLAMMER models. A code generator
that synthesizes tools from the SLAMMER models was added to this tool. The synthesized tools
generated this way make accessible the defined metrics and actions to the modelling
environment generated for the DSVL. Finally, the new tool was integrated into AToM3 itself.

In order to be able to configure (to a certain degree) the features of the tools generated from the
SLAMMER models, we have slightly modified the SLAMMER meta-model previously shown.
In particular, we have added an abstract class UIButton as the parent of classes Measure, Action
and Task. This class has a single boolean attribute button that controls whether a button should
be generated in the tool user interface in order to execute the corresponding measurement
process, action or task. This is useful, for example, in case we want to prevent the direct
calculation of a metric that is only used as auxiliary metric by others. In addition, class Measure
has been provided with additional attributes to allow obtaining PDF reports with all the
measurement results, or only the ones making some threshold condition true.

In addition, we have provided SLAMMER with the concrete syntax shown in Figure 13, where
five metrics and two actions are being defined by using the generated tool for SLAMMER. In
particular, measures are represented as rectangles with the measure type and name inside.
Dependencies between measures are represented as arrows, where the arrowhead indicates the
data flow direction. For example, in the model of the figure, the result obtained by metric NNC
is used to calculate metrics Compactness, Stratum and DeNM. Thresholds are shown as
triangles with an exclamation mark inside, and related to the measures for which they are
defined. Actions are depicted as circles with an arrow inside and the action name below. If its
execution mode is automatic, it is shown as a double circle, as in the case of action Create
path from root. Finally, tasks are visualized as ellipses with the task type and name
inside. The tasks that are executed for a given action are related to it by means of lines, with the
execution order above.

Figure 13: Generated Tool for SLAMMER

Figure 14 summarizes the process of defining, generating and using a modelling tool for a
DSVL with AToM3. The left part of the figure shows the specification of the DSVL by the
DSVL designer. In step 1 (of the left part), the DSVL definition is given by a meta-model. In
the case of a MV-DSVL, the different diagram types (or viewpoints) have also to be specified.
In addition, a quality expert can design a SLAMMER model with the metrics and actions for the
particular DSVL. The metrics are usually customisations of the suite offered by SLAMMER,
thus only the domain (elements of the DSVL) and the specific attributes to measure (specified
as patterns) have to be given. Actions are made of tasks that can be specified either procedurally
(by using Python), by means of graph grammars, or by customising task templates with patterns.
Although we have separated the roles of defining the DSVL meta-model and the specification of
metrics and redesigns, in many occasions it is the same person who performs both activities.

DSVL
meta-model

DSVL
viewpoints

…

SLAMMER
model

at
tri

bu
te

s
(p

at
te

rn
s)

Templates
Rules
Code

DSVL Environment Definition

m
ap

pin
g mapping

Repository
:A :B

View1

:C

:A :B

Viewn

:A :C… …
Viewj

:B :B

:B

m
apping

Generated DSVL Environment Use

A
u

to
m

at
ic

G
en

er
at

io
n G
U

I:
M

ea
su

re
m

en
ts

 &
 R

ed
es

ig
nsGraph

Transformation
Engine

2

Take measurements,
perform redesigns

Reports

Viewupdate

DSVL Modelling Environment GUI

3

4

End - User

End - User

DSVL designer

1

Design DSVL
meta-model
and viewpoints

do
m

ai
n

2a

Design
measurements

Design actions

2b
Quality
Expert

5

1
Build model

DSVL
meta-model

DSVL
viewpoints

…

SLAMMER
model

at
tri

bu
te

s
(p

at
te

rn
s)

Templates
Rules
Code

DSVL Environment Definition

m
ap

pin
g

m
ap

pin
g mapping

mapping

Repository
:A :B

View1

:C

:A :B

Viewn

:A :C… …
Viewj

:B :B

:B

m
apping

Generated DSVL Environment Use

A
u

to
m

at
ic

G
en

er
at

io
n G
U

I:
M

ea
su

re
m

en
ts

 &
 R

ed
es

ig
nsGraph

Transformation
Engine

2

Take measurements,
perform redesigns

Reports

Viewupdate

DSVL Modelling Environment GUI

3

4

End - UserEnd - User

End - UserEnd - User

DSVL designer

1

Design DSVL
meta-model
and viewpoints

do
m

ai
n

2a

Design
measurements

Design actions

2b
Quality
Expert

5

1
Build model

Figure 14: Integrating Measurement and Redesign Tools in Modelling Environments

Starting from this definition, AToM3 is able to automatically generate a modelling tool for the
(MV-)DSVL. The use of such environment is schematised to the right of Figure 14. The end-
user interacts with the generated tool user interface in order to build his models (step 1 of the
right part). The tool automatically builds a repository with the gluing of the different models (or
system views) and provides intra- and inter-diagram consistency. The repository properties can
be evaluated (step 2) by using the metric specifications provided by the quality expert during the

definition of the modelling environment, and the results are shown to the user as PDF reports
(step 5). Note that measurement is performed in the repository, as it is the only model that
contains all the system information. In addition, extreme values of metrics can trigger actions
that modify the repository model with the purpose of improving the value of the metrics (step
3). Transforming the repository can leave the system design in an inconsistent state, as some
elements can be added, edited or even deleted by the redesign. For this reason, once the redesign
has been performed, the changes are propagated by the same consistency TGT rules that provide
inter-diagram consistency in multi-view environments (step 4).

Enriching the Labyrinth Environment with Metrics
and Redesigns

Figure 15 shows a screenshot of the definition process of metrics and actions for Labyrinth.
Window 1 in the background is the tool generated for SLAMMER and contains the metrics and
actions defined for Labyrinth. In particular, the figure shows the customisation of the metric
named Depth_Of_Node of type DepthOfPath, which is the upper one to the left in window 1.
The metric counts the number of necessary steps to reach a node starting from the root node.
The editing of its attributes is shown in dialog box 2. By clicking on button “step” a new
window is opened where the user customises the basic step for the metric with a pattern.
Window 3 contains the definition of the positive graph of such pattern, a navigation step in
Labyrinth made of two nodes joined by a link and two anchors.

Figure 15: Customisation of “Measurement & Action” Tool for the Labyrinth Environment

Note that metric Depth_of_Node defines a threshold value 0 for those nodes that are not root
(yellow triangle). Action Create path from root (green circle) is executed for those
nodes that make the threshold condition true. The action is made of the task shown in Figure 12,
which creates a link from the web root node to a given node. In this way, if some node is not
reachable from the root (i.e. it has a depth equal to 0), a link is created from the root to the node.

Figure 16 shows the environment automatically generated from the previous definition. In the
repository interface (window to the right), a button is generated for each metric and action (if
they had checked its attribute button, as done for metric Depth_of_Node, see Figure 15).
Calculating a metric or performing an action just implies clicking on the corresponding button.

Figure 16: Generated Environment, Enriched with Measurements and Actions

Figure 17 shows to the left the generated report as result of the execution of metric
Depth_of_Node in the (navigation) model shown in Figure 16. In the report we can see, for
example, that node Information is not reachable from the root node Home, as it has a depth
of 0, and that nodes Travel Fundings and Forms have a depth equal to 1, as a step is
necessary to reach them from the root node. This metric has an associated action that is fired
when the metric reaches a value of 0. Thus, it is executed for node Information. The
resulting model is shown in the same figure to the right, where a link has been created from the
root node Home to node Information. Note that the action is not executed for node Home
because, although it has also depth 0, the threshold is fulfilled only for nodes that are not root.

Figure 17: Generated Report and Model Resulting from Action Execution

Using SLAMMER in a MDSD Process
In MDSD processes, models no longer passive entities used for documentation, but they play an
active role, typically being used for analysis and code generation (in addition to documentation
itself). Thus, models have to be formally defined, and a common trend in software engineering
is the use of meta-models to check the conformity of models. The modelling languages used in
MDSD can be either general purpose, such as UML, or domain-specific (Pohjonen & Tolvanen,
2002), such as Labyrinth. In the case of general purpose modelling languages, customisations
and profiles are a common practice. In MDSD processes, and more in particular in product
family engineering (Stahl & Völter, 2006), DSVLs are frequently used for the customisation of
the variability of system families. In this case, developers are faced with the problem of
generating modelling environments for the DSVLs. It is towards this scenario where a high
automation is needed, together with customised tools, where our approach for the easy
integration of measurement and redesign tools is directed.

One of the most successful scenarios for MDSD is product line engineering. Two processes are
present in product line engineering (Greenfield et al., 2004): the product line development and
the specific product development. The first process aims at analysing, designing and
implementing reusable assets than can be used in the latter process so as to obtain the final
product. In the specific product development, an application is generated by using a product
configurator that is responsible of generating code and assembling the existing reusable
components. In the most general case, the configurator is a DSVL plus a code generator. Note
that this process is not very different from other MDSD processes (Stahl & Völter, 2006) in
which a reference architecture has to be defined (i.e. a fixed part of the applications to be
generated), together with a code generator, and a DSVL or some other means to express the
characteristics of the application to be generated (Czarnecki & Eisenecker, 2000).

Figure 18 shows a simplified scheme (e.g. we have not represented iterations) of a product line
engineering process, showing how our approach can be integrated. This can be considered as an
additional twist (with the addition of the generative techniques) of the classical process of
developing for reuse/with reuse (Karlsson, 1995). To the right, the figure shows the product line
development process where the framework and predefined components (i.e. the common part of
the product family), the DSVL for configuration and the code generator are built. For simplicity,
we don’t explicitly show the usual process of first building one or more applications of the
family, and then generalizing and exploiting that knowledge in the framework, components and
generator. In addition, we propose building a SLAMMER model capturing additional domain
knowledge. This includes known good modelling practices with the DSVL, which can be
expressed as measures (with associated thresholds) and common redesigns and model
refactorings. We have separated two roles in this process: one to design the DSVL and the other
one as quality expert to design measures and redesigns. Note that the same person or group of
people can assume both roles.

Framework

Predefined
Components

product
developer

Build/
modify
models

Product Development
4

Product Line Development

component/
framework
developer

DSVL
designer

quality
expert

Automatic
generation

DSVL
meta-model

generator
developerCode generation

+ assembly

Analyse,
Design,

Implement

Code
generator

SLAMMER
modelTake measurements,

perform redesigns

Analyse,
Design,

Implement

1

SLAMMER
Enginereports

2
assess
quality

Automatic
generation

3

Framework

Predefined
Components

product
developer

Build/
modify
models

Product Development
4

Product Line Development

component/
framework
developer

DSVL
designer

quality
expert

Automatic
generation

DSVL
meta-model

generator
developerCode generation

+ assembly

Analyse,
Design,

Implement

Code
generator

SLAMMER
modelTake measurements,

perform redesigns

Analyse,
Design,

Implement

1

SLAMMER
Enginereports

2
assess
quality

Automatic
generation

3

Figure 18: Integrating Quality Assessment in a MDSD Process

The left of the figure shows the process of using the artefacts generated by the development
process to the right for developing specific products. In this way, the product developer can use

the DSVL in order to obtain the final application. Note that sometimes, the generated code
should be completed by manually written code, but we do not show this activity in the process
for simplicity. Thus, our approach introduces quality assessment at the level of product
configuration, as the product developer can use the measurement tool provided by the
measurement expert in order to check whether the model conforms to the quality standards or
know good practices. In addition, he may have available redesigns implementing common or
known structural changes to be applied on the models.

In summary, SLAMMER helps in quality assessment in two ways. First, SLAMMER models
capture additional domain specific knowledge in terms of measures and redesigns. This
knowledge is not only used for documentation, but in order to produce a real tool. Second, the
generated tool allows developers to take advantage of the knowledge provided by experts in
order to assess the quality of their models. The proposed framework is also model-driven, so
code is automatically generated for the final user (vertically in the left-part of the figure) as well
as for the developers working in the product development process (horizontally in the figure).
That is, the DSVL and the measurement tools are generated from a meta-model and from a
SLAMMER model. We believe this is the right approach, as one needs high levels of
automation in order to be able to support short iterations, so common in this kind of
developments.

Future Trends
The presented framework can be extended by including additional metrics and action templates.
It can also be interesting to study how to support other kinds of metrics, for example subjective
and dynamic ones. The latter can be suitable in case of having executable models, with a precise
operational semantics, for example defined through graph transformation rules. In addition, we
are starting the study of mechanisms to support richer customisable template tasks. Providing
further analysis tools (e.g. statistical) for studying the results, as well as more powerful
visualization facilities for the results is also up to future work.

As stated in the introduction, the evolution of this field is moving towards an easy specification
and generation of richer modelling tools for DSVLs. There are many approaches for the
generation of tools, which are merely visual editors. However, MDSD needs more functional
tools, integrating for example quality control aspects. Some tools (e.g. OpenArchitectureWare,
which however does not provide support for DSVLs) are moving towards this direction by
integrating a number of additional tools helping in common MDSD tasks, such as code
generation, model transformation and reporting. The fact that some of these tools are integrated
in the Eclipse framework may make easier the interoperability with further tools. However, it is
our view that all these related tools have to be customised (probably using the DSVL meta-
model as the core of the customisation) and tightly integrated for the given domain.

Conclusions
In this chapter we have presented SLAMMER, a DSVL for the specification of measures and
redesigns for other DSVLs, and its integration in a MDSD process. The work improves related
approaches by decoupling the metrics meta-model and the language concepts, making the
predefined metrics totally independent of the domain, and facilitating their integration with any
DSVL. Our use of patterns allows a high level of abstraction and reusability, and makes easier
the customisation of metrics in a graphical and declarative way. In addition, the SLAMMER
meta-model includes entities modelling actions and its relation to metrics, making it more
complete for software remodelling.

The framework has been implemented in the AToM3 meta-modelling tool. In this way, when a
modelling environment is generated for a DSVL, AToM3 makes available the defined measures
and redesigns to the final user. To the best of our knowledge, this feature is not available in any

other meta-CASE tool. We have shown the usefulness of this approach by defining a set of
metrics and redesigns for Labyrinth, a DSVL in the web domain. However, the approach is
general enough to be used with other DSVLs or even general-purpose languages such as UML,
by capturing in a SLAMMER model the appropriate measures and redesigns for the notation.

We believe this is a valuable approach especially in MDSD processes, as it simplifies the
customisation of metrics and definition of redesigns for DSVLs. Moreover, the implementation
supports a model-driven approach for the generation of measurement and redesign tools from
the SLAMMER models, allowing fast iterations and easy changes in the SLAMMER models.

References
Abrahao, S., Condori-Fernández, N., Olsina, L., & Pastor, O. (2003). Defining and validating metrics for

navigational models. In Proceedings of 9th International Software Metrics Symposium, pp.: 200-210.

ADM: Architecture-Driven Modernization home page: http://adm.omg.org

Basili, V. R., Caldiera, G., & Rombach, H. D. (1994). Goal Question Metric Paradigm. Encyclopaedia of
Software Engineering, pp.: 528-532. John Wiley&Sons.

Botafogo, R. A., Rivlin, E., & Shneiderman, B. (1992). Structural analysis of hypertexts: identifying
hierarchies and useful metrics. ACM Transactions on Information Systems, Vol. 10(2). pp.: 142-180.

Czarnecki, K., & Eisenecker, E. (2000). Generative programming. Addison-Wesley Professional.

Díaz, P., Aedo, I., & Panetsos, F. (2001). Modeling the dynamic behavior of hypermedia applications.
IEEE Transactions on Software Engineering, 27 (6), pp.: 550-572.

Díaz, P., Montero, S., & Aedo, I. (2005). Modeling hypermedia and web applications: the Ariadne
Development Method. Information Systems, Vol. 30(8), pp.: 649-673.

DSLTools from Microsoft, 2007: http://msdn.microsoft.com/vstudio/DSLTools/

Ehrig, H., Ehrig, K., Prange, U., & Taentzer, G. (2006). Fundamentals of algebraic graph
transformation. Monographs in Theoretical Computer Science. Springer.

Favre, J.-M. (2004). Towards a basic theory to model driven engineering. Workshop on Software Model
Engineering, WISME 2004, joint event with UML’2004, Lisbon.

Fenton, N. E. (1996). Software metrics: A rigorous and practical approach (2nd edition). International
Thomson Computer Press.

Fowler, M. (1999). Refactoring: Improving the design of existing code”. Addison Wesley.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns, elements of reusable object-
oriented software. Professional Computing Series. Addison-Wesley.

García, F., Bertoa, M. F., Calero, C., Vallecillo, A., Ruiz, F., Piattini, M., & Genero, M. (2006). Towards
a consistent terminology for software measurement. Information and Software Technology 48, pp.:
631-644. Elsevier.

GMF, 2007: The Eclipse Graphical Modeling Framework home page: http://www.eclipse.org/gmf

Gray, J., Rossi, M., & Tolvanen, J.-P. (2004). Special issue on Domain-Specific Modeling with Visual
Languages of the Journal of Visual Languages & Computing, Vol. 15 (3-4). Elsevier.

Greenfield, J., Short, K., Cook, S., Kent, S., & Crupi, J. (2004). Software factories: assembling
applications with patterns, models, frameworks, and tools. Wiley.

Guerra, E., Díaz, P., & de Lara, J. (2006). Visual specification of metrics for domain specific visual
languages. In Proceedings of Graph-Transformation Visual Modelling Techniques.

Guerra, E., & de Lara, J. (2006). Model View Management with Triple Graph Transformation Systems.
Proc. ICGT’2006. Lecture Notes in Computer Science, Vol. 4178, pp.: 351-366. Springer.

Guerra, E., & de Lara, J. (2007). Meta-modelling and graph transformation for the definition of multi-
view visual languages. Chapter of the book “Visual Languages for Interactive Computing:
Definitions and Formalization”, Idea Group Publishers, edited by Fernando Ferri.

Guerra, E., Sanz, D., Díaz, P., & Aedo, I. (2007). A transformation-driven approach to the verification of
security policies web designs. In Procedings of the 7th International Conference on Web Engineering.
L. Baresi, P. Fraternali, and G. J. Houben, Eds. Lecture Notes in Computer Science, Vol. 4607.
Springer. pp.: 269-284.

ISO/IEC 9126 (1991). Software Engineering – Product Quality.

ISO/IEC 15939 (2002). Software Engineering – Software Measurement Process.

Karlsson, E-A. (1995). Software Reuse: A Holistic Approach. Wiley.

Kent, S. (2002). Model Driven Engineering. In Proceedings of the 3rd International Conference on
Integrated Formal Methods. M. J. Butler, L. Petre, and K. Sere, Eds. Lecture Notes in Computer
Science, Vol. 2335. Springer-Verlag. pp.: 286-298.

Lämmel, R. (2002). Towards generic refactoring. In Proceedings of the 2002 ACM SIGPLAN Workshop
on Rule-Based Programming. ACM Press. pp.: 15-28.

Lanza, M., & Ducasse, S. (2002). Beyond language independent object-oriented metrics: Model
independent metrics. In Proceedings of QAOOSE’02, pp.: 77-84.

de Lara, J., & Vangheluwe, H. (2002). AToM3: A tool for multi-formalism modelling and meta-modelling.
In Proceedings of ETAPS/FASE'02. Lecture Notes in Computer Science, Vol. 2306, pp.: 174 - 188.
Springer-Verlag. See the AToM3 home page: http://atom3.cs.mcgill.ca, and
http://astreo.ii.uam.es/~jlara/doctorado.2006/ ATOM3_deploy.zip for the version described in this
chapter.

Lédczi, A., Bakay, A., Marói, M., Vögyesi, P., Nordstrom, G., Sprinkle, J., & Karsai, G. (2001).
Composing domain-specific design environments. IEEE Computer, pp.: 44-51.

Martín, M. A. & Olsina, L. (2003). Towards an ontology for software metrics and indicators as the
foundation for a cataloging Web system. In Proceedings of LA-WEB. IEEE Computer Society.

Mens, T. & Lanza, M. (2002). A Graph-Based Metamodel for Object-Oriented Software Metrics.
Electronic Notes in Theoretical Computer Science, Vol. 72(2)

Mens, T. (2006). On the use of graph transformations for model refactoring. In Proceedings of
Generative and Transformational Techniques in Software Engineering, pp.: 219-257

Misic, V. B. & Moser, S. (1997). From Formal Metamodels to Metrics: An Object-Oriented Approach. In
Proceedings of 24th International Conference on Technology of Object-Oriented Languages and
Systems, pp.: 330-339.

Munro, M., J. (2005). Product metrics for automatic identification of “bad smell” design problems in
Java source-code. In Proceedings of 11th International Software Metrics Symposium, IEEE
Computer Society.

Pohjonen, R., & Tolvanen, J-P. (2002). Automated production of family members: Lessons learned. In
Proceedings of International Workshop on Product Line Engineering The Early Steps: Planning,
Modeling, and Managing, pp.: 49-57.

Roberts, D., Brant, J., & Johnson, R. (1997). A refactoring tool for Smalltalk. Theory and Practice of
Object Systems, Vol. 3, pp.: 253-263.

Schürr, A. (1994). Specification of graph translators with Triple Graph Grammars. In Lecture Notes in
Computer Science, Vol. 903, pp.: 151-163. Springer.

SDMetric home page: http://www.sdmetrics.com

Stahl, T., & Völter, M. (2006). Model-driven software development. Wiley.

Simon, F., Löffler, S., & Lewerentz, C. (1999). Distance based cohesion measuring. In Proceedings of 2nd
European Software Measurement Conference, pp.: 69-83.

SPQR/20. (1995). User Manual. Software Productivity Research Inc.

Together Technologies home page: http://www.borland.com/us/products/together

Tourwé, T., & Mens, T. (2003). Identifying refactoring opportunities using logic meta programming. In
Proceedings of 7th European Conference on Software Maintenance and Reengineering, pp.: 91-100.

Tsalidis, C., Christodoulakis, D., & Maritsas, D. (1992). ATHENA: a software measurement and metrics
environment. Journal of Software Maintenance 4, 2. pp.: 61-81.

UML 2.0 specification at the OMG home page (2006). http://www.omg.org/UML

Warmer, J., & Kleppe, A. (2003). The object constraint language: Getting your models ready for MDA,
2nd Edition. Pearson Education. Boston, MA.

Whitmire, S. A. (1997). Object oriented design measurement. John Wiley & Sons, Inc.

Additional Reading
Graph Transformation, applications to Refactoring
Rozenberg, G. (ed). (1997). Handbook of Graph Grammars and Computing by Graph Transformations.

Volume 1: Foundations. World Scientific.

 This book presents the foundations of all the basic approaches to graph transformation.

Ehrig, H., Engels, G., Kreowski, H.-J., U., & Rozenberg, G. (ed). (1999). Handbook of Graph Grammars
and Computing by Graph Transformations. Volume 2: Applications, Languages and Tools. World
Scientific.

It includes applications of graph transformation to different domains, such as functional languages,
visual and object-oriented languages, software engineering or mechanical engineering.

Ehrig, H., Kreowski, H.-J., Montanari, U., & Rozenberg, G. (ed). (1999). Handbook of Graph Grammars
and Computing by Graph Transformations. Volume 3: Concurrency, Parallelism and Distribution.
World Scientific.

 The third book of the series presents the main results on concurrency, parallelism and distribution of
graph grammars. An interesting field of application is the coordination of concurrent of systems.

Mens, T., Demeyer, S., & Janssens, D. (2002). Formalizing behaviour preserving program
transformations, In Proceedings of International Conference on Graph Transformation, Lecture
Notes in Computer Science, Vol. 2505, pp.: 286-301, Springer.

 This paper introduces a graph representation of those aspects preserved by a code refactoring, and
uses graph rewriting rules in order to formalize the refactoring transformations.

Mens, T., Taentzer, G., & Runge, O. (2007). Analysing refactoring dependencies using graph
transformation. Software and Systems Modeling Journal, Springer.

 In this paper, refactorings are formalized by means of graph transformation rules, so that implicit
dependencies between refactorings can be studied by using critical pair analysis. The obtained
results can help developers to choose which refactoring is more appropriate in a given context.

Additional Meta-Modelling and MDSD Tools
AndroMDA web page at: http://www.andromda.org/

GEMS (Generic Eclipse Modeling System) web page at: http://sourceforge.net/projects/gems

GME web page at: http://www.isis.vanderbilt.edu/projects/gme/

GMT web page at: http://www.eclipse.org/gmt/

MetaEdit+ web page at: http://www.metacase.com/

OpenArchitectureWare web page at: http://www.openarchitectureware.org/

OpenMDX web page at: http://www.openmdx.org/index.html

OptimalJ web page at: http://www.compuware.com/products/optimalj/default.htm

TIGER Project web page: http://tfs.cs.tu-berlin.de/~tigerprj/

UMT web page at: http://umt-qvt.sourceforge.net/

Model-Driven Software Development
Frankel, D. (2003). Model driven architecture – Applying MDA to enterprise computing. Wiley.

 The Model Driven Architecture (MDA) is the OMG’s proposal for Model Driven Development. This
book explains this methodology and demonstrates how it can work with different technologies.

Kleppe, A., Warmer, J., & Bast, W. (2003). MDA explained. The model driven architecture: Practice and
promise. Addison Wesley.

 This is a useful second reference for researchers interested in MDA.

Proceedings of the Model Driven Engineering Languages and Systems (MoDELS) series of conferences:
http://www.umlconference.org/, edited by Springer Lecture Notes.

Software Measurement and Refactoring
ISO/IEC 25000:2005 Software Engineering – Software product Quality Requirements and Evaluation

(SQuaRE) – Guide to SQuaRE. Available at the web page of ISO: http://www.iso.org

 Set of standards, including those for software measurement.

Kerievsky, J. (2004). Refactoring to patterns. Addison-Wesley.

 The book is about improving system designs through the execution of sequences of low-level design
transformations (refactorings) towards well-known design patterns. It provides useful examples.

Lindvall, M., Donzelli, P., Asgari, S. & Basili V. (2005). Towards Reusable Measurement Patterns.
Proceedings of the 11th IEEE International Software Metrics Symposium, pp.: 21-28.

 The paper identifies a catalogue of measurement patterns that can be reused in different software
measurement programs. The objective is to reduce the time and cost to develop new measurement
tools, without starting their implementation from scratch.

Mens, T., & Tourwé, T. (2004). A survey of software refactoring. IEEE Transactions on Software
Engineering, Volume 30, Number 2, pp.: 126-139.

 This paper provides an overview of existing research in the field of software refactoring: supported
activities and techniques, target artefacts, tool support, and integration on the software development
process.

Pretschner, A., & Prenninger, W. (2007). Computing refactorings of state machines. Software and
Systems Modeling Journal, Springer.

 In this paper, refactorings are formalized as logical predicates and applied to the computation of
semantically equivalent models.

Visual Languages
Luoma, J., Kelly, S., & Tolvanen, J.-P. (2004). Defining domain-specific modeling languages: Collected

experience. Object-Oriented Programming Systems, Languages and Applications (OOPSLA)
Workshop on Domain Specific Languages.

 This paper explores several approaches to the identification and creation of modelling constructs
when defining domain specific languages.

Marriot, K., & Meyer, B. (1998). Visual language theory. Springer-Verlag.

 This book provides a broad survey concerning the definition, specification, structural analysis and
theoretical foundations of visual languages. It is oriented to researchers intrested in formal language
theory, HCI, artificial intelligence and computational linguistics.

