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Preface

In recent years there has been growing interest in the use of multi-level modelling ap-
proaches to better represent the multiple classification levels that are frequently found
in the real world and are needed to effectively engineer languages. Multi-level modelling
approaches have not only been successfully used in numerous industrial projects and stan-
dards definition initiatives they are now supported by an array of dedicated tools.

However there is still no clear consensus on what multi-level modelling actually is and
what kinds of constructs and concepts provide the best support for it. For example, there
are diverging views on whether it is sound to combine instance facets and type facets into
so-called clabjects, whether strict metamodelling is too restrictive, and what principles
should be used in establishing meta-level boundaries, etc.

The MULTI 2014 workshop was established to address this problem by bringing to-
gether researchers and practitioners with an interest in multi-level modelling to foster a
fruitful cross-pollination of ideas and lay the foundation for a unified discipline. In par-
ticular, the workshop aimed to identify a set of criteria for judging the strengths and
weaknesses of different multi-level modelling approaches and for defining possible bench-
mark case studies. To this end, the workshop encouraged submissions on new concepts,
implementation approaches and formalisms as well as controversial positions, requirements
for evaluation criteria or case-study scenarios. Contributions in the area of tool building,
multi-level modelling applications, and educational material were also welcome.

From a total of 16 submissions, 12 papers were selected that addressed a range of topics
related to multi-level modelling. In terms of technology papers, three papers presented
proposals for enhancing existing multi-level modeling approaches, two papers presented
alternative formal foundations for multi-level modeling, and two papers presented ap-
proaches for checking the consistency and integrity of multi-level models. A further four
papers presented applications of multi-level modeling to different scenarios; two focusing
on industrial applications and two focusing on the applications of multi-level modeling to
the ubiquitous problems of interoperability and big, distributed data. Finally, the remain-
ing paper presented ideas for improving the way in which multi-level modeling approaches
can be evaluated and compared. In addition to two paper sessions, the workshop included
an invited talk answering the question “What is Multi-Level Modeling?” and two plenary
discussions focused on core multi-level themes and the future of the fledgling multi-level
community.

September 2014 Colin Atkinson, Georg Grossmann, Thomas Kühne, Juan de Lara
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Keynote

What is Multi-Level Modeling?

César González Pérez

Institute of Heritage Sciences, Spain

In line with the MULTI 2014 workshop theme, this talk aims to introduce
and review the use of multi-level modelling approaches to represent multiple
classification levels in language engineering and conceptual modelling communi-
ties. The talk will analyse the root motivation at the heart of multi-level mod-
elling, namely the need for a type model to influence, to some extent, not only
its instances but also the instances of these. Different approaches that have
been proposed to tackle this issue will be examined, including strict metamod-
elling, orthogonal (linguistic plus ontological) approaches, deep instantiation,
and powertype-based approaches. Finally, some challenges are briefly presented
that haven’t been solved yet, in anticipation of a deeper discussion by specific
workshop papers.
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Abstract vs Concrete Clabjects
in Dual Deep Instantiation

Bernd Neumayr and Michael Schrefl

Department of Business Informatics – Data & Knowledge Engineering
Johannes Kepler University Linz, Austria

firstname.lastname@jku.at

Abstract. Deep Instantiation allows for a compact representation of
models with multiple instantiation levels where clabjects combine object
and class facets and allow to characterize the schema of model elements
several instantiation levels below. Clabjects with common properties may
be generalized to superclabjects. In order to clarify the exact nature of su-
perclabjects, Dual Deep Instantiation, a variation of Deep Instantiation,
distinguishes between abstract and concrete clabjects and demands that
superclabjects are abstract. An abstract clabject combines the notion of
abstract class, i.e., it may not be instantiated by concrete objects, and
of abstract object, i.e., is does not represent a single concrete object but
properties common to a set of concrete objects. This paper clarifies the
distinction between abstract and concrete clabjects and discusses the
role of concrete clabjects for mandatory constraints at multiple levels
and for coping with dual inheritance introduced with the combination
of generalization and deep instantiation. The reflections in this paper
are formalized based on a simplified form of dual deep instantiation but
should be relevant to deep characterization in general.

1 Introduction

What is represented as instance data in one application may be represented as
schema data in another application. For example, in an application for managing
a product catalog, product category car is represented by a class Car which is
instantiated by objects representing particular car models, such as BMWZ4. In a
customer service application, the same car model may be represented by a class
which is instantiated by objects representing individual cars, such as PetersZ4.

Potency-based Deep Instantiation [1] allows for a compact and integrated
representation of such scenarios. For example, clabject BMWZ4 in our running
example (see Fig. 1), which makes use of a simplified and relaxed version of
Dual Deep Instantiation [9], represents both: an object, namely the car model
BMWZ4, and a class, namely the class of individual cars of model BMWZ4.
Further up in the product hierarchy, the clabject Car with potency 2 represents
product category car as well as the classes of individual cars and of car models.
Finally, the whole product hierarchy is represented by clabject Product with
potency 3.
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Clabjects with common properties may be generalized to a superclabject. In
Dual Deep Instantiation, superclabjects are abstract and are not considered as
objects in their own right. For example, concrete clabjects Car and Motorcycle are
generalized to an abstract superclabject Vehicle which defines properties shared
by Car and Motorcycle, e.g., MsBlack is the category manager of the two product
categories represented by Car and Motorcycle.

In the remainder of the paper we introduce, in Sect. 2, a simplified form of
Dual Deep Instantiation along which we discuss, in Sect. 3, the distinction be-
tween abstract and concrete clabjects. In Sect. 4, we define an inheritance mech-
anism and describe the role of concrete clabjects in dealing with dual inheritance
stemming from the combination of generalization and deep instantiation. Sect. 5
introduces support for defining mandatory constraints over concrete clabjects
at multiple levels in order to control the stepwise instantiation process. Sect. 6
gives a brief overview of related work and Sect. 7 concludes the paper.
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Fig. 1. Multi-level Hierarchies of Abstract and Concrete Clabjects
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2 Dual Deep Instantiation and Generalization – Simplified

Dual Deep Instantiation (DDI) [9] allows to relate clabjects at different instan-
tiation levels by bi-directional and multi-valued relationships and allows to sep-
arately indicate the depth of characterization for the source and target of a
relationship (not assuming a strict separation of classification levels). By re-
stricting clabjects to have only one parent, either related by instantiation or by
generalization, it only allows single inheritance. For discussing the distinction
between concrete and abstract clabjects and their role in multi-level models we
introduce, in this section, a simplified and relaxed variant of DDI. It is simpfli-
fied by only considering uni-directional and single-valued property references. It
is relaxed by allowing dual inheritance: a clabject may now have two parents,
one at the same level and connected by a generalization relationship and the
other at the next higher level and related by an instantiation relationship.

A DDI model contains a set of clabjects (see No. 1 in Table 2). Clabjects are
organized in instantiation hierarchies with an arbitrary number of instantiation
levels, where in(x, y) expresses that clabject x is an instantiation of clabject y
(No. 2); we also say y is the class-clabject of x. Clabjects at the same instantiation
level may be organized in specialization hierarchies, where spec(x, y) expresses
that clabject x is a direct specialization of clabject y (No. 3); we also refer to y
as the superclabject of x.

We use the term clabject in a wide sense. It covers what is traditionally mod-
eled as individual objects (tokens, instance specifications), classes, simple values,
and primitive datatypes. In DDI, even individuals may refine or extend their own
schema, e.g., property coowner is introduced at individual PetersR1200GS, and
we assume, in this regard, that every individual comes with its own class facet.
So, in DDI everything is a clabject. Note, in the original DDI approach [9] we
used the terms object or DDI object for what we now call clabject.

Each clabject comes with a clabject potency (No. 4). A potency of a clabject
is given by a natural number (including 0) and indicates the number of instantia-
tion levels of the clabject, where ptcy(x) = n expresses that x has descendants at
the next n instantiation levels beneath. Note, in our previous work [9], clabjects
did not have an asserted potency.

In order to simplify discussion and formalization of the approach, we intro-
duce auxiliary terms, predicates and shorthand notations. We say x isa y if x is
either a specialization or an instantiation of y (No. 5), we also say y is a parent
of x. We say x is a member of y if x relates to y by a chain of isa with exactly
one instantiation step (No. 6). We say x is an n-member of y if x relates to y
by a chain of isa with n instantiation steps (No. 7). We use .+ and .∗ to denote
the transitive and transitive-reflexive closure, respectively, of a binary relation.
We say, x is a descendant of y and y is an ancestor of x if isa+(x, y). We say,
x is a specialization of y and y is a generalization (or is a superclabject) of x if
spec+(x, y).

When a clabject x instantiates a clabject c then the potency of x is the
potency of c decremented by one (No. 8). Clabjects in generalization hierarchies
all have the same clabject potency (No. 9).
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Table 1. Instantiation and Generalization Hierarchies of Clabjects

Sorts & Asserted Predicates:

(1) C: clabjects (representing individuals, classes, datatypes and values)
(2) in ⊆ C × C
(3) spec ⊆ C × C
(4) ptcy : C → N (N is the set of natural numbers including 0)

Auxiliary Predicates:

(5) isa(x, y) :⇔ in(x, y) ∨ spec(x, y)
(6) member(x, c) :⇔ ∃s∃d : spec∗(x, s) ∧ in(s, d) ∧ spec∗(d, c)
(7) nmember(x, c, n) :⇔ (n = 0 ∧ spec∗(x, c)) ∨

∃m∃d : ((n = m + 1) ∧ nmember(x, d,m) ∧member(d, c))

Well-formedness Criteria and Syntactic Restrictions:

(8) in(x, y)→ ptcy(x) = ptcy(y)− 1
(9) spec(x, y)→ ptcy(x) = ptcy(y)
(10) isa+(x, c)→ x 6= c
(11) in(x, c) ∧ in(x, d)→ c = d
(12) spec(x, s) ∧ spec(x, z)→ s = z
(13) spec(x, s) ∧ in(x, c)→ ∃y : isa∗(s, y) ∧ isa∗(c, y)
(14) spec∗(x, y) ∧ in(x, c) ∧ in(y, d)→ spec∗(c, d)

In DDI every clabject hierarchy comes with its own set of instantiation levels
which is introduced by the potency of the root clabject (a root clabject is a
clabject without parent). For example, root clabject Product with potency 3
introduces a clabject hierarchy with three instantiation levels (not counting the
instantiation level of the root clabject). These instantiation levels may be given
labels. For example, root clabject Product has three instantiation levels, labelled
Category, Model, and Individual. Instead of saying “BMW Z4 is 2-member of
Product” one may now say “BMW Z4 is a Product Model”.

We assume acyclic clabject hierarchies (No. 10) with single classification, i.e.,
every clabject has at most one class-clabject (No. 11), and single generalization,
i.e., every clabject has at most one direct superclabject (No. 12).

In the original formalization of DDI [9], in order to avoid multiple inheritance,
every clabject had at most one parent, either a class-clabject or a superclabject.
We now relax this global restriction and allow clabjects to have both a class-
clabject and a superclabject. Class-clabject and superclabject of a clabject must
have a common ancestor (No. 13). Further, if a clabject x, which is an instanti-
ation of c, specializes a clabject y, which is an instantiation of d, then c needs to
be a specialization of d (No. 14). In the forthcoming sections we will introduce
further constraints on the combined use of generalization and instantiation.

Two clabjects may be related via property references. A quintuple R(x, i, p, j, y)
is an asserted property reference of source clabject x via a property p to target
clabject y with source potency i and target potency j (No. 16), we also say
there is a pi−j reference from x to y. The source potency and the target potency

6



Table 2. Deep Characterization of Clabjects via Property References

Additional Sorts & Asserted Predicates:

(15) P : properties
(16) R ⊆ C × N× P × N× C

Additional Well-formedness Criteria and Syntactic Restrictions:

(17) R(x, i, p, j, y) ∧R(s, k, p, l, t)→ ∃c∃m∃n∃d : R(c,m, p, n, d) ∧
isa∗(x, c) ∧ isa∗(s, c)

(18) R(x, i, p, j, y) ∧R(x, k, p, l, d)→ i = k ∧ j = l ∧ y = d
(19) R(x, i, p, j, y)→ ptcy(x) ≥ i ∧ ptcy(y) ≥ j
(20) R(x, i, p, j, y) ∧R(c, k, p, l, d) ∧ nmember(x, c, n)→ n = k − i
(21) R(x, i, p, j, y) ∧R(c, k, p, l, d) ∧ nmember(y, d, n)→ n = l − j
(22) R(x, i, p, j, y) ∧R(c, k, p, l, d) ∧ isa+(x, c)→ isa∗(y, d)

indicate how many instantiation levels below the source clabject and the target
clabject, respectively, the property is to be ultimately instantiated. For example,
the soldPrice2−3 reference from Product to Currency is ultimately instantiated by
the soldPrice0−0 reference from PetersZ4 to 38,200.

Well-formed property references obey the following constraints. Every prop-
erty is introduced with a single clabject, i.e., if two clabjects have the same
property, then they must have a common ancestor which introduced that prop-
erty (No. 17). For simplicity (and space limitations) we only consider single-
valued properties, that is, there may only be a single property reference per
source clabject and property (No. 18). The source and target potency must
be lower or equal to the potency of the source and target clabject, respec-
tively (No. 19). When instantiating and refining properties, source and target
potencies must be reduced according to the number of instantiation steps be-
tween the source clabjects (No. 20) and target clabjects (No. 21), respectively.
A clabject c with a reference to clabject d via property p with a target potency
higher than 0 or if d is abstract introduces a range referential integrity constraint
for all descendants of c: descendants of c may only refer via p to descendants of
d (No. 22). This is akin to co-variant refinement and, in terms of the UML, to
redefinition of association ends.

3 The Abstract Superclass Rule in the Context of
Abstract and Concrete Clabjects

In this section we clarify the distinction between abstract and concrete clabject.
We revisit the abstract superclass rule and adapt it to the setting of multi-level
modeling with abstract and concrete clabjects.

Abstract clabjects combine aspects of abstract classes and abstract objects.
Concrete clabjects combine aspects of concrete classes and concrete objects. The
distinction between abstract and concrete class is described as: ‘A class that has
the ability to create instances is referred to as instantiable or concrete, otherwise

7



it is called abstract.’ [3] The distinction between abstract objects and concrete ob-
jects is heavily discussed in Philosophy [13] and there are many different ways to
explain it. In this paper we follow ‘the way of abstraction’ which is also followed
by Kühne [4]: ‘An abstract object represents all instances that are considered to
be equivalent to other for a certain purpose [. . . ] An abstract object captures
what is universal about a set of instances but resides at the same logical level
as the instances’. In DDI, clabjects are either asserted as abstract (No. 23 in
Table 3) or derived to be concrete (No. 24).

Table 3. Abstract and Concrete Clabjects and the Abstract Superclabject Rule

(23) abstract ⊆ C
(24) concrete(x) :⇔ x ∈ C ∧ ¬abstract(x)
(25) spec(x, y)→ abstract(y)
(26) abstract(c) ∧ in(x, c)→ abstract(x)
(27) concrete(x) ∧member(x, y)→ ∃z : concrete(z) ∧member(x, z)

In the literature it has been proposed that only abstract classes may be
specialized:

Abstract Superclass Rule: All superclasses are abstract [3] in that they have
no direct instances.

Obeying this rule improves the clarity of object-oriented models, especially
when the extension (set of instances) of classes is of interest. Despite the trade-
off of additional classes to be modeled and maintained, we feel that obeying
the abstract superclass rule in multi-level modeling is beneficial because of the
increased clarity. That is why in the original DDI approach [9] only concrete
clabjects could be instantiated. We now relax this restriction as follows:

Abstract Superclabject Rule: All superclabjects are abstract in that they have
no direct concrete instances (but they may have abstract instances).

This is formalized as: All superclabjects are abstract (No. 25). If an abstract
clabject acts as class in an instantiation relationship, then the clabject playing
the instance role must be abstract as well (No. 26). Every concrete clabject that
is member of some clabject must be member of a concrete clabject (No. 27).

The meaning of the allowed kinds of instantiation relationships depends on
the abstractness of the related clabjects. An instantiation relationship between
a clabject x in the role of the instance and a clabject c in the role of the class,
denoted as in(x, c), can be classified as one of the following:

– An immediate concrete instantiation relationship is between a concrete clab-
ject in the instance role and a concrete clabject in the class role. For example,
the relationship between BMWZ4 and Car is an immediate concrete instan-
tiation relationship, meaning that BMWZ4 is an instance of Car, or, more

8



exactly, that the object facet of BMWZ4 is an instance of a class-facet of
Car.

– A shared concrete instantiation relationship is between an abstract clabject
x in the instance role and a concrete class c in the class role. For example, the
relationship between BMWMotorcycle and Motorcycle is a shared concrete
instantiation, meaning that all concrete specializations of BMWMotorcycle,
such as F700GS and R1200GS, are instances of Motorcycle.

– A shared abstract instantiation relationship is between an abstract clab-
ject x in the instance role and an abstract clabject c in the class role. For
example, the relationship between BMWVehicle and Vehicle is a shared ab-
stract instantiation relationship, meaning that all concrete specializations
of BMWVehicle are instances of a concrete specialization of Vehicle, e.g.,
BMWZ4 is an instance of Car.

4 Coping with Dual Inheritance

In this section we define the mechanism for inheritance of property references
along generalization and instantiation relationships. A clabject inherits both
from its class-clabject and from its superclabject. We refer to this specific form
of multiple inheritance as dual inheritance. Dual inheritance leads to potential
conflicts. We propose one way to guarantee that concrete clabjects are conflict-
free and, thus, satisfiable.

Table 4. Dual Inheritance

(28) R◦(x, i, p, j, y) :⇔ R(x, i, p, j, y) ∨ (∃s : spec(x, s) ∧R?(s, i, p, j, y))
∨ (∃c : in(x, c) ∧R?(c, i + 1, p, j, y) ∧ i ≥ 0)

(29) R?(x, i, p, j, y) :⇔ R◦(x, i, p, j, y) ∧ ¬(∃j′∃y′ : isa+(y′, y) ∧R◦(x, i, p, j′, y′))
(30) concrete(x) ∧ spec(x, s) ∧R?(s, i, p, j, y) ∧ in(x, c) ∧R?(c, i + 1, p, j′, y′)

→ isa∗(y, y′) ∨ isa∗(y′, y) ∨ (∃j′′∃y′′ : R(x, i, p, j′′, y′′))

Inheritance of property references is defined using the following predicates:
predicate R (No. 16 in Table 2) holds asserted property references of all clab-
jects. Auxiliary predicate R◦ (No. 28 in Table 4) holds asserted and inherited
property references. Derived predicate R? (No. 29) holds effective property ref-
erences which are the most-specific property references out of the asserted and
inherited property references.

We first look at asserted and inherited property references (No. 28). From
its superclabject a clabject inherits all effective property references. From its
class-clabject it inherits all effective property references with a source potency
of 1 or above. When inheriting property references from the class-clabject, the
source potency is decremented by 1. For example, clabject BMWZ4 inherits
from its superclabject BMWVehicle a soldPrice reference to Euro and from its
class-clabject Car a soldPrice reference to EuropeanCurrency.

9



An inherited or asserted property reference of a clabject x at source potency
i for property p to target object y is effective if x has no inherited or asserted
property reference for property p to a target object which is a descendant of y
(No. 29). For example, the reference to Euro is the effective soldPrice reference for
clabject BMWZ4 since it is more specific than the reference to EuropeanCurrency.

We now discuss the role of concrete clabjects in resolving or detecting con-
flicts introduced by dual inheritance along generalization and instantiation re-
lationships. If a concrete clabject inherits from its superclabject and from its
class-clabject references for property p to y and y′, respectively, we demand that
one of the references is a descendant of the other. If this is not the case the mod-
eler needs to resolve the potential conflict by asserting a reference of property p
to some clabject y′′ (No. 30) which needs to be, due to the previously introduced
constraints, a descendant of both y and y′. If this is not possible, the modeler
detects a conflict. This guarantees that concrete clabjects that obey this con-
straint are satisfiable at the instantiation levels beneath. Conflicts are resolved or
detected at concrete objects. For example, BMWZ4 inherits for property engine
via specialization from BMWVehicle and via instantiation from Car references to
BMWEngine and CarEngine, respectively. To avoid a potential conflict, BMWZ4
asserts for property engine a reference to EngineK5.

Other approaches to detecting and resolving conflicts are (1) to ignore the
problem and accept the possiblity of unsatisfiable properties, (2) to use more so-
phisticated techniques to decide whether two conflicting property references are
satisfiable or not, or (3) to make the above check not only for concrete clabjects
but also for abstract clabjects, for example it would make necessary to add a
property reference from BMWMotorcycle to a to-be created clabject, e.g., called
BMWMotorcycleEngine, that specializes BMWEngine and instantiates Motorcy-
cleEngine and which is a generalization of BMWF700GS and BMWR1200GS.
With regard to the effort associated with such an immediate conflict resolution,
delaying conflict resolution to concrete clabjects, as introduced above, seems to
be a good compromise.

5 Mandatory Constraints at Multiple Levels

By now, it is up to the modeler to decide whether properties are to be instan-
tiated and at which levels they are to be instantiated. In this short section we
introduce support for defining mandatory constraints at multiple levels. Manda-
tory constraints allow to control the stepwise instantiation process by demanding
that concrete source clabjects at a given level of the domain of the property need
to refer to a concrete clabject at a given level of the range of the property or to
a clabject that is a descendant of a concrete clabject at the given level.

In more formal terms, a mandatory constraint total(i, p, j) (No. 31 in Table 5)
expresses that property p, which is introduced between clabject c and d with
potencies n and m, is mandatory for potencies i and j, with potencies i and j
being lower or equal to potencies n and m, respectively (No. 32). This means
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Table 5. Mandatory constraints

(31) total ⊆ N× P × N
(32) total(i, p, j)→ ∃c∃n∃m∃d : R(c, n, p,m, d) ∧ i ≤ n ∧ j ≤ m
(33) R(c, n, p,m, d) ∧ total(i, p, j) ∧ j ≤ m ∧ nmember(x, c, n− i) ∧ concrete(x)

→ ∃j′∃y∃y′ : R?(x, i, p, j′, y′) ∧ isa∗(y′, y) ∧ concrete(y) ∧ nmember(y, d,m− j)

that concrete (n− i)-members of c must refer via property p to a clabject that
is a (descendant of a) (m− j)-member of d (No. 33).

For example, property engine is introduced at clabject Vehicle by a reference
with source potency 2 and target potency 2 to clabject Engine. The multi-level
domain of property engine is given by the 0-, 1-, and 2-members of Vehicle and
its multi-level range is given by the 0-, 1-, and 2-members of Engine. Mandatory
constraint total(2, engine, 2) demands that every concrete 0-member of Vehicle
refers to some concrete 0-member of Engine or to a descendant of Engine.

6 Related Work

DDI is heavily influenced by the classical work on deep instantiation of Atkinson
and Kühne [1]. Kühne and Schreiber [5] introduced the notion of superclabject
and propose the use of metaclass compatibility rules and represent the abstract-
ness of clabjects by giving them potency 0. De Lara et al. [7] propose to declare
abstract clabjects as such. In both approaches, abstractness of clabjects only
refers to the inability to create instances; abstract clabjects in the dual sense
of abstract object and abstract class are not discussed. Kühne [4] provides an
in-depth discussion of the distinction between generalization and classification
together with a discussion of abstract objects.

From M-Objects and M-Relationships [8], DDI takes the idea that instantia-
tion (then called concretization) levels have a label and that every instantiation
(or concretization) hierarchy has its own set of instantiation levels. M-Objects
do not come with the possibility to model generalization hierarchies of m-objects
at one instantiation level. A comparison with different techniques for deep char-
acterization, then called ‘multi-level abstraction’, is given in [10]. DDI is further
influenced by Pirotte et al’s work on Materialization [12]. Similar to M-Objects,
materialization does not come with support for generalizing objects at the same
abstraction level and does not come with the distinction between concrete and
abstract classes. Many aspects of clabject hierarchies with deep instantiation
may be alternatively modeled using powertypes [11] or the powertype pattern [2]
(see [9]). It is, however, unclear how generalization of clabjects may be modeled
using powertypes or the powertype pattern.

The most important related work is that of de Lara et al. [6] on the uniform
handling of inheritance at every meta-level, which however does not come with
the simplicity and conceptual clarity provided by the abstract superclabject rule.
It is open to future work to analyze the trade-offs of both approaches and to
combine the advantages of both approaches.
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7 Conclusion

We have discussed the distinction between abstract and concrete clabjects as one
way of clarifying the meaning of superclabjects in multi-level models. In a sim-
plified setting (only considering single-valued and uni-directional property refer-
ences) we have introduced and relaxed the abstract superclabject rule, showed
how the distinction between abstract and concrete clabjects helps to cope with
dual inheritance, and introduced support for mandatory constraints over con-
crete clabjects at multiple levels. We currently work on extending the full DDI
approach (also considering bi-directional and multi-valued relationships) and its
ConceptBase implementation [9] along the lines discussed in this paper, espe-
cially on extending DDI with full-fledged multi-level multiplicity constraints.
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12. Pirotte, A., Zimányi, E., Massart, D., Yakusheva, T.: Materialization: A Powerful

and Ubiquitous Abstraction Pattern. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.)
VLDB. pp. 630–641. Morgan Kaufmann (1994), 0605

13. Rosen, G.: Abstract objects. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of
Philosophy. Fall 2014 edn. (2014)

12



On Metamodel Superstructures Employing

UML Generalization Features

Martin Gogolla, Matthias Sedlmeier, Lars Hamann, Frank Hilken

Database Systems Group, University of Bremen, Germany
{gogolla|ms|lhamann|fhilken}@informatik.uni-bremen.de

Abstract. We employ UML generalization features in order to describe
multi-level metamodels and their connections. The basic idea is to repre-
sent several metamodel levels in one UML and OCL model and to connect
the metamodels with (what we call) a superstructure. The advantage of
having various levels in one model lies in the uniform handling of all levels
and in the availability of OCL for constraining models and navigating be-
tween them. We establish the connection between the metamodel levels
by typing links that represent the instance-of relationship. These typing
links are derived from associations that are defined on an abstraction of
the metamodel classes and that are restricted by redefines and union

constraints in order to achieve level-conformant typing. The abstraction
of the metamodel classes together with the connecting associations and
generalizations constitutes the superstructure.
Keywords. UML, OCL, Model, Metamodel, Metamodel constraint,
Generalization, Redefines constraint, Union constraint.

1 Introduction

Software engineering research activities and results indicate that metamodeling
is becoming more and more important [3, 4, 9]. However, there are a lot of discus-
sions about notions in connection with metamodels like potency or clabject where
no final conceptual definition has been achieved. On the other hand, software
tools for metamodeling are beginning to be developed [5, 2].

Here, we propose to join the metamodels of several levels into one model (as
in our previous work [7] without the use of redefines constraints) and to
connect the levels with associations and generalizations. Typing conformance
and strictness can be achieved through particular UML and OCL generalization
constraints. General restrictions between the metamodel levels can be specified
through the power of OCL. Restrictions can be built on metamodels and on
the metamodel architecture. The metamodel architecture is the connection be-
tween (what we call) the metamodel superstructure and the contributing meta-
models.

Our work has links to other metamodeling approaches. The tool Melanie [2] is
designed as an Eclipse plug-in supporting strict multi-level metamodeling and
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support for general purpose as well as domain specific languages. Another tool
is MetaDepth [5] allowing linguistic as well as ontological instantiation with
an arbitrary number of metalevels supporting the potency concept. In [9] the
authors describe an approach to flatten metalevel hierarchies and seek for a level-
agnostic metamodeling style in contrast to the OMG four-layer architecture.

The structure of the rest of the paper is as follows. Section 2 gives a first, smaller
example for a metamodel superstructure. Section 3 discusses a larger example.
Section 4 shows other metamodel superstructures. The contribution is closed
with a conclusion and future work in sect. 5.

2 Superstructure Example with Ada, Person, Class, and
MetaClass

The example in Fig. 1 shows a substantially reduced and abstracted version
of the OMG four-level metamodel architecture with modeling levels M0, M1,
M2, and M3. Roughly speaking, the figure states: Ada is a Person, Person is a
Class, and Class is a MetaClass. The figure does so by formally building an
object diagram for a precisely defined class diagram including an OCL invariant
that requires cyclefreeness when constructing instance-of connections. The dis-
tinction between MetaClass and Class is that when MetaClass is instantiated
something is created that can be instantiated on two lower levels whereas for
Class instantiation can only be done on one lower level. The model has been
formally checked with the tool USE [6]. In particular, we have employed the
features supporting UML generalization constraints as discussed in [1, 8].

Concepts on a respective level Mx are represented in a simplified way as a class
Mx. All classes Mx are specializations of the abstract class Thing whose objects
cover all objects in the classes Mx. On that abstract class Thing one association
Instantiation is defined that is intended to represent the instance-of connec-
tions between a higher level object and a lower level: an object of a lower level
is intended to be an instance of an object on a higher level. The association
Instantiation on Thing (with role names instantiater and instantiated)
is employed for the definition of the associations Typing0, Typing1, and Typing2

between Mx and Mx+1 all having roles typer and typed. The role typer is a
redefinition of instantiater, and typed is a redefinition of instantiated. The
multiplicity 1 of typer narrows the multiplicity 0..1 of instantiater.

In the abstract class Thing the transitive closure instantiatedPlus() of
instantiated is defined by means of OCL. Analogously, instantiaterPlus()
is defined for instantiater. The closure operations are needed to define an
invariant in class Thing requiring Instantiation links to be acyclic.

abstract class Thing

operations

instantiatedPlus():Set(Thing)=

self.instantiated->closure(t|t.instantiated)

instantiaterPlus():Set(Thing)= ...

14



Fig. 1. Ada, Person, Class, MetaClass within Single Object Diagram.
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constraints

inv acyclicInstantiation: self.instantiatedPlus()->excludes(self)

end

The class diagram from the left side of Fig. 1 is made concrete with an object
diagram on the right side. The fact that the three associations Typing0, Typing1,
and Typing2 are all redefinitions of association Instantiation is reflected in
the object diagram by the three dashed links for association Instantiation

with common role names instantiater and instantiated (dashed links in
contrast to continuous links for ordinary links). Viewing Instantiation as a
generalization (in terms of redefinition) of all Typingx associations allows to use
the closure operations from class Thing on objects from classes M0, M1, M2 or
M3. Thus the displayed OCL expressions and their results reflect the following
facts: object Person is a (direct resp. indirect) instantiation of objects Class and
MetaClass; objects Ada and Person are (direct resp. indirect) instantiations of
object Class.

Summary: Metamodeling means to construct models for several levels. The
metamodels on the respective level should be described and modeled indepen-
dently (e.g., as M0, M1, M2, and M3). The connection between the models should
be established in a formal way by a typing association (e.g., Typing0 gives a
type object from M1 to a typed object from M0). The Typing associations are
introduced as redefined versions of the association Instantiation from (what
we call) a multi-level superstructure. This superstructure contains the abstract
class Thing which is an abstraction of all metamodel elements across all lev-
els and additionally contains the association Instantiation and accompanying
constraints. Because Instantiation is defined as union, an Instantiation link
can only connect elements of adjacent levels, i.e., the Typingx links are level-
conformant and strict. The aim of the devices in the superstructure is to establish
the connection between metamodel levels in a formal way and to provide support
for formally restricting the connections.

3 Superstructure Example for Relational Database
Model

In Fig. 2 we show two metamodels, one for the syntax and one for the seman-
tics part of the relational database model. The upper part catches the syntax,
i.e., relational database schemas, relational schemas, attributes, and data types.
With regard to the class names, please recall that in the database field a re-
lational database schema consists of possibly many relational schemas.1 The
lower part deals with the semantics (or runtime interpretation), i.e., database
states, tuples, attribute mappings (for short attribute maps), and values. One
also identifies two collections of invariant names, one collection for the syntax,

1 A relational schema is called a table in SQL.
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Fig. 2. Metamodels for Relational Database Schemas and States.
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and one for the semantics. For example, RelSchema::relSchemaKeyNotEmpty
requires that each relational schema must have at least one key attribute, and
Tupel::keyMapUnique requires that two different tuples2 must be distinguish-
able by at least one key attribute in each database state. The constraints start-
ing with c are (what we call) commutativity constraints which require that the
evaluation of two different paths through the class diagram coincide. Both paths
start in one class and typically end in one different class. For example, the con-
straint AttrMap::c AttrMap Attr Tupel RelSchema requires that for an object
am:AttrMap the paths am.attr.relSchema and am.tupel.relSchema coincide.

In the left of the class diagram we identify the metamodel superstruc-
ture established by the abstract classes SynElem, SemElem, and the associ-
ation Instantiation. Instantiation is specialized through redefinition to
RelDBStateTyping, TupelTyping, AttrMapTyping, and ValueTyping. We re-
gard the syntax model, i.e., SynElem and its specializations together with the
associations, as a metamodel of the semantics model, i.e., SemElem and its spe-
cializations together with the associations. We take this view because each higher
level class (in the syntax part) serves to instantiate a lower level class (in the
semantics part), and thus each lower level object has exactly one type that
is defined in the higher level. Another argument supporting the view that we
here have two connected metamodels is the factor that the relationship be-
tween RelSchema and Tupel is the same as the relationship between Class

and Object in the OMG four-level architecture. The same holds for the other
(SynElem,SemElem) class pairs: (RelDBSchema,RelDBState), (Attr,AttrMap),
and (DataType,Value).

Interestingly, some invariants span across metamodel boundaries, i.e., an invari-
ant from the semantics part sometimes uses elements from the syntax part. For
example, the mentioned uniqueness requirement for tuples with regard to their
key attributes is only required, if the tuples under consideration belong to the
same relational schema. Thus the invariants of the semantics part rely on or use
information from the syntax part.

In Fig. 3 we make the metamodels from Fig. 2 concrete by presenting a sim-
ple relational database schema consisting of one relational schema and a very
simple accompanying database state with only one tuple. The presentation is
done in form of an object diagram. The figure shows also OCL queries and
their result that demonstrate how one can bridge the boundary between the
metamodels. All queries either use the roles instantiater or instantiated

which cross a metamodel boundary. For example, the fourth query from the
top (RelSchema.allInstances()->select(rs | rs.name=’Person’).attr.

instantiated.value.content) retrieves all values that are present in one of
the attributes of the relational schema Person.

In Fig. 4 we show a larger object diagram3 with two relational database states,
two relational schemas and three tuples. The object diagram satisfies all invari-

2 We have used the German spelling Tupel because Tuple is a keyword in OCL.
3 In order to make the figure easier to grasp some links are hidden.
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Fig. 3. Single Tuple Represented within Metamodel.

19



Fig. 4. Three Tuples Represented within Metamodel.
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ants. The metamodels reflect the syntactical and semantical requirements, in
particular through the use of constraints. For example, if one changes in the
object Attr1:Attr the isKey attribute value from true to false, the syntac-
tical requirement that relational schemas must have at least one key attribute
value would be violated and this would be indicated by a constraint violation for
the respective constraint RelSchema::relSchemaKeyNotEmpty. As an example
on the semantical side, if one changes in the object Value1:Value the content

attribute value from ‘muddi’ to ‘nodrama’, the semantical requirement that
each two tuples must have at least one distinguishing key attribute would be
violated and this would be indicated by a constraint violation for the respective
constraint Tupel::keyMapUnique.

4 Other Metamodel Superstructures

In the two examples above we have employed different metamodel superstruc-
tures. The first example Ada-Person-Class-MetaClass used the superstructure
displayed in the upper left part of Fig. 5. The second example for the relational

Fig. 5. Three Different Multi-Level Metamodel Superstructures.

database model used more or less the superstructure shown in the upper right
part of the figure. However instead of the generic class names ThingH[igh] and
ThingL[ow] the example used SynElem and SemElem, and instead of M1 and M0

the example used a bunch of connected classes like {RelDBSchema, RelSchema,
Attr, DataType} and {RelDBState, Tupel, AttrMap, Value}. Other metamod-
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eling superstructures could be used as well, for example the one displayed in
the lower part of Fig. 5 utilizing multiple inheritance. Dependent on the actual
needs for the metamodels at hand, a suitable superstructure with fitting classes,
associations, and constraints can be chosen.

In our example superstructures we have been using the multiplicities 0..1 or 1
for the roles instantiater and typer. However, in principle other multiplicities
like 1..* could be used. It is an open question whether this could make sense,
for example, in the context of multiple inheritance.

5 Conclusion

This paper proposed to describe different metamodels in one model and to con-
nect the metamodels with a (so-called) superstructure consisting of generaliza-
tions and associations with appropriate UML and OCL constraints. We explained
our ideas in particular with an example expressing the syntax and the semantics
of the relational database model on different metamodel levels.

Future research includes the following topics. We would like to work out for our
approach formal definitions for notions like potency or strictness. The notion of
powertype will be given special attention in order to explore how far this concept
can be integrated. Our tool USE could be extended to deal with different meta-
model levels simultaneously. So far USE deals with class and object diagram.
In essence, we think of at least a three-level USE (cubeUSE) where the middle
level can be seen at the same time as an object and class diagram. Furthermore,
larger examples and case studies must check the practicability of the proposal.
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Abstract. Conciseness is one major quality aspect for meta models. To keep them 

concise, language patterns like inheritance or powertypes can be used in an ap-

propriated way. With instance specialization we present a further language pat-

tern that rests on the idea of prototypal inheritance (e.g., known from Python or 

ECMAScript). Generally, it allows for a concept to specialize the instance facet 

of a particular instance and reuse its configuration. Thereby, all assignments of 

the latter are inherited by a specializing instance, which can be overwritten in 

different ways within this instance. Beyond describing the instance specialization 

pattern, we also introduce a semi-automatic, user-supporting mechanism for ap-

plying this pattern to existing meta models. 

Keywords: meta modelling, meta model evolution, instance specialization, in-

heritance, prototypal inheritance 

1 Motivation 

In the field of software engineering meta models are often utilized to define the abstract 

and concrete syntax of domain specific modelling languages (DSMLs). Hence, the 

quality of such a DSML depends highly on the quality of those meta models describing 

it. The quality of a meta model is influenced by various aspects like conciseness, sim-

plicity and extensibility [4]. For improving these aspects, in recent years several meta 

modelling patterns like clabjects [1, 2] or inheritance were discovered.  

In general, multilevel meta modelling aims in contrast to common programming lan-

guages at defining more than two meta levels leveraging the modeller to create a higher 

degree of abstraction without manually (re-)implementing an instantiation mechanism 

[6, 17]. In modelling environments or programming languages supporting two meta 

levels the elements of the meta level are typically called classes or types whereas the 

elements of the instance level are called objects or instances. For multilevel environ-

ments elements can act as both [14]: as a type for an instance level’s element and as an 

instance of another element of a higher meta level. Containing either an instance and a 

type facet, such elements are often called Clabjects (CLAss + obJECT) [1, 2] or con-

cepts [12]. Hence, such concepts can define attributes in the type facet and assignments 

to attributes of the concept’s type within the instance facet. 
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Beside instantiation, inheritance is another frequently used pattern to improve qual-

ity of meta models symbolizing the “is a” relationship between two different concepts 

[8]. Nevertheless, this relationship is limited to the type facet of both involved concepts 

whereas the instance facet is not affected. In modern programming languages like 

ECMAScript with prototypal inheritance a different pattern occurs, which expresses a 

specialization of the instance facet. Furthermore, this pattern can be observed in various 

domains like process modelling (type-usage) [11], car modelling (chapter 4.3) or graph-

ical frameworks [18]. Bridging the described gap in meta modelling, in this paper we 

introduce the pattern of instance specialization for meta modelling and show how it can 

be integrated into a meta modelling platform. Furthermore, we present an operator that 

allows for applying the presented pattern to an existing meta model with full support of 

model migration. 

2 Related Work 

The pattern of instance specialization occurs in various domains. Also many program-

ming languages use the paradigm of prototype-based inheritance, e.g. ECMAScript, 

Ruby, Python, Logtalk or OpenLaszlo. Beside programming languages the pattern of 

instance specialization is also used in the modelling domain. Lieberman [13] introduces 

the prototype pattern for object oriented systems and shows the advantages (flexibility) 

of delegation in contrast to inheritance. As mentioned in the paper [13], inheritance 

implements sets whereas delegation implements prototypes. Up to our knowledge, in 

the field of meta modelling there is only one approach that introduces the pattern of 

instance specialization. Volz presents the pattern of instance specialization in [20].  

Other domains like process modelling (type-usage[11]) or graphical model environ-

ments [18] also use this pattern. Nevertheless, those approaches mainly need to imple-

ment the aimed behavior of the pattern manually since the according environments do 

not provide instance specialization support. 

Additional to the lacking of out of the box support, none approach exists that sup-

ports applying instance specialization to an existing model. In the field of meta model 

evolution several operators were discovered [9, 10, 22] but none of them provide sup-

port for the presented pattern. 

3 Inheritance and Instance Specialization 

In this section we first take a look at traditional type specialization, which is typically 

called inheritance. Afterwards, we introduce the instance specialization pattern and ex-

plain how it can coexist and interact with inheritance. 

3.1 Inheritance  

The principle of inheritance is an often used pattern for object oriented software design 

(e.g. [15]). It is generally represented as an “is a” relationship between two concepts. 
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However, this is problematic, since instantiation is also used for that relationship [8]. 

The base class is called generalization and the other class specialization. Inheritance 

influences the structure of the according specialization concept. On the one hand attrib-

utes of the generalization are inherited and on the other hand the substitution principle 

is applied to the specialization, i.e., if an instance of the generalization is expected an 

instance of the specialization is valid as well. 

In the multilevel meta modelling context this definition has to be more precise since 

each element has a type facet and an instance facet. According to the common semantic 

of inheritance, inheritance influences the type facets of both involved concepts whereas 

the instance facet is not affected. Hence, this relation links the type facet of the special-

ization to the type facet of the generalization with the effect that attributes declared at 

the generalization are inherited to the specialization. 

3.2 Instance Specialization 

As explained above, inheritance is a relationship that merely extends the type facet of 

a generalized concept. Nevertheless, in various use cases a specialization of the instance 

facet is needed (e.g. Process Modelling [11], Lieberman [13]). Similar to common pro-

gramming languages, declaring a prototype (the base concept) of a specific concept (the 

instance specialization) enables inheriting concrete attribute values (assignments). Ac-

cordingly, the instance specialization is a relationship between two concepts linking 

their instance facets. The difference between inheritance and instance specialization 

was discussed in the programming language community for years (e.g. [13, 19]). Nev-

ertheless, for multi-level meta modelling instance specialization is not limited to the 

instance level but can be applied to any concept. 

To interact with inheritance the substitution principle needs to be extended for in-

stance specialization. Hence, instance specialization defines the substitution principle 

for the instance facets of both concepts, i.e., if an instance of a concept is expected as 

an attribute value, an instance specialization of that instance is also a valid value. For 

example, if concept A declares an attribute attr with concept B as its attribute type. 

Furthermore, let InstB be an instance of B and Special an instance specialization 

of InstB. Then, each instance of A may assign Special (and InstB) for attr.  

Instance specialization is hence a new relation between two concepts that does not 

exclude an inheritance between those two concepts. Since both relationships use differ-

ent concept facets they can interact harmless with each other (on a conceptual point of 

view).  

Overwrite Behavior.  

The core idea of this pattern is an inheritance of assignments that are defined at the 

prototype of an instance specialization concept. However, these assignments may be 

overwritten by the instance specialization if needed. Since this behavior is not always 

suitable, the prototype can define whether and how an assignment can be overwritten 

by an instance specialization.  
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To configure this, each prototype can declare the overwrite behavior for every as-

signment. The possible strategies are: 

 Type 0 (forbidden): An instance specialization is not allowed to overwrite the value 

of its prototype. The assigned value is always inherited from the prototype. 

 Type 1 (normal, default type): The prototype’s value for the specific attribute can 

be overwritten in any way by an instance specialization. If no type is specified ex-

plicitly type 1 is applied for the particular assignment. This type is also supported by 

languages like ECMAScript [7] that provide prototypal inheritance as an idiom. 

 Type 2 (limited): The assignment at the prototype defines the domain of all values 

that are assigned at an instance specialization, i.e., the values of the instance special-

ization are a subset of the values defined at the prototype. A similar type is shown 

by Pirotte et.al. [16] with the difference that the type is not declared at the assignment 

but at the attribute and thus acts for all according assignments. This type is restricted 

to assignments which base upon a multi-valued attribute. 

 Type 3 (append): The value of an instance specialization is appended to the value 

of the prototype for getting the concrete attribute’s value. 

 Type 4 (prepend). Similar to type 3 the concrete value of the instance specialization 

is a result of the assigned value together with the prototype’s value. Instead, the in-

stance specialization’s value is prepended to the prototype’s value. 

The two types 3 and 4 are only applicable to assignments whose attribute is multi-val-

ued or a string attribute. For strings, assignments within an instance specialization re-

sults in a concatenation. For collections, however, it leads to appending or prepending 

the value(s) of the specialization concept to the prototype’s values. Apparently, the both 

types are equal if they are not ordered within the according collection (e.g., a set). A 

similar declaration (with some differences) of such types was introduced by Volz [20] 

but he limits the overwrite behavior types 3 and 4 to strings. The information about the 

overwrite behavior is stored within the linguistic meta model [21], which is an imple-

mentation of the orthogonal classification. 

Example.  

A typical scenario for instance specialization could be a model for cars. Often manu-

facturers offer their cars in a base series that can be specialized in various ways. In Fig. 

1 we give a possible example. At level M1 we have modeled the concept Car, which is 

a representation of the real world counterpart and declares the attributes typeName, 

manufacturer and releaseDate. Each car may have some equipment (concept 

Equipment with a relation to Car).  

At level M0 an instance model is shown. Therein, a car Ibiza is modeled that has 

the name “Ibiza” (according assignment to typeName), produced by Seat (as-

signment to manufacturer), was released on the 1st of January 2009 (assignment to 

releaseDate) and may be equipped with the packages ABS and ESC (assignment 

to equipment). Each of these attributes defines a specific overwrite behavior. Since 

every instance specialization of the Ibiza base series will be produced by the same 

manufacturer (Seat), the attribute manufacturer declares the overwrite type 0. In 
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contrast to that releaseDate can be overwritten in any way. Owing to the fact that 

a new special car series may only have a subset of all possible equipment packages, the 

overwrite behavior of equipment is set to type 2 (limited). At last, typeName can 

be extended by any instance specialization. That is why the according assignment of 

Ibiza has the overwrite behavior type 3. Additionally, an instance specialization 

IbizaReference is available, which concretely uses the according prototype Car. 

The relationship between these two concepts is equipped with an arrow labeled with 

<<concreteUseOf>> to designate the instance specialization.  

The instance specialization IbizaReference is a special series of Ibiza that has 

a special type name (“Ibiza Reference”), a different release date and the ABS equipment 

package as standard equipment. Because of that, IbizaReference overwrites re-

leaseDate with the value “2010-04-01”, sets typeName to “ Reference”, 

which implicitly results in “Ibiza Reference”, and finally chooses ABS for 

equipment. The attribute manufacturer cannot be overwritten and is hence inherited 

from the prototype Ibiza. 

 

Fig. 1. Car model example 

4 Extract Prototype 

In this section we present a way for (semi-)automatically introducing an instance spe-

cialization into an existing model. This mechanism is supplied by a specific operator, 

which extracts a prototype out of instances that are similar. It can be seen as a counter-

part of the extract super class refactoring method that is provided by many IDE or mod-

elling systems [10, 22]. 
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4.1 Overview 

The Extract Prototype Operator creates a prototype out of similar instances of one type. 

Thereby, the operator sets the assignments at the prototype according to the chosen 

overwrite behavior and updates each instance specialization assignment if necessary. 

4.2 Operator process 

The operator process is shown by Fig. 2. Therein all steps or decisions that need user 

interaction are highlighted in black. At the beginning the operator is invoked on a con-

cept Base, which instantiates another concept Type. In the first step this instantiated 

type is ascertained together with all instances of it. Out of this set a subset of all future 

instance specializations (including Base by default) is chosen. In the following we call 

this subset Instances. Afterwards, the operator fetches all attributes declared at 

Type that can be set at Base. 

In the next step, a subset (AttrsToSet) out of these attributes have to be chosen, 

which will be set on the prototype. Of course, all attributes of Type that are mandatory 

(multiplicity 1 or 1..*) have to be part of this subset. After that, for each attribute of 

AttrsToSet the according assignments that were declared at an element of In-

stances are ascertained since they influence the attributes value at the prototype. 

Subsequently, the prototype is created. Thereby, the prototype’s name is defined and 

an instantiation to Type is created. After that, an assignment for each attribute of At-

trsToSet is created at the new prototype and together with it, the overwrite behavior 

is defined by the user. In the last activity of the operator the value of each assignment 

is determined depending on the chosen overwrite behavior: 

 Type 0 (forbidden): If a change of the assignment’s value is forbidden at an instance 

specialization, a specific value that was assigned at an element of Instances has 

to be chosen, which acts as new value for the prototype. Since the assignments of all 

elements of Instances are not valid anymore, they will be deleted afterwards.   

 Type 1 (normal): If this type is selected, each instance specialization may overwrite 

the attributes value in any way. Hence, just a selection of the new value out of those 

made at the elements of Instances for the prototype is needed. Then, all assign-

ments that are equal to the chosen value and those that should be deleted (user se-

lection) are removed from the according elements of Instances. 

 Type 2 (limited): For this type all assignment values of Instances are inserted 

into a set that acts as the resulting value for the prototype. Here, no further adaption 

is needed since all instance specializations values lie in the created domain. 

 Type 3 (append) and Type 4 (prepend): In this case a base value for the prototype 

has to be chosen. This value may consist of some values or a substring that was 

assigned at an element of Instances. 

In the last step the relationship for the instance specialization is created. Thereby, all 

instantiations of Instances are deleted since an implicit instantiation exists via the 

instance specialization. Furthermore, all assignments of new instance specializations 
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(Instances) are deleted if overwriting is forbidden (type 0) or are adapted (respec-

tively new chosen) if a base value was selected for the prototype assignment (type 3 

and 4). 

 

Fig. 2. Process of the Extract Prototype Operator 

4.3 Example 

In Fig. 2 a model is shown on which we will demonstrate how the operator works. 

Therein a DSML for describing cars is presented. Hence, at the top level M1 a concept 

Car is modeled representing the according real world element with a manufacturer 

attribute, a type (typeName), a release date (releaseDate) and a relationship to 

Equipment (attribute is called equipment). In general, a car may have various 

equipment parts.  
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One level below (M0) an instance model is given containing two instances of Car 

(IbizaStyle, IbizaReference). Both cars are produced by the manufacturer 

“Seat” and their type is almost equal to their concept’s name. Additional to the both 

Car instances, the M0 level contains two instances of Equipment (ABS, ESC) repre-

senting the anti-blocking system and the electronic stability control of a car. According 

to the modeled scenario (not the real life), IbizaReference provides only ABS 

whereas the IbizaStyle also has an ESC. 

 

Fig. 3. Application of the operator to the car model example 

Since both instances of Car can be seen as two different instance specializations of the 

car Ibiza we now invoke the Extract Prototype operator to create this prototype. That 

is why we select IbizaReference and call the operator on it. Afterwards, all in-

stances of Car are gathered by the operator and we decide to add IbizaStyle to the 

set of future instance specializations. In the next step, all attributes of Car are calcu-

lated (manufacturer, typeName and equipment) that can be instantiated at 

IbizaReference. In our example we decide to set all of these attributes at the pro-

totype and hence, all assignments relating to these three attributes of IbizaStyle 

and IbizaReference are collected. Subsequently, the new prototype can be cre-

ated, which is called Ibiza and which becomes an instance of Car. Next, all assign-

ments are created at the prototype with the following overwrite behaviors:  

 manufacturer should not be overwritten by instance specializations and gets 

thus type 0 (forbidden) 

 typeName can be extended by an instance specialization with any further string 

value and consequently gets type 3 (append) 

 equipment gets type 2 (limited) because the prototype should declare all possible 

equipment parts  
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 releaseDate gets type 1 since the date can differ in each car series. 

Owing to those overwrite behaviors, the assignments of IbizaStyle and Ibi-

zaReference for manufacturer are deleted and for typeName and re-

leaseDate a value for Ibiza is selected (“Ibiza” and “2009-01-01”). Ac-

cording to that, the assignments of the two instance specializations for typeName are 

adapted to the new values “ Style” or “ Reference” respectively and thus the 

original value is retained virtually. The assignment for releaseDate of Ibi-

zaReference is not affected whereas the assignment of IbizaStyle is deleted 

because the value is equal to the prototype’s value. For equipment the resulting value 

for Ibiza is the union of all values of the future instance specializations and hence 

{ABS, ESC}. The other assignments need not be adapted here since they are valid 

anymore. In the last step the instantiation of IbizaStyle and IbizaReference 

to Car is deleted and the instance specialization to Ibiza is created. Finally, the op-

erator terminates. The resulting model is free of any redundant attribute values, which 

is a great benefit especially in case of models. 

5 Conclusion and Outlook 

Instance specialization as described in this paper is a language pattern that solely 

impacts on the instance facet of concepts. It enables users to easily define a default 

configuration regarding a certain use case, which then can be adapted through instance 

specialization for specific scenarios. We greatly utilize this patterns for the definition 

and usage of concrete syntaxes for DSMLs (similar to [18]). Thereby, a concrete syntax 

is determined as an instance of a given meta model designed for this particular purpose. 

Later on, the concepts of this syntax can be instance-specialized to shape the visual 

parts of concrete diagrams or documents. As a result, only one meta model is required 

to formulate diagrams and documents as well as the concrete syntax they base upon. 

Above all, the common model base extremely reduces the implementation effort for 

building a dedicated processing module, which can handle both, concrete syntax and 

all associated instance specializations, in an analogous manner. A suchlike DSML tool 

as well as the Extract Prototype operator introduced in section 4 is implemented on top 

of the Model Workbench [5], a web-based modelling platform. Since each atomic and 

complex model manipulation action has to be encapsulated by an operator, they consti-

tute the core of this platform. Besides, the Model Workbench provides support for fur-

ther multilevel meta modelling patterns (e.g., deep instantiation [3] and materialization 

[16]). For the future, we plan to offer user-guided support for the introduction of these 

patterns by means of suitable operators. 
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Abstract. Multi-level modelling is currently regaining attention in the
database and software engineering community with different emerging
proposals and implementations. One driver behind this trend is to reduce
model complexity, a crucial aspect in a time of big data research in which
more and more data from different sources are required to be integrated.
From our experience, multi-level modelling also improves understand-
ing of complex specifications, simplify their management and evolution,
and facilitate interoperability between them. This paper focuses on the
requirement of reasoning for interoperability. Although there exist for-
malisation approaches for multi-level modelling, only few have the im-
plementation for three fundamental aspects: formalisation, querying and
validation of multi-level models. We propose an F-Logic framework to
implement these aspects. In addition, we believe this approach is more
likely to be adapted in real-world use cases because of its simple object-
oriented declarative nature.

Keywords: Multi-level modelling, interoperability, multi-level model rea-
soning, F-Logic, multi-level model querying, multi-level model validation

1 Introduction

Multi-level modelling (also called deep meta-modelling/instantiation) is cur-
rently regaining attention in the database and software engineering commu-
nity with different emerging proposals and implementations. Recently there have
been multiple works published which enrich multi-level modelling with new fea-
tures [2,19], propose a formalisation for multi-level modelling [21] or demonstrate
the practical application of it [8,13]. The most often mentioned arguments for
multi-level modelling are increased expressiveness, by introducing multiple clas-
sifications [5], and reduced complexity [6,20]. This seems to be a contradiction,
because one might expect increasing expressiveness may lead to increased com-
plexity, but multiple classification allows to brake down a complex specification
into smaller and simpler layers. Apart from the above mentioned advantages we
have seen a further three advantages in a use case from the oil and gas indus-
try [13]: (1) Simplification of the standards’ specifications by classifying elements
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into ontological and linguistic elements, (2) simpler management and evolution
of standards by structuring them into multiple ontological instance-of levels,
and most importantly (3) checking specifications for consistency according to
software engineering modelling principles.

The third advantage facilitates the interoperability between software systems.
During the development life cycle of an interoperability solution, the matching,
transformation, and synchronization of models and data rely on querying source
and target specifications and checking for consistency to ensure a correct end
result (i.e. validation). It only becomes possible with a formal specification that
can be executed.

For multi-level modelling there exist some formalisation approaches. Neu-
mayr et al. [19] proposed ConceptBase as the underlying formalisation frame-
work. ConceptBase is a metamodeling system based on Datalog and the Telos
data model [18]. Rossini et al. [21] implemented the semantics using the Diagram
Predicate Framework (DPF) and Golra et al. [11] used a graph algebra.

We propose a novel approach, namely Multi-level Modelling in F-Logic (MiF),
for the implementation, querying and validation of the multi-level models. We
propose to use F-Logic as an alternative implementation for the following rea-
sons: in comparison to DPF and graph-based approaches, F-Logic is object-
oriented and represents an integrated framework which allows the specification
of the semantics and ontological models as well as perform reasoning. Concept-
Base also aims at an integrated approach but is not as widely accepted as F-
Logic. In particular in the Ontology and Semantic Web community, e.g., there
exist commercial and open-source implementations such as OntoBroker 1 and
Flora 2, and it has been used for interoperability, such as the Rule Interchange
Format [14]3 and model transformation [15].
In the next section we describe our motivating use case from the oil and gas in-
dustry, followed by a description of the implementation of multi-level modelling
and related work.

2 Oil & Gas Interoperability Pilot

A large-scale standard-based interoperability is one of the main challenges in
the oil and gas industry. Some comparable figures of how much an inadequate
interoperability costs came from the US Capital Facilities Industry and the con-
struction and engineering domain with an estimate of about $15.8 billion per
year [9,10].

A lot of effort has been invested into data standards to overcome the inter-
operability issue in the oil and gas industry. One effort is the joint academic-
industry project Oil & Gas Interoperability (OGI) Pilot hosted by MIMOSA4

and supported by the ISO TC 184 OGI Technical Specification project. The

1 OntoBroker: http://www.semafora-systems.com/
2 Flora-2: http://flora.sourceforge.net/
3 RIF: http://www.w3.org/2001/sw/wiki/RIF
4 MIMOSA: http://www.mimosa.org
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goal of the OGI Pilot is increased automation in the digital hand-over of de-
sign information of very large physical assets to the operation and maintenance
side. This requires identifying commonalities and differences as well as open
gaps in the specifications of the major standards in the area: ISO 15926 [12]
and MIMOSA’s Open Systems Architecture for Enterprise Application Inte-
gration (OSA-EAI) [17]. Within the OGI Pilot we have identified some chal-
lenges [16] of which we will focus on ISO 15926 standard in this paper. The ISO
standard relies on a 4-dimensional information model specified in STEP/EXPRESS,
RDF, OWL, and first order logic.

Example: Our motivating example is taken from an engineering diagram which
specifies that “The impeller with serial number XXX is part of the Weir Pump
with serial number XYZ”. Figure 1a displays the flat model of this example
using the instance diagram notation appearing throughout the ISO 15926 doc-
umentation [12].

(a) Instance diagram (b) Multi-level representation

Fig. 1: Two representations of the same example: relating an impeller to a pump.

In ISO 15926 terminology each box represents a class which is part of the
specification and identified by its label. A diamond represents a relationship
where a diamond with a thick line represents a class of relationship. A (class of)
relationship has roles which are displayed by labelled arcs connected to the dia-
mond, e.g., “part” and “whole” are the two roles of “composition of individual”.
A symbol with prefix # is a possible individual with a temporal part, e.g., ”#Im-
peller S/N: XXX” is a possible temporal part with identifier “Impeller S/N:
XXX”. Remaining elements are classes identified by its label, e.g., “Pump Com-
ponent Class”.

Jordan et al. [13] applied rules on the ISO 15926 specification for the transfor-
mation of the flat model into a multi-level model. For example, one of those rules
assigns a model level according to the prefix of a class label, e.g., “class of composition”
is an instance of “class of class of composition” and removes the prefix “class of ”
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to simplify the notation. Figure 1b shows the result of applying those rules on
the example introduced above.

Some of the advantages of a multi-level model representation over the flat
model are: (1) explicit instance-of relationships, (2) separation of concerns through
multiple levels making it easier for users to focus on particular aspects of the
model, (3) reduced complexity, and (4) clarified terminology which improves
understandability.

In order to verify the multi-level models and perform queries, for example,
to support matching with other standards for model transformation, we require
a formal framework. We propose to use F-Logic because of its object-oriented
semantics and its wide acceptance in the ontology, business rules and model
transformation communities[1].

3 Implementation of Multi-level Modelling in F-Logic

This section introduces the semantics of multi-level modelling, its implementa-
tion, querying and validation in F-Logic.

3.1 Multi-level Modelling Semantics

The semantics of multi-level modelling involves the characterization of concepts
and the definition of relationships between them. Similarly to semantics defini-
tion in two-level modelling, which is designated by its meta-model, the multi-
level modelling semantics have been described by its meta-model that includes
a linguistic meta-model and an ontological stack [3,21].

The fundamental concepts of multi-level modelling are characterized by lin-
guistic and ontological perspectives. The linguistic meta-model deals with syntax
and grammar, whereas the ontological stack addresses structural hierarchies and
classification of an underlying domain. These perspectives make understanding
of multi-level modelling easier and clearer. We also define the semantics in the
light of the two perspectives.

The link between multi-level modelling perspectives is established by a lin-
guistic instance-of relationship. It differs from the relationships within the lin-
guistic meta-model and ontological stack in the sense that it connects the con-
cepts across the perspectives. Every model element and relationship in the on-
tological stack is a linguistic instance-of the concepts from the linguistic meta-
model. An ontological model element may or may not have an ontological type,
but the linguistic type (e.g. clabject) is mandatory.
Meta-model for use case: The multi-level modelling meta-model for our use
case is illustrated in Figure 2. It is organized in linguistic meta-model and onto-
logical stack.

Some of the concepts are inspired by the work on multi-level modelling and
the formalisation of deep meta-modelling [4,21]: The root element in the lin-
guistic meta-model is called instantiable element, meaning all model elements
are instantiable in the ontological stack. Depending on the representation of the

36



Fig. 2: Multi-level modelling meta-model with the motivational example

instantiated model element across ontological levels, instantiable elements are
categorized as multi- and single-potency elements in Figure 2. While general-
ization and classification relationships cannot be instantiated across ontological
levels, association and composition relationships can. The former ones are the
examples for single-potency and latter ones for multi-potency elements. While
the single potency elements can be instantiated in any ontological level and
will not have further instances, the multi-potency elements can have further
instances depending on the value of their potency[21]. The composition relation-
ship is illustrated as a multi-potency relationship between impeller and pump
elements in the example. The same multi-potency semantics is valid for clabject
and association relationship.

Generalization relationship and attribute model elements are sub-class of
a single-potency element. The difference between attribute and feature is that
while the former one is considered as a single-potency, the latter one has multi-
potency characteristics. Attribute is a property of the model element that can
be instantiated in any ontological level and will not be instantiated in the next
levels (single-potency). Alternatively, feature (field and method) is multi-potency
element and can be instantiated across ontological levels. Clabject is sub-classed
into domain entity and domain connection. Domain entities are the clabjects
that characterize the domain concepts and domain connections address domain
specific relationship, e.g., association and composition are domain connections.
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The generalization is demonstrated with a relationship between Weir MC
Series Centrifugal Pump and more general concept Centrifugal Pump in the
ontological stack. The association is illustrated with a relationship between Ro-
tating Mechanical Equipment and Designation model elements, that represents
that rotating mechanical equipment has a designation.

3.2 Implementation in Flora-2

In this section, we first introduce F-Logic briefly, then discuss built-in features of
F-Logic which directly support part of the meta-model and finally describe how
we add new semantics to fully support the meta-model. Due to lack of space, we
provide the excerpts of the semantics implementation.

F-Logic stands for Frame Logic, frame-based, object-oriented knowledge rep-
resentation and reasoning language. It has a declarative, compact, simple and
expressive syntax with well-defined semantics. These characteristics makes it
attractive to apply on integration of information, semantic search, intelligent
agents, semantic web and other areas.

In this paper, we use one of F-Logic implementations: Flora-2 [22]. Flora-2
is a dialect of F-Logic with numerous extensions and it supports extensibility,
flexibility and modularity through dynamic modules. It is more suitable for a
knowledge representation and reasoning in a way that multi-model semantics can
be compactly expressed and the constrains can be checked, validation rules can
be applied and more importantly the multi-model concepts and relationships can
be easily queried. The source code presented in this paper is based on Flora-2
syntax. We now continue with the overlapping and distinct features of F-Logic
and multi-level modelling.
Direct support: Some of the multi-level modelling concepts can be mapped di-
rectly to F-Logic. Concepts which are supported directly are represented with in
grey in Figure 2. The mapping between modelling concepts and F-Logic elements
are illustrated in Table 1.

MLM Concept F-Logic Concept Flora-2 Example

Generalization Subclass A::B. subclass::class.

Classification ”IS A” relationship A:B. object:class.

Attribute If M in O[M->V] is a con-
stant it is dealt as an at-
tribute

Pump[component->’impeller’].

Table 1: Multi-level modelling concepts and equivalent representation in F-Logic
and its implementation in Flora-2.

Multi-level modelling aware extensions: The linguistic meta-model ele-
ments with white background in Figure 2 represent model elements and relation-
ships that have not been addressed by F-Logic yet. Due to space limitation we
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provide its the implementation only for the linguistic and ontological instance-of
relationship:

Linguistic instance-of relationship: It is similar to the IS-A(instance-of)
relationship implemented by the colon (:) operator in F-Logic. We introduced a
new operator, (<:), for the linguistic instance-of relationship with the following
short excerpt of validation:

1. :- _op(400,xfx,<:).

2. linguistic_instance_of_validation(?X, ?Y) :-

3. ?X <:: ?Y,

4. ?Y \= clabject,

5. writeln(?X, ’ can only be an instance of CLABJECT’) @ _plg.

The operator is defined by _op(400,xfx,<:) statement. The first argument
(400) defines precedence order to follow when statement contains other ele-
ments. We define precedence as the same as F-logic’s instance-of relationship
precedence.
The Lines 2-5 represent a rule in F-Logic to validate the linguistic instance-of
relationship. If the model element in ontological stack is not a linguistic instance
of clabject (?Y\=clabject), then it prints a validation fail message on the screen
(Line 5).

Ontological instance-of relationship: We introduced new operator ’<::’,
which specifies the semantics of the ontological instance-of relationship. The
rule (Lines 2-5) checks the potency before ontologically instantiating the model
element.

1. :- _op(400,xfx,<::).

2. ?X <:: ?Y :-

3. ?Y[potency -> ?_P], ?_P == 0,

4. \+(?X[potency -> ?_P - 1]),

5. writeln(’cannot instantiate! It should be P > 0.’) @ _plg.

The second argument of the _op() operator, xfx is used to define the type
where f stands for the operator, and x and y stand for the arguments. The
negation operator is denoted by \+ symbol in Flora-2.

3.3 Querying and Validation

An essential feature of F-logic is reasoning. This paper focuses on the querying
and validation aspects of reasoning. A knowledge base is built based on the facts
(e.g. like the ones in the previous subsection) and can be easily queried. The
following facts illustrate ontological instance-of relationships on the motivational
example.
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weir_mc_series_centrifugal_pump<::rotating_mechanical_equipment.

weir_pump_sn_123<::weir_mc_series_centrifugal_pump.

Validation rules can be introduced to check certain properties of the concepts
and relationships. For example, the following predicate, validation rule checks
for the condition that a potency of a property should be equal or less than the
potency of an object.

validate_property_potency(?Prop):-

?X[property->?Prop],

?X[potency->?XPot],

?Prop[potency(?X)->?PropPot],

?PropPot=<?XPot.

Further, the knowledge base can be queried. For example, to determine the
potency or all instances of a particular pump:

?- weir_pump_sn_123[potency->?Potency].

?- writeln(’Give me all instances of the pump’) @ _plg,

instances(?X, weir_mc_series_centrifugal_pump).

4 Related work

Even though multi-level modelling was introduced more than ten years ago, the
formalisation of its semantics has only recently been addressed. Research on
multi-level modelling started to get momentum, and some formalization or im-
plementation attempts were made. In this section we compare related work using
six comparison criteria: (1) Linguistic extension and open semantics: support to
extend the linguistic meta-model with new concepts and relationships. E.g. speci-
fying semantics of ”membership” relationship, (2) object-oriented semantics: the
framework is based or supports object-oriented modelling principles, (3) inte-
grated framework : a single framework for formalization, querying and validation,
(4) relationship across levels: a support for the relationships across levels in the
ontological stack, (5) mediation of relationship: a need of intermediate relation-
ship to instantiate the relationship in not-immediate ontological/instantiation
level, and (6) single and multi-potency semantics: a support of single and multi-
potency concepts in the ontological stack (see Figure 2).

The evaluation of some multi-level modelling approaches is illustrated in
Table 2.

The linguistic and semantic extension criteria are covered by almost all of
approaches. The object-oriented criterion is supported by most of approaches
including this paper. We benefit from object-orientation in two ways: (1) It
already covers part of multi-level modelling and (2) it is built-in paradigm of
F-Logic. In the context of the integrated framework criterion, ConceptBase
[19] (based on Datalog and Telos) addresses formalism and validation, and
METADEPTH [21] deals with all components of the integrated framework:
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Criteria/Approaches [4] [11] [19] [21] [7] MiF

Linguistic extension and open semantics − X X X X X
Object-oriented X − X − X X

Integrated framework X X − − X X
Relationship across levels − − X X − −
Mediation of relationship − − X X − X

Single and multi-potency semantics X − X X X X
Table 2: Evaluation of multi-level modelling approaches.

formalization(METADEPTH), querying(Epsilon Object Language (EOL)) and
validation (Epsilon Validation Language (EVL)). The Multi-level modelling in
F-Logic (MiF) approach uses F-Logic / Flora-2 to implement the formalism,
querying and validation. The relationship across levels is used between models
with different ontological structures and in different domains/spaces [19,21]. MiF
approach could also support relationship across levels as well, however we did
not come across a use case in the OGI Pilot so far. All DPF[21], DDI[19] and
MiF support mediation of relationship, additionally MiF supports mediation of
a composition relationship as well. Almost all approaches support the criterion
of single and multi-potency semantics. F-OML [7] approach behaves as the same
as MiF approach, except in mediation of relationship criterion.

5 Conclusion

In this paper we introduced an alternative implementation of multi-level mod-
elling using F-Logic and Flora-2. We have applied the implementation on a
subset of the OGI Pilot use case, which dealt with the specification of a pump
using the ISO 15926 standard. The main benefit behind this proposal is the
integrated approach of F-Logic which allows the specification of the semantics,
ontological stack and reasoning capabilities (i.e. querying and validation) in a
single framework, its object-oriented semantics and its wide acceptance in the
ontology modelling community. In the future we plan to implement the semantics
of another standard used in the OGI Pilot, the MIMOSA standard and use the
reasoning capabilities of F-Logic to automate the matching and transformation
between ISO 15926 and MIMOSA.
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Abstract. Multi-level modelling allows types and instances to be mixed
in the same model, however there are several proposals for how meta-
models can support this. This paper proposes a meta-circular basis for
meta-modelling and shows how it supports two leading approaches to
multi-level modelling.

1 Introduction

Contemporary and future engineering of information systems place an increasing
emphasis on the use of models, either directly to aid design and implementation,
in a more formal sense for code generation or as the backbone to model-driven
engineering (MDE) [27]. Models must be described using a language that itself
may be defined in many ways but typically using a meta-model e.g., [26, 20].
That meta-model must itself be defined, by a meta-meta-model. Together with
the instances conformant to the model, this leads to an identification of four ab-
straction levels of interest to the modeller and meta-modeller. Although in use
for almost two decades, a four-layer architecture like that of the Object Manage-
ment Group (OMG) raises some concerns both theoretically and pragmatically;
a prime problem being the use of strict meta-modelling [5, 4] that constrains the
instance-of relation to only be permitted between pairs of conterminous layers
and never within a layer (see also [5]). This led several researchers (e.g., [7, 6])
to seek a way of describing models and modelling languages without the use of
this ‘strict meta-modelling’ hierarchy of the OMG.

A foundation for meta-modelling should be unifying and complete in the
sense that it supports the development of both general-purpose and domain-
specific languages and also integrates their representation so that tools can work
across multiple languages. Leading approaches include: strict meta-modelling:
The OMG strict meta-modelling architecture has been criticized, especially when
applied to processes and methodologies (see summary in [18]) since the tradi-
tional strict meta-modelling approach is unable to support enactment e.g., [2];
it defines attributes at level M2, thus giving them values at M1 by virtue of the
prevailing type-instance semantics, when what is actually needed is values at
M0. This enactment support is provided by the architecture used by ISO/IEC
24744 but at the expense of relying on power-type patterns, which do not accord
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with the philosophy of strict meta-modelling. clabjects: Potency is associated
with the notion of deep instantiation, [8, 12, 13], and introduces the idea of an
entity with both a class facet and an object fact, entity given the name clabject
[5]. OCA: Two different kinds of meta-model structures have been identified:
ontological meta-modelling in contrast to the linguistic meta-modelling utilized
in a strict meta-modelling architecture. This was later called the Orthogonal
Classification Architecture (OCA) [9]. In [22] we describe these ideas and relate
them to some more recent concerns raised by the application of language use the-
ory to this approach. More recently, Atkinson and colleagues have extended the
OCA in their description of the Pan Level Model (PLM) and the Level-agnostic
Modeling Language (LML) [7]. powertypes: The need to provide access to, and
control over, the meta-types of elements in a model when designing languages led
to proposals for powertypes [17, 23]. This is a methodological approach that uses
standard classes both conventionally and as meta-classes by disciplined use of
instance-of associations. The approach allows the modeller to control attribute
definitions at M2 that affect the properties in model elements at M1.

Our claim is that none of the approaches above are complete as a basis
for meta-modelling. In particular, such a basis must achieve the following fea-
tures: meta-circularity: Self description is key to achieving virtually all of the
desirable features for language engineering. Just as it is possible to embed a
λ-calculus interpreter in itself and thereby characterize an infinite tower of op-
erational languages, we seek to construct a self describing basis for an infinite
tower of modelling languages. uniformity: Any basis for meta-modelling that
is self-describing implies a precisely defined relation between representations for
type and instance. A system that achieves the conflation of these representations,
i.e., uses the identity relationship, is minimal in the family of such relationships.
Furthermore, a uniform representation is essential if we are not to encounter lim-
itations on the type of languages that can be defined, for example where we need
to mix instances and types. Therefore, we seek to provide a single representation
for types and instances at any level. extensibility: We assume that any family
of modelling languages will use type-based extension (sub-classes, inheritance,
etc.), and that new languages are based on extending existing languages. Meta-
circularity and extensibility implies that languages can be extended at both type
and meta-type levels and therefore the question arises as to whether there is a
limit to the levels over which extension can be applied. We seek a basis that
places no restriction on the number of levels of both extensibility and instanti-
ation. views: Languages should support multiple modes of interaction that are
defined at the meta-level. Although we will use multiple language views, we will
not consider this aspect further.

Our approach (subsuming those above) is to use simple objects together
with two simple relations: type A relation that exists between every object
and its class and can be applied an arbitrary number of times to define the
meta-classifications of instance, class and meta-class; extension A relation that
exists between classes that provides a minimal basis for incremental addition of
features. The approach is based on existing proposals for meta-classes provided
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by languages such as Smalltalk [16] and ObjVLisp [10]. Although Smalltalk was
the first language to introduce meta-classes (and thereby three-levels of meta-
class, class and instance), each meta-class is restricted to having a single instance
which severely limits its use as the basis for language engineering where meta-
properties are reused across multiple languages.

Fig. 1. Object Classifications As
Sub-Sets of Object

The approach to object classification and
the instance-of relation is shown in Fig. 1
where circles represent sub-sets of the set O
of objects. Consider the set A that denotes
a set of objects representing animals. In or-
der for an element of A to be well-formed, it
must have an instance-of link to an object in
the set C of all classes. Note that elements of
C are objects (everything is an object), but
they are objects that satisfy some criteria for
class-hood. Since the element of C that rep-
resents the class Animal is itself an object, it
must have an instance-of link to an object that
represents its class. Such an object is a meta-

class and is a member of the set of objects M (perhaps the class called Class). A
meta-class is just an object that satisfies the constraint for membership of M.
This means that it must have an instance-of link to a meta-meta-class in MM. It
should be stressed at this point, that there is no limit to the instance-of regress.
In addition to objects that satisfy Animal-hood. There are objects that are used
to group objects: snapshots that are members of the set S. Snapshots contain
objects that are all instances of related classes: packages that are members of the
set P. Finally, classes can be related by extension so that there are two classes
Animal and Herbivore in C that designate the rules for membership of the sets
A and H. Of course, since every element of M is also in C, the extension relation
can be defined between meta-classes that will designate different sub-sets of C.

Our basis for meta-modelling is defined as a self-describing object-oriented
kernel. The Kernel is essentially a logic. However, unlike a traditional logic
that consists of boolean valued formulas whose sub-expressions denote values
drawn from a collection of predefined types, the Kernel can only denote ob-
jects. Some objects are designated classes because they conform to a particular
object-interface that includes boolean valued expressions (or constraints) that
characterize objects designated as well-formed instances of the class. Such a self-
describing logic might lead to doubts related to Russell’s Paradox, although the
use of types and identities as described below, together with an implementation
of the approach that supports a collection of real-world applications (including
itself), gives us confidence that this is not a problem. Our claim is that this
approach is novel and that it subsumes existing approaches to meta-modelling.
Our contribution is the definition of a meta-circular foundation for model-based
language engineering in the form of a kernel language that is validated in terms
of an implementation as a toolkit that has been used for a variety of real-world
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applications. In addition we show that other approaches to multi-level modelling
can be represented in the Kernel.

2 A Meta-Modelling Kernel

Our proposal is to set up a system whereby everything is an object [21] and
where a simple set of rules governs the ability to construct configurations of ob-
jects that constitute self-describing languages. The system consists of an object-
representation and then sugarings that are convenient language structures de-
fined to de-sugar into the basic representation.

Figure 2(a) shows the proposed kernel language as a diagram. Fundamen-
tally, everything is an object and a partial view of the Kernel as a collection of
objects and slots is shown in figure 2(b). An object has a unique id, some slots,
and a type. The type of an object is a class. Classes are organised into packages
whose instances are snapshots that are assemblies of objects. Since classes are
just objects that conform to some structural conditions, packages can be simi-
larly viewed as snapshots with appropriate conditions. Collections of objects are
organised as sequences in terms of pairs and Null. Since types are always imple-
mented as classes, there is a special class called Listof whose instances are lists.
There is no need to special types of atomic value such as integers and booleans
because we can designate special objects via their identities as being members
of these data types. Expressions are objects that can be asked to evaluate them-
selves in a supplied context. Constraints are special types of expressions that
always return boolean values. Constraints are important because they are used
in classes to classify objects that are considered to be instances. Classes have op-
erations, that are objects used to handle messages sent to instances of the class.
Note that there is no notion of side-effect, operations are purely functional.

(a) Kernel as a Class Diagram (b) Kernel as an Object Diagram

Fig. 2. Two Views of the Kernel
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Fig. 3 shows the complete textual definition of the Kernel. It uses a number
of external definitions and notational conventions that are outlined as follows:
classes define a predicate ? that is used to determine instance-hood; operations
use λ-notation where arguments are patterns; objects are (C,i)[s 7→v] where C

is the class of the object, i is the id, s is a slot name and v is the corresponding
value; intern maps a class and slots to an object; lists are [v1,...,vn] and can
be appended using +; :: is used to dereference names in a name-space; ⇑ is an
inheritance relationship between classes.

Since the Kernel is essentially a logic we need something equivalent to OCL.
We use the following shorthand where l is a list: l.∀(p) is true when the pred-
icate p returns true for each element in the list l; l.∃(p) is true when the
predicate p returns true for any element in the list l; l.3(x) is true when the el-
ement x is contained in the list l; l.⇐(p,a,y) is the result of applying operation
a to the first element x of l for which p(x) is true and y if no such element exists;
l.flatten() expects l to be a list of lists and returns a list formed by appending
all elements of l in order. # maps a list to its length. It is convenient to be able
to construct and manipulate lists using comprehension expressions. For example,
if l is the list [2,3,4] then [x*2 | x ←l] is the list [4,6,8]. Predicates may be
used to filter lists as in [x | x←l,?even(x)] = [2,4].

In order for this to be meta-circular, we require that and Kernel.?(Kernel)

holds. This is difficult to establish without tooling since all the objects in the
definition must be checked against their classes, and, since the classes themselves
are part of the package, this requires the classes to be self-describing. The Kernel
has been implemented as part of the XModeler toolkit and has been used to
implement the rest of the tools including diagram tools, model browsers, model
editors, model transformers and libraries. The XModeler Kernel contains many
more classes than the language described in this article, but the essential features
are the same. XModeler can be instructed to apply the Kernel-defined constraints
to itself (over 100 classes) and to produce a report that shows that it is self-
consistent.

3 Validation

Section 1 describes a list of features that we claim to be characteristic for any
language that is used as a basis for meta-modelling. We have introduced such a
language and used it to build a model of itself. This section analyses the Kernel
language with respect to the characteristic features: type: In Kernel everything
is an object and all objects have an intrinsic type property. meta-circularity:
This property is essential for multi-level modelling and in order to be able develop
tools (such as serializers) that are language-level agnostic [25]. The XModeler
tool can be shown to establish that Kernel.?(Kernel). uniformity: We have used
a single representation (with a small number of externally defined conventions
and rules) for all data in Kernel. extensibility: Extension is supported through
class relationships that are then used by constraints in order to place conditions
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class Object {
id : Object;
type : Class;
slots : [Slot]
constraints { type.?(self) }
operations {
dot(n) = slots.⇐(
λ(n’ 7→ _)n=n’,λ(_ 7→ v) v,error)

send(n,args) =
type.ops().⇐(
λ(n’ 7→ (Operation )[args 7→ args ’])
n=n’ and #args = #args ’,

λ(_ 7→ f) f.invoke(self ,args),
error)

}
}
class Slot {name:Str;value:Object}
class Operation {
me : Str;
env : [Slot];
args : [Arg];
body : Exp
operations {
invoke(target ,values) =
body.eval(env+[’self ’ 7→ target] +
[me 7→ self] + target.slots +
target.type.ops() +
[a 7→ v | (a,v) ← args * values ])

}
}
class Listof extends Class {
etype : Class;
operations {
?(o) = list?(o) and

o.∀(λ(x)etype.?(x))
}

}
class Snapshot extends Object {

package : Package;
objects : [Object ];
bindings : [Slot]
constraints {
package.?(self);
bindings.∀(λ(b)objects.3(b.value))

}
operations {
::(k,d) = bindings.⇐(
λ(s)s.name=k,λ(s)s.value ,d)

}
}

class Class {
name : Str;
supers : [Class];
attributes : [Attribute ];
operations : [Binding ];
constraints : [Constraint]
operations {
supers () = [self] +
[c | p ← supers;

c ← p.supers ()]. remDups ()
⇑(c) = supers ().3(c)
atts() =
[a | c ← supers(),a ← c.attributes]

ops() =
[b | c ← supers(),b ← c.operations]

cond() =
[a | c ← supers(),a ← c.constraints]

::(n,d) =
atts ().⇐(λ(n’ 7→ a)n’=n,λ(n 7→ a)a,

ops ().⇐(λ(n’ 7→ o)n’=n,λ(n 7→ o)o,d))
?(o) = o.type.⇑(self) and
atts ().∀(λ(a)o.slots.∃(λ(s)
s.name = a.name and
a.type.?(s.value ))) and
cond ().∀(λ(c) c.eval([self 7→ o] +
[s.name 7→ s.value | s ← o.slots ]))

}
}
class Package extends Snapshot ,Class {
constraints {
objects.∀(Class ?);
attributes.∀(λ(a) objects.3(a.atype ));
parents.∀(λ(p) p.type.⇑(Package ))

}
operations {
::(n,d) = obj ().⇐(λ(o)o.n=n,λ(o)o,d)
obj() = objects +
[p.objects | p ← parents ]. flatten ()
⇑(p) = objects.∀(λ(c)obj().∃(λ(c’)c.⇑(c’)))
?(o) = o.type.⇑(Snapshot) and
o.package.⇑(self) and
o.objects.∀(λ(o)
objects.∃(λ(c) c.?(o))) and
Class::?(intern(self ,o.slots))

}
}
class Pair {head:Object;tail:Object}
class Nulll {}
class Constraint extends Exp {}
class Arg { name:Str }

Fig. 3. Definition of Kernel

on objects that are instances of a sub-class. The definitions are Class::? and
Package::? in Fig. 3.

Our claim is that the Kernel is a suitable basis for multi-level modelling. In
order to validate this claim we present the definition of two different languages,
each based on independent approaches, both defined in the Kernel. Models writ-
ten in the languages are shown in Fig. 4.

The model in figure 4(a) shows the use of type facets that allow classes to
have properties. These can be implemented by including a potency as part of
an attribute definition. The potency is an integer value indicating the number
of type-levels (3 are shown in the model) spanned by the relationship between
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(a) A Use of Potency (in [3]) (b) A use of Power-Types (in [23])

Fig. 4. Two Approaches to Multi-Level Modelling

an attribute and its corresponding slots. The model defines a language (Domain
Metatypes) of engines. The class Engine defines a type facet called max_speed

that results in a slot at the domain type (model) level, and an instance facet
called inertia that becomes a slot at a remove of two type-levels.

The model in figure 4(b) shows the power-type pattern where a class (in this
case Vehicle) is classified by another class (VehicleKind). Instances of VehicleKind
are used to partition subclasses of Vehicle as shown in the ellipse, forming a clab-
ject. The result is that an object is contributing to the type-level information in
a class that will eventually affect instances of the class.

Each language definition takes the form of a package that is both an instance
and an extension of Kernel. By the definition of Package::?, an instance of a
package P should be a snapshot whose contents are all instances of classes in P.
By the definition of Package::extends?, a package P extends a package Q when
every class in P extends some class in (or inherited by) Q. Therefore, by extending
and instantiating Kernel a package is a well-formed language definition in its
own right, that can, by the definition of extension, modify the basic definition
of Class::?. Such a modification might place extra conditions on instance-hood,
or even relax existing conditions.

Fig. 5 contains the definition for the language and models shown in figure
4(a). The class CAtt extends Attribute with an attribute for potency-level. The
class CClass modifies atts so that it gathers together all attributes that apply
to this level. This is achieved using a counter that is incremented when the
type-level is traversed. A concrete-syntax for potency-level in attributes is used
in the definition of the package DomainMetaTypes, and slots are permitted in
class definitions due to potency-levels becoming 0 in DomainTypes. The snapshot
DomainInstances contains a single object whose slots correspond to attributes
from different type-levels as defined by their respective potency-levels.

Fig. 6 contains the definition for the language and models shown in figure
4(b). The meta-class PowClass defines an attribute classifier and the constraint
on PartClass requires that all its descriptor objects are instances of the classi-
fier inherited by a parent power-class. The package Vehicles contains a single
power-class Vehicle that is classified by VehicleKind and a partitioned-class Boat
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package CKernel:Kernel extends Kernel {
class CAtt extends Attribute {
level:Integer;

}
class CClass extends Class {
operations {
atts() = catts(1,self)
catts(n,c=(_,c)[]) = []
catts(n,c) =

[a | a ← c.atts(),
?a.type=CAtt ,a.level=n] +

catts(n+1,c.type)
}
constraints {atts.∀(λ(a)a.type=CAtt)}

}
}
snapshot DomainInstances:DomainTypes {
(DType)[ inertia7→0.28; ECU_version7→7.3]

}

package DomainMetaTypes:CKernel {
class Engine:CClass extends CClass {
inertia [2]: Float;
max_speed [1]: Integer

}
class DieselEngine:CClass extends Engine {
preheat_time [1]: Float

}
class OttoEngine:CClass extends Engine {
ignition_alpha [1]: Float

}
}
package DomainTypes:DomainMetaTypes {
class DType:DieselEngine {
ECU_version [1]: Float;
max_speed =5000;
preheat_time =1.5

}
}

Fig. 5. Definition and use of CKernel

that includes an instance of VehicleKind as its descriptor. The snapshot ABoat

is governed by the classes defined in the package Vehicles which in turn are
governed by the language PKernel therefore, ABoat is constrained by the clabject
Boat and Boat.descr.

package PKernel:Kernel extends Kernel {
class PowClass extends Class {
classifier:Class

}
class PartClass extends Class {
descr:[ Object]
constraints {
supers ().∀(λ(c) PowClass ?(c));
descr.∀(λ(o)
supers ().∃(λ(c)
c.classifier.?(o)))

}
}

}
snapshot ABoat:Vehicles {
(Boat)[beam 7→ 9; weight 7→ 185]

}

package Vehicles:PKernel {
class Vehicle:PowClass {
classifier=VehicleKind
weight:Int

}
class VehicleKind {
name:Str;
canTravelOnWater:Bool

}
class Boat:PartClass extends Vehicle {
descr =[( VehicleKind )[

name7→’Boat ’;
canTravelOnWater 7→ true]]

beam:Int
}

}

Fig. 6. Definition and use of PKernel

The examples described above contribute evidence that Kernel can define
different languages and is not restricted to a fixed number of type-levels, and
that objects, classes and meta-classes can be mixed. This is possible because of
the uniformity of representation, the unrestricted access to type-level information
and meta-circularity. Although outside the scope of this paper, the formulation
of Kernel makes it possible to write level-agnostic tools, such as those for model-
management, that can be used on any type-level.

4 Conclusion

Our aim is to produce a meta-circular level-agnostic basis for model-based lan-
guage engineering. We have reviewed the current proposals for such a basis and
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argued that they are not optimal by providing a new language definition that is
self-describing and can be used to embed the competing approaches. The Kernel
language is simple and can be implemented as demonstrated by the XMF and
XModeler toolkit [11] that is capable of both describing and reasoning about
itself. The toolkit was reported as a leading technology for Software Engineering
[19] and has been used for a variety of applications including modelling languages
for aerospace applications, telecoms applications [1], and is currently being used
to implement aspects of the MEMO enterprise modelling language [24, 14].

In [15], the authors show how the OMG levels M0-M3 can be represented
on a single object-diagram. This allows OCL constraints to range over all levels
and thereby support clabjects and potency. This is consistent with our approach,
although OCL is just one of the languages that could be used with our approach
(as a view of models and constraints) and the authors of [15] do not claim to be
a foundation for model-based language engineering.

Our intention is that the Kernel language defined in this article provides a
basis for ourselves and others to experiment with language definitions. Because
all such kernel-defined languages are based on a single object representation, it
is feasible to build a collection of tools that work against well defined sub-sets
of objects (as shown in figure 1) and thereby incrementally develop a shared
library.

References

1. Achilleas Achilleos, Nektarios Georgalas, and Kun Yang. An open source domain-
specific tools framework to support model driven development of oss. In Model
Driven Architecture-Foundations and Applications, pages 1–16. Springer, 2007.

2. Anat Aharoni and Iris Reinhartz-Berger. A domain engineering approach for sit-
uational method engineering. In Conceptual Modeling-ER 2008, pages 455–468.
Springer, 2008.

3. Thomas Aschauer, Gerd Dauenhauer, and Wolfgang Pree. Representation and
traversal of large clabject models. In Model Driven Engineering Languages and
Systems, pages 17–31. Springer, 2009.

4. Colin Atkinson. Meta-modelling for distributed object environments. In Enter-
prise Distributed Object Computing Workshop [1997]. EDOC’97. Proceedings. First
International, pages 90–101. IEEE, 1997.

5. Colin Atkinson. Supporting and applying the UML conceptual framework. In The
Unified Modeling Language. UML 98: Beyond the Notation, pages 21–36. Springer,
1999.

6. Colin Atkinson, Bastian Kennel, and Björn Goß. Supporting constructive and ex-
ploratory modes of modeling in multi-level ontologies. In Procs. 7th Int. Workshop
on Semantic Web Enabled Software Engineering, Bonn (October 24, 2011).

7. Colin Atkinson, Bastian Kennel, and Björn Goß. The level-agnostic modeling
language. In Software Language Engineering, pages 266–275. Springer, 2011.

8. Colin Atkinson and Thomas Kühne. The essence of multilevel metamodeling. In
UML 2001 The Unified Modeling Language. Modeling Languages, Concepts, and
Tools, pages 19–33. Springer, 2001.

51



9. Colin Atkinson and Thomas Kühne. Concepts for comparing modeling tool ar-
chitectures. In Model Driven Engineering Languages and Systems, pages 398–413.
Springer, 2005.

10. Jean-Pierre Briot and Pierre Cointe. The objvlisp model: Definition of a uniform,
reflexive and extensible object oriented language. In ECAI, pages 225–232, 1986.

11. Tony Clark and James Willans. Software language engineering with xmf and
xmodeler. Formal and Practical Aspects of Domain Specific Languages: Recent
Developments. IGI Global, USA, 2012.

12. Juan De Lara and Esther Guerra. Deep meta-modelling with metadepth. In
Objects, Models, Components, Patterns, pages 1–20. Springer, 2010.

13. Juan de Lara, Esther Guerra, Ruth Cobos, and Jaime Moreno-Llorena. Extend-
ing deep meta-modelling for practical model-driven engineering. The Computer
Journal, page bxs144, 2012.

14. Ulrich Frank. Multi-perspective enterprise modeling: foundational concepts,
prospects and future research challenges. Software and System Modeling,
13(3):941–962, 2014.

15. Martin Gogolla, Jean-Marie Favre, and Fabian Büttner. On squeezing m0, m1,
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Abstract. As the range of modelling approaches that claim to be “multi-level”
diversifies, there is growing debate in the literature about what multi-level mod-
elling actually is and what form supporting languages and infrastructures should
take. However, there is no consensus yet on how this debate should be framed and
what objective criteria should be used to evaluate different approaches. It is clear
from the literature that proponents of different approaches base their arguments
on fundamentally different assumptions about what multi-level modelling is and
what benefits it should aim to provide. In this position paper we identify some of
the core issues that currently hinder progress towards the required consensus and
identify some of the terminological differences that have amplified confusion.
Referencing various work that represents diverging viewpoints, our goal is to ini-
tiate a meta-discussion on what the open questions in multi-level modelling are,
how respective proposals to answer them could be evaluated, and which kinds of
discussions are expedient in this context.

Keywords: multi-level modelling, deep modelling, metamodelling, level-agnostic

1 Introduction

Multi-level modelling is gaining resonance. Many groups have applied the approach or
created variants, and a community focusing on multi-level modelling is emerging. How-
ever, at the present time, there is little consensus in the literature on fundamental multi-
level modelling concepts, and if anything proponents of multi-level modelling appear to
be diverging rather converging in their understanding of the approach. In particular, in a
series of recent papers [9,12,13] some authors have presented a long list of fundamental
criticisms of one of the first proposed multi-level modelling approaches [6], based on
the notions of the orthogonal classification architecture and deep instantiation. Many
other authors have also identified issues in this and other approaches to multi-level
modelling and have suggested their own solutions (e.g., [10,18]).

An analysis of these papers reveals that the criticism ranges from challenges to the
fundamental validity of the approach from a set-theoretic point of view to objections to
the use of particular terminology and disagreements about the basic goals and motiva-
tions underlying multi-level modelling.
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We believe that some of the disagreements can be resolved by adopting a different
style of debate. Hence, we argue that the main challenge facing the fledgling multi-
level modelling community at the present time is to clarify the boundary conditions and
assumptions within which the debate about multi-level modelling should take place.
Without consensus on these meta-issues, the chances of forging a common understand-
ing about fundamental concepts in multi-level modelling will be small.

In order to foster greater clarity in the debate between multi-level modelling ap-
proaches, in this paper we attempt to identify some of the main open questions in multi-
level modelling and suggest potential ways of converging towards broadly accepted
answers. In particular, we aim to characterize what kinds of discussions are most likely
to increase convergence and suggest certain principles to be used in evaluating different
proposals.

The rest of the paper is organised as follows. To help set the context for the dis-
cussions, the next section briefly outlines some core features we believe could be used
to characterized multi-level and deep modeling approaches. Section 3 continues by de-
scribing five key issues with the potential to cause controversy in the context of multi-
level modeling. Section 4 then provides a deeper consideration of one of the most subtle
and sensitive of these issues – “terminology” – with a specific focus on the term “level-
agnostic” which is the subject of some debate at the present time. Finally, section 5
concludes with some final observations and closing remarks.

2 Multi-Level Modelling

Perhaps the most fundamental and important question is what qualities an approach
needs to posses in order to be characterized as multi-level. Without a consensus on
how to recognize multi-level modeling approaches, it will be impossible to conduct
a meaningful debate about their relative strengths and weaknesses. We suggest that
minimal requirements for a multi-level modelling approach include:

– some fundamental notion of abstracting a multitude of model elements to a com-
mon classifier.

– the ability for model elements to form anti-transitive instantiation chains.
– a concept of level, formed by elements belonging to the same classification level,

the latter being defined by both classification depth and level membership of the
root of the instantiation chain.

The above minimal requirements are very inclusive and admit, for instance, tra-
ditional linguistic language definition stacks. We prefer to take a narrower view that
furthermore:

– mirrors classification relationships in the domain with explicit relationships that are
subject to well-formedness constraints [15].

– recognises type and instance facets of model elements and views them as insepara-
ble [2].

– provides a mechanism for deep characterisation [5].
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The approach containing the combination of all the above characteristics is often re-
ferred to as “deep (meta-)modelling”. This is the particular flavour of multi-level mod-
elling that has been the subject of the most debate in the recent literature [9,12,13] and
we used some of this criticism to identify a number of potentially controversial issues
that we discuss in the following section.

3 Potentially Controversial Issues

In order to move the field of multi-level modelling forward, it is of course desirable
to have many alternative proposals and a healthy debate about their respective merits.
There are a few pitfalls, however, that should be avoided in order to achieve progress as
constructively as possible.

For example, we believe that subscribing to a particular “school of thought” and
exclusively evaluating differing proposals from one subjective perspective can be prob-
lematic. Some examples of controversies that can emerge when issues have been eval-
uated with this mindset are discussed below.

3.1 Language Size

Always expecting a user to first define or choose their language [19] versus presenting
a user with a rich library of modelling concepts to be adapted and used [6] represent
the two different ends of a language engineering spectrum. No single point within this
spectrum will be optimal for all types of users but we believe there is an interesting
discussion to be conducted about the level of support tools aimed at the majority of
modellers should provide with respect to language engineering.

Which modellers can be expected to be good language engineers and which library
paradigms may turn out to be too narrow in the assumptions they make? A complete tool
should recognise both language engineering and domain modelling as relevant tasks but
there is certainly room for specialised tools that focus on one of these areas only. The
potential pitfall to avoid is to assume that all user modelling is language engineering or
that all language engineering can be subsumed under domain modelling.

3.2 Semantics

The clabject-based deep instantiation approach of Atkinson and Kühne has been criti-
cised for lacking alignment with set theory and requiring the instantiation of elements
that are not available for further instantiation [9]. While we do not dispute that there
are formalisations and school of thoughts in which deep instantiation can be seen as
“wrong”, there is indeed a sound set-theoretic formalisation of deep instantiation [17]
and in this framework – based on sets of sets – it is perfectly possible and natural to
view elements as instances and types at the same time, with corresponding linear in-
stantiation chains arising from this property.

We believe that instead of evaluating approaches according to whether or not they
have compatible foundations, it is more helpful to examine whether approaches are
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internally consistent. If an approach is inconsistent to the effect of exhibiting contradic-
tions or allowing unwanted paradoxes to occur then it could be viewed as “wrong”.
Non-conformance to a particular semantic foundation, however, should not be held
against an approach per se. Thus, while conformance to established disciplines can be
a potential advantage, it cannot be the ultimate criterion for determining the adequacy
of a proposal.

It would of course be desirable to obtain a common sound formal foundation for
all multi-level modelling approaches in order to move the technology forward, but until
consensus on such a formalism has been reached it is unhelpful to assume one particular
approach as being a benchmark to evaluate other approaches against. In fact, judging
an approach using an inappropriate perspective and formalism can lead to claims of
unsoundness and inconsistencies which are not in fact valid [7].

3.3 Intended Target Audience

Whether consciously or unconsciously particular approaches target different user groups.
For instance, while Henderson-Sellers et al. appear to focus on making it easy to build
tools [12], the original multi-level approach by Atkinson and Kühne [4] focused on re-
ducing accidental complexity for the domain modeller. On the other hand, Vangheluwe
et al.’s AtomPM tool appears to be geared towards language engineering [19], etc.

A considerable amount of debate can be avoided if one takes the intended target au-
dience of a particular approach into consideration. For example, the apparent difference
in attributing significance to domain-motivated (ontological) instantiation relationships
between Henderson-Sellers et al. and Atkinson et al. can be understood as reflecting
the different target audiences. When focusing on the internals of a tool, i.e., addressing
a tool builder audience, it is natural to regard user-defined relationships and associated
modelling patterns as secondary [12]. In contrast, work on the orthogonal classification
architecture [4] or in particular the “Unified Modelling Library” [6], targets the mod-
eller and aims to provide a richer environment in order to reduce accidental complexity.

As an analogy, it is simpler to write a compiler for an assembly language compared
to a software engineering language like Eiffel [20], however it can be argued that the in-
vestment necessary to develop the far more complex Eiffel compiler will pay dividends
in subsequent safe language usage. We believe that “everything is an object” [12] is
mainly a tool builder’s argument and is less helpful when aiming to support modellers.

3.4 Level of Modelling Discipline

Related to the above discussion regarding intended target audiences, there appear to be
diverging views on what the intended target audience is. Some work appears to take a
liberal approach, allowing concise and powerful solutions but also giving users rope to
hang themselves [12], while other work attempts to enforce a discipline that is aimed at
helping the user avoid inconsistent models [3].

We claim that is not ideal to point out perceived problems of disciplined approaches
while not acknowledging the dangers that are implied by looser approaches. Strict meta-
modelling [3], for instance, has been criticised as being too restrictive and causing prob-
lems [10,12].
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First, we believe that a lot of the criticism towards strict metamodelling is based
on misunderstandings, e.g., the lack of awareness that new elements can always be
introduced linguistically (i.e., without requiring an ontological type), that potency dec-
larations are to be regarded as constraints that make certain guarantees but are not an
enabler for deep instantiation, and that potency constraints do not cross instantiation
dimensions, e.g., from the linguistic dimension to the ontological dimension, etc.

Second, we suggest that the debate is comparable to the debate about the value
of static typing in programming languages. In the same way that some research in pro-
gramming languages strives to make types and type checking available when needed [8]
based on ideas of optional type inference, it seems promising to adopt a similar ap-
proach to modelling. In particular, since there is no extra effort involved in adhering to
strict metamodelling (since levels can be inferred [15]) we suggest to support optional
sanity checking on the basis of strict metamodelling principles.

3.5 Terminology

Terminology, i.e., the choice of words and their meaning, is always a potential source
of confusion and unnecessary (or undiscovered) disagreement. As an example, the fact
that the name of a particular, domain-oriented, instantiation type includes “ontological”
should not be construed to mean that respective models in so-called ontological levels
need to exhibit “all the trappings of an ontological (meta)model such as the UFO” [12].

The particular naming choice involving “ontological” was made because the orig-
inal meaning of “ontology” relates to the things that exist (in the sense of a universe
of discourse), in contrast to (linguistically classified) notation elements. There was no
intention to invoke any of the features associated with contemporary ontology research.

We believe terminology can have various degrees of intuitiveness but effectively
only the explicitly given definition of concepts and mechanisms should be decisive
when it comes to criticising an approach.

A good example of an increasingly used term that can be interpreted in diamet-
rically opposed ways is “level-agnostic”. In the following, we clarify these different
interpretations.

4 Level-Agnostic Languages

The adjective “level-agnostic” implies that an approach does not make the treatment
of an element dependent on its level in the ontological classification hierarchy. In this
sense, the UML is definitely not a level-agnostic language since it uses a different no-
tation for objects compared to classes, even though arguably all objects and classes are
just modelling elements with the only difference being that classes have a type facet
whereas object do not.

The idea of level-agnosticism for a modelling language as discussed in this context
can be traced back to the proposal of using a uniform notation for UML elements,
independently of which level they belong to, e.g., whether they are objects or classes [2].
This idea has later been expanded to include further notational elements [1].
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A language can achieve level-agnosticism in one of two ways. One way is to essen-
tially only recognise a single level [12] which internally can support arbitrary con-
stellations of ontological classification relationships. We refer to such languages as
“level-blind”. The other way to support level-agnosticism is to use levels as a struc-
turing and soundness-enforcing mechanism, without letting level membership impact
on such things as element representation and rendering. We refer to such languages as
“level-adjuvant”.

4.1 Level-Blind Languages

Since the term “level-agnostic” implies the existence of levels, a “level-agnostic lan-
guage” has to acknowledge them in some sense, even the approach put forward in [12].
Otherwise the described “search for a level-agnostic language” should have been char-
acterised as a search for a “level-less” language. The characteristic feature of a level-
blind language is that it essentially ignores the fact that there are levels.

An example for level boundaries that are considered insignificant in the level-blind
approach of [12] are the ontological classification level boundaries implied by elements
in a universe of discourse, such as “Lassie”, “Collie”, and “Breed” (c.f. section 3.3).
In contrast, Atkinson and Kühne give the respective ontological classification hierarchy
the same significance as the time-honoured linguistic classification hierarchy formed
by language metamodelling [4].

The advantage of an approach that is blind to the ontological level boundaries is that
it allows all elements to be treated the same, since membership to ontological levels
is abstracted away from. The disadvantage, however, is that element membership to
ontological levels can no longer be exploited to uncover unsound scenarios. Paradoxical
situations like being one’s own baby [14, p. 247] are hallmarks of single level, flat
domain approaches where unification has been taken to the extreme. If, for instance,
everything is a set, as in naı̈ve set theory, then even the set of all sets that do not contain
themselves is a set. Yet this construction establishes Russel’s famous paradox, as it is
not possible to find a single consistent answer to the question whether the said set is a
member of itself.

An analogous construction is obviously possible with the “everything is an object”-
approach put forward in [12]. Consider an object O whose instances are all those objects
that are not instances of themselves. This leads to the paradoxical situation that O must
be an instance of itself when it is not an instance of itself and must not be an instance of
itself when it is an instance of itself. Such paradoxes are impossible in a language that
uses levels to avoid self-reference. Stratification was one of the proposals to fix naı̈ve
set theory and works just as well when used in the form of ontological levels forming a
domain-classification hierarchy.

4.2 Level-Adjuvant Languages

A level-adjuvant language is a level-agnostic language that recognises the utility of lev-
els, without implying accidental differences in treatment. For instance, the orthogonal
classification architecture [4] uses ontological level boundaries to avoid paradoxical
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modelling scenarios but does not require different treatments with respect to represen-
tation or rendering (c.f. [5, Fig. 16, p. 307]). The orthogonal classification architecture
hence establishes level-agnosticism with respect to representation and notation but is
not level-blind with respect to enforcing soundness for models of the universe of dis-
course.

The difference between using level-blind versus level-adjuvant languages is like the
difference between untyped programming languages versus strongly typed program-
ming languages. While the “anything goes” approach of untyped languages supports
small but powerful solutions, the discipline attained by typing rules pays big dividends
when unsound scenarios are rejected straight away as opposed to being discovered
through testing, or worse, not uncovered at all (c.f., section 3.4).

For instance, the “everything (even a class) is an object” approach [12, Fig. 10]
that was first used as the backbone of the Smalltalk metaclass hierarchy [11], allows an
object o to be its own class or to be an instance of another object c and a subclass of c at
the same time. Unless such scenarios are excluded by suitable well-formedness rules,
it is possible to construct paradoxical situations and “sillygisms” [16]. The discipline
afforded by requiring an ontological classification relationship to be acyclic and level-
respecting [15] is exactly designed to exclude such problems.

It is ironic that the proponents of a single-level, flat domain approach [12] that takes
unification to the extreme, criticise level-aware approaches for enabling paradoxes even
though level-awareness is the key to avoiding a whole class of paradoxes that naturally
occur in single-level, flat domain approaches.

5 Conclusion

As multi-level modelling grows as a research discipline, there is hope that all groups
involved will be able to converge on some universally acceptable concepts and ideas.
We are by no means suggesting that all current and future approaches should be brought
into line with a single view, though. On the contrary, variety and lively discussions are
obviously important to further any new discipline. Nevertheless, unless agreement can
be found on a number of fundamental questions, the discipline and its community will
struggle to grow cohesively.

In this paper we therefore suggested that future debates should be not be held from
subjective standpoints using a particular school of thought as a frame of reference.
Observing incompatibilities between different approaches can be a starting point for
fruitful discussions, but cannot be used as a basis for claims of other approaches being
“wrong”.

Moreover, we propose that in the vast majority if cases different approaches should
not be judged as “right” or “wrong” but as “better” or “worse”. The intention behind
this proposal is not just to use relative terminology versus absolute terminology, it more
crucially also involves different evaluation criteria. In our view, the merits of an ap-
proach should be judged on what benefits and/or disadvantages it brings to the intended
target audience. In other words, instead of using subjective “schools of thought” as a
reference, we propose to use pragmatics as a deciding criterion. Who exactly is the
target audience? How does the target audience benefit from a certain philosophical un-
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derpinning in a concrete manner? What are the extra tools and/or opportunities given
to a user? How do different approaches compare in terms of model maintenance? We
believe that these are some of the crucial questions that should be asked when debating
divergent viewpoints.

Empirical evaluations are notoriously hard to conduct, but debates on the merits of
a certain approach can also be resolved theoretically. As long as arguments and com-
parisons are made with an explicitly stated target audience in mind, we believe that the
discipline of multi-level modelling can converge and future users can benefit from this
new, emerging sub-discipline of model-driven development.
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9. Eriksson, O., Henderson-Sellers, B., Ågerfalk, P.J.: Ontological and linguistic metamod-
elling revisited: A language use approach. Information & Software Technology 55(12),
2099–2124 (2013)

10. Gitzel, R., Merz, M.: How a relaxation of the strictness definition can benefit MDD ap-
proaches with meta model hierarchies. In: Proceedings of the 8th World Multi-Conference
on Systemics, Cybernetics and Informatics. vol. IV, pp. 62–67 (July 2004)

11. Goldberg, A., Robson, D.: Smalltalk-80: The Language and its Implementation. Addison-
Wesley, Reading, MA (1983)

12. Henderson-Sellers, B., Clark, T., Gonzalez-Perez, C.: On the search for a level-agnostic mod-
elling language. In: Proceedings of the 25th International Conference on Advanced Infor-
mation Systems Engineering. pp. 240–255. CAiSE’13, Springer-Verlag, Berlin, Heidelberg
(2013)

13. Henderson-Sellers, B., Eriksson, O., Gonzalez-Perez, C., Ågerfalk, P.J.: Ptolemaic Meta-
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Abstract. Multi-level modelling is a technology that promotes an incre-
mental refinement of meta-models in successive meta-levels. This enables
a flexible way of modelling, which results in simpler and more intensional
models in some scenarios. In this context, integrity constraints can be
placed at any meta-level, and need to indicate at which meta-level below
they should hold. This requires a very careful design of constraints, as
constraints defined at different meta-levels may interact in unexpected
ways. Unfortunately, current techniques for the analysis of the satisfia-
bility of constraints only work in two meta-levels.
In this paper, we give the first steps towards the automation of mecha-
nisms to check the satisfiability of integrity constraints in a multi-level
setting, leveraging on “off-the-shelf” model finders.

1 Introduction

Multi-level modelling [3] is a promising technology that enables a flexible way
of modelling by allowing the use of an arbitrary number of meta-levels, instead
of just two. This results in simpler models [4], typically in scenarios where the
type-object pattern or some variant of it arises.

While multi-level modelling has benefits, it also poses some challenges that
need to be addressed in order to foster a wider adoption of this technology [10].
One of these challenges is the definition and analysis of constraints in multi-level
models. In a two-level setting, constraints are placed in the meta-models and
evaluated in the models one meta-level below. This enables the use of “off-the-
shelf” model finders [1, 6, 12, 13, 16] to reason about correctness properties, like
satisfiability (is there a valid model that satisfies all constraints?). However, con-
straints in multi-level models can be placed at any meta-level and be evaluated
any number of meta-levels below, which may cause unanticipated effects. This
makes the design and reasoning on the validity of constraints more intricate.

In this paper, we present the first steps towards a systematic method for the
analysis of a basic quality property in multi-level modelling: the satisfiability of
integrity constraints. We base our approach on the use of “off-the-shelf” model
finders, which are able to perform a bounded search of models conforming to
a given meta-model and satisfying a set of OCL constraints. Since the state-
of-the-art model finders only work in a two-level setting, we need to “flatten”
the multiple levels in a multi-level model to be able to use the finders for our
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purposes. This process has two orthogonal dimensions, which account for the
number of meta-levels provided to, and searched by, the finder. Thus, we discuss
alternative flattening algorithms for different analysis scenarios. As a proof of
concept, we illustrate our method through the analysis of MetaDepth multi-
level models [9] using the USE Validator [13] for model finding.
Paper organization. Section 2 introduces multi-level modelling as designed
in the MetaDepth tool. Section 3 presents properties and scenarios in the
analysis of multi-level models. Section 4 discusses strategies for flattening multi-
level models for their analysis with standard model finders. Section 5 describes
the use of a model finder to analyse MetaDepth models. Last, Section 6 reviews
related research and Section 7 draws some conclusions and future works.

2 Multi-level modelling

We will illustrate our proposal using a running example in the area of domain-
specific process modelling, while the introduced multi-level concepts are those
provided by the MetaDepth tool [9]. The example is shown in Fig. 1 using
MetaDepth syntax (left) and a graphical representation (right). For the textual
syntax, we only show the two upper meta-levels of the solution.

The main elements in a multi-level solution are models, clabjects, fields, ref-
erences and constraints. All of them have a potency, indicated with the @ symbol.
The potency is a positive number (or zero) that specifies in how many meta-levels
an element can be instantiated. It is automatically decremented at each deeper
meta-level, and when it reaches zero, the element cannot be instantiated in the
meta-levels below. If an element does not define a potency, it receives the potency
from its enclosing container, and ultimately from the model. Hence, the potency
of a model is similar to the notion of level in other multi-level approaches [3].

As an example, the upper model in Fig. 1 contains a clabject Task with
potency 2, thus allowing the creation of types of tasks in the next meta-level (e.g.,
Coding), and their subsequent instantiation into concrete tasks in the bottom
meta-level (e.g., c1). Task defines two fields: name has potency 1 and therefore
it receives values in the intermediate level, while startDay has potency 2 and is
used to set the start day of specific tasks in the lowest meta-level.

In MetaDepth, references with potency 2 (like next) need to be instantiated
at potency 1 (e.g., nextPhase), to be able to instantiate these latter instances at
level 0. The cardinality of a reference constrains the number of instances at the
meta-level right below. Thus, the cardinality of next controls the instantiations
at level 1, and the cardinality of nextPhase the ones at level 0.

Constraints can be declared at any meta-level. In this case, the potency
states how many meta-levels below the constraint will be evaluated. Constraint
C1, which ensures uniqueness of task names, has potency 1, and therefore it will
be evaluated one meta-level below. Constraint C2 has potency 2, and hence it
states that two meta-levels below, the start day of a task must be less than the
start day of any task related to it by next references. C2 needs to refer to the
instances of the instances of the reference next, two levels below, but the (direct)
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1 Model ProcessModel@2 {
2 Node Task {
3 name@1 : String[0..1];
4 startDay : int;
5 next : Task[∗];
6

7 C1@1: $ Task.allInstances()−>excluding(self)−>
8 forAll( t | t.name<>self.name ) $
9 C2: $ self.references(’next’)−>forAll( r |

10 self.value(r)−>forAll( n |
11 self.startDay < n.startDay )) $
12 }
13 }
14

15 ProcessModel SEProcessModel {
16 abstract Task SoftwareEngineeringTask {
17 final : boolean = false;
18 C3: $ self.startDay>0 $
19 }
20

21 Task Coding : SoftwareEngineeringTask {
22 name = ’Coding’;
23 nextPhase : SoftwareEngineeringTask[1..∗]{next};
24 C4: $ self.final = false $
25 }
26

27 Task Testing : SoftwareEngineeringTask {
28 name = ’Testing’;
29 nextPhase : Testing[∗]{next};
30 C5: $ self.final implies self.nextPhase−>size()=0 $
31 C6: $ Coding.allInstances()−>exists( c |
32 c.startDay = self.startDay ) $
33 }
34 }

Task 

next 
* name@1: String[0..1] 

startDay: Integer 

SoftwareEngineeringTask: Task 

Coding: Task Testing: Task 

final: boolean=false 
nextPhase: 
next 

1..* 

nextPhase: 
next 

* 

c1: Coding 

t1: Testing 

@2 

@1 

@0 

name=‘Coding' name=‘Testing' 

C2: self.references('next')->forAll( r |  

          self.value(r)->forAll( n|  

             self.startDay < n.startDay ) ) 

C3: self.startDay>0 

final=false 

startDay=1 

final=false 

startDay=1 

C1@1: Task.allInstances()->excluding(self)->forAll( t |  

                t.name <> self.name ) 

C6: Coding.allInstances()->exists(c | 

          c.startDay = self.startDay ) 

C5: self.final implies  

       self.nextPhase->size()=0 

C4: self.final=false 

c2: Coding 

final=false 

startDay=5 

t2: Testing 

final=true 

startDay=5 

? 

Fig. 1. Running example in MetaDepth syntax (left) and diagram (right).

type of the instances two levels below is unknown beforehand because it depends
on the elements created at level 1. In the example, it means that C2 cannot make
use of nextPhase to constrain the models at level 0. Instead, to allow the access
to indirect instances of a given reference, MetaDepth offers two operations:

– references returns the name of the references that instantiate a given one. For
example, self.references(’next’) evaluated at clabject c1 yields Set{’nextPhase’},
as the type of c1 defines the reference nextPhase as an instance of next.

– value returns the content of a reference with the given name. For example,
self.value(’nextPhase’) evaluated in clabject c1 yields Set{c2,t2}.

In the intermediate meta-level, constraints C3, C4, C5 and C6 have potency 1,
and thus they need to be satisfied by models at the subsequent meta-level. The
purpose of C3 is to enforce positive starting days, where note that the feature
startDay is defined one meta-level above. C4 ensures that Coding tasks are not
final, while C5 requires final Testing tasks to have no subsequent tasks. Finally,
C6 is an attempt to enable some degree of parallelization of tasks, where the
modeller wanted to express that any coding task should have a testing task
starting the same day.
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The lower meta-level in the figure is an attempt (with no success) to instan-
tiate the model with potency 1. The modeller started adding the coding tasks c1

and c2 at days 1 and 5. Then, to satisfy the constraint C6, he added two testing
tasks starting at days 1 and 5 as well. Coding tasks must be followed by some
other task to avoid they are left untested (controlled by the cardinality 1..* of
nextPhase), and the start day of consecutive tasks must be increasing (controlled
by constraint C2). Thus, the modeller connected the tasks as shown in the figure
to satisfy these constraints. However, then, he realised that the coding task c2

needed to be followed by some other task. Connecting c2 with t2 is not a valid
solution because this would violate constraint C2. Therefore, how can he connect
the testing tasks to the coding tasks to satisfy all constraints? The next section
explains how model finders can help in this situation.

3 Analysis of multi-level models: properties and scenarios

A meta-model should satisfy some basic properties, like the possibility of creating
a non-empty instance that does not violate the integrity constraints. Several
works [7] rely on model finding techniques to check correctness properties of
meta-models in a standard two meta-level setting, like:

– Strong satisfiability: There is a meta-model instance that contains at least
one instance of every class and association.

– Weak satisfiability: There exists a non-empty instance of the meta-model.
– Liveliness of a class c: There exists some instance of the meta-model that

contains at least one instance of c.

Model finding techniques can also be helpful in a multi-level setting. If we
consider level 0 in Fig. 1, a model finder can help model developers by providing
a suitable model completion, or indicating that no such completion exists. At
level 1, it can help to check the consistency of the integrity constraints at levels
1 and 2 through the analysis of the abovementioned correctness properties. At
level 2, it can provide example instantiations for levels 1 and 0, to ensure that
potencies of the different elements at the top-most level work as expected.

However, model finders work in a two-level setting (i.e., they receive a meta-
model and produce an instance). To enable their use with several meta-levels,
we need flattening operations that merge several meta-levels into one, which can
then be the input to the finder. The flattening operations must take into account
how many meta-levels are going to be used in the analysis (depth of model), as
well as the number of meta-levels in the generated snapshot (height of snapshot).

Fig. 2 shows the different scenarios we need to solve for the analysis of multi-
level models. Fig. 2(a) is the most usual case, where only the definition of the top-
most model is available, and we want to check whether this can be instantiated
at each possible meta-level below (2 in the case of having an upper model with
potency 2). Thus, in the figure, the depth of the model to be used in the analysis
is 1, while the height of the searched snapshot is 2. As standard model finders
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@2 depth of 

model:1 

(a)                                   (b)                                      (c)                                    (d) 

@1 

@0 
height of 

snapshot:2 

@2 
depth of 

model:2 
@1 

@0 height of 

snapshot:1 

@2 
depth of 

model:1 

@1 

@0 

height of 

snapshot:1 

@2 
depth of 

model:1 

@0 height of 

snapshot:1 

 gap: 1  @1 

Fig. 2. Different scenarios in the analysis of a multi-level model.

only provide snapshots of models residing in one meta-level, we will need to
emulate the generation of several meta-levels within one.

In Fig. 2(b), the models of several successive meta-levels are given, and the
purpose is checking whether there is an instance at the next meta-level (with po-
tency 0) satisfying all integrity constraints in the provided models. This situation
arises when there is the need to check the correctness of the constraints intro-
duced at a meta-level (e.g., @1) with respect to those in the meta-levels above
(e.g., @2). This scenario would have helped in the analysis of the constraints at
levels 2 and 1 in Fig. 1. In Fig. 2(b), the depth of the model to be used in the
analysis is 2. Thus, we will need to flatten these two models into a single one,
which can be fed into a model finder for standard snapshot generation.

Fig. 2(c) corresponds to the scenario that standard model finders are able to
deal with, where a model is given, and its satisfiability is checked by generating
an instance of it. However, the meta-model to be fed into the solver still needs
to be adjusted, removing constraints with potency bigger than 1.

Finally, in Fig. 2(d), only the top-most model is available, and the designer
is interested just in the analysis of the lowest meta-level. This can be seen as
a particular case of scenario (a), where after the snapshot generation, the in-
termediate levels are removed. This scenario is of particular interest to verify
the existence of instances at the bottom level with certain characteristics, like
a given number of objects of a certain type, or to assess whether the designed
potencies for attributes work as expected.

4 Flattening multi-level models for analysis

In this section, we use the running example to show how to flatten the depth of
models to be used in the search, and how to deal with the height of the searched
snapshot. Scenarios where both the height and depth are bigger than one are
also possible, being resolved by combining the flattenings we present next.

4.1 Depth of analysed model

To analyse a model that is not at the top-most meta-level (like in Fig. 2(b),
where the goal is analysing level 1), we need to merge it with all its type models
at higher levels. This permits considering all constraints and attributes defined
at such higher levels. For simplicity, we assume the merging of just two meta-
levels. Fig. 3(a) shows this flattening applied to the running example: levels 1
and 2 are merged, as the purpose is creating a regular instance at level 0.
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First, the flattening handles the top level. All its clabjects (Task in the exam-
ple) are set to abstract to disable their instantiation. All references are deleted
(next), as only the references defined at level 1 (nextPhase) can be instantiated
at level 0. All attributes are kept, as if their potency is bigger or equal than the
depth (2) plus the height (1), they still can receive a default value. Constraints
with potency different from 2 (C1) are deleted as they do not constrain the level
we want to instantiate (level 0). As the figure shows, the notion of potency does
not appear in the flattened model. This can be interpreted as all elements having
potency 1.

Then, the model at potency 1 is handled. For clabjects, the instantiation
relation is changed by inheritance. In this way, SoftwareEngineeringTask is set to
inherit from Task instead of being an instance of it. This is not required for Coding

and Testing, as they already inherit from SoftwareEngineeringTask. This flattening
strategy allows clabjects in level 1 to naturally define all attributes that were as-
signed potency 2 at level 2 (startDay), and receive a value at level 0. For attributes
that receive a value at level 1, we need to emulate their value using constraints.
Thus, in the example, we substitute the slot name from Coding and Testing, by
constraints C7 and C8. The attributes, references, and constraints defined by the
clabjects at level 1 are kept. Finally, we generate two operations references and
value to emulate the homonym MetaDepth built-in operations by collecting
the knowledge about reference instantiation statically. That is, they encode that
nextPhase in Coding and Testing are instances of next. As a result of this flattening,
we can use a model finder to check whether there is a valid instance at level 0.

4.2 Height of snapshot generation

In this scenario, we need to emulate the search of a set of models spawning
several meta-levels. For simplicity, we assume the scenario in Fig. 2(a), aimed at
generating two models in consecutive levels from a meta-model with potency 2.

A possible strategy is to split each clabject C with potency 2 into two classes
CType and CInstance holding the attributes, references and constraints with po-
tency 1 and 2, respectively, and related by a reference type. However, this solu-
tion gets cumbersome if C is related or inherits from other clabjects, and requires
rewriting the constraints in terms of the newly introduced types and relations.

Another possibility is to proceed in two steps: first a model of potency 1 is
generated, which is promoted into a meta-model that can be instantiated into a
model of potency 0. However, this solution may require rewriting the constraints
with potency 2 in terms of the types generated at potency 1. Moreover, it does
not consider all constraints at a time, which may result in different attempts
before two valid models at potencies 1 and 0 are obtained.

Instead, we propose the flattening in Fig. 3(b), which adds a parent abstract
class Clabject that makes explicit typical clabject features, like ontological typing
and potency. All constraints are kept, but they need to be changed slightly to
take into account their potency. Thus, C1 is added the premise self.potency=1 im-

plies... so that it gets only applicable to tasks with potency 1, and similar for con-
straint C2 for tasks at potency 0. To emulate the potency of attributes, they are
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Task 

name: String[0..1] 

startDay: Integer 

SoftwareEngineeringTask 

Coding Testing 

final: boolean=false 
nextPhase 

* 

nextPhase 

* 

C7: 

self.name= 'Coding' 

C8: self.name=‘Testing' 

operation references (r:String) : Set(String) = 

    if (r='next') then Set{'nextPhase'}  

    else Set{} endif 

C2:  

self.references('next')->forAll( r | 

   self.value(r)->forAll( n| 

      self.startDay < n.startDay ) ) 

C3: self.startDay>0 

operation value (r:String) : Set(Task) = 

    if (r='nextPhase') then  

    self.nextPhase  

    else Set{} endif 

Task 
next 

* 

name: String[0..1] 

startDay: Integer[0..1] 

Clabject 

potency: int 

type 0..1 
C9: self.potency>=0 and self.potency<=1  

C10: not self.type.oclIsUndefined() implies  

         self.potency = self.type.potency - 1 
instance 

C11: (self.potency=0 implies self.instance->size() = 0) and 

         (self.potency<1 implies not self.type.oclIsUndefined()) 

* 

C12: self.potency < 1 implies self.name.oclIsUndefined() 

C13: self.next->forAll( n |  

         (self.potency = n.potency) and 

         ((not self.type.oclIsUndefined())  

           implies self.type.oclAsType(Task).next-> 

              exists(ntype | ntype = n.type))) 

operation references (r:String) : Set(String)= 

    if (r='next') then Set{'next'} else Set{} endif 

operation value (r:String)  : Set(Task)= 

    if (r='next') then self.next else Set{} endif 

C2: self.potency=0 implies 

          self.references('next')->forAll( r | 

             self.value(r)->forAll( n| 

                self.startDay < n.startDay ) ) 

C1: self.potency=1 implies  

          ( Task.allInstances()->excluding(self)-> 

                forAll( t | t.name <> self.name ) ) 

(a) Scenario with depth=2 and height=1.                                                        (b) Scenario with depth=1 and height=2. 

  
  

C6: Coding.allInstances()->exists(c | 

          c.startDay = self.startDay ) 

C5: self.final implies  

       self.nextPhase->size()=0 

C4: self.final=false 

Fig. 3. Flattenings for different depths and heights.

set to optional (cardinality [0..1]), and we add constraints ensuring that the at-
tributes are undefined in the meta-levels where they cannot be instantiated. For
example, name has originally potency 1, and hence it can only receive a value in
tasks of potency 1 (constraint C12). Constraint C13 ensures that references (like
next) do not cross meta-levels and are correctly instantiated
at every meta-level. The latter means that, if two tasks at
potency 0 are related by a next reference, then their types
must be related via a next reference as well. While this does
not fully captures the instantiation semantics as there is no
explicit “instance-of” relation between references with differ-
ent potencies, it suffices our purposes. Finally, constraints C9

to C11 ensure correct potency values for types and instances.
As an example, the figure to the right shows a snapshot with
height 2, generated by USE from the definition in Fig. 3(b).

5 Automating the analysis of constraints

Next, we illustrate our method by checking the satisfiability of MetaDepth
multi-level models with the USE Validator [13] for model finding. The checking
includes the following steps: (1) flattening of multi-level model according to the
selected scenario; (2) translation of flattened model into the input format of USE;
(3) generation of snapshot with the USE Validator tool; and (4) translation of the
results back to MetaDepth. We will demonstrate these steps for the running
example, considering the scenario in Fig. 2(b), i.e., we start from models at
potency 2 and 1, and check their instantiability at potency 0.

Fig. 3(a) shows the merging of levels 1 and 2 for the running example, while
part of its translation into the input format of USE is listed below. The USE
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Validator does not currently support solving with arbitrary strings, but they
must adhere to the format ’string<number>’. Thus, we translate strings to this
format, where ’next’ is substituted by ’string0’ (lines 12 and 27), ’nextPhase’ by
’string1’ (lines 28 and 31), and so on.

1 model ProcessModel
2

3 abstract class Task
4 attributes
5 name : String
6 startDay : Integer
7 operations
8 references(r:String) : Set(String) = Set{}
9 value (r:String) : Set(Task) = Set{}

10 constraints
11 inv C2:
12 self.references(’string0’)−>forAll(r |
13 self.value(r)−>forAll(n |
14 self.startDay < n.startDay))
15 end
16

17 abstract class SoftwareEngineeringTask < Task
18 attributes
19 final : Boolean
20 constraints
21 inv C3: self.startDay > 0
22 end

23

24 class Coding < SoftwareEngineeringTask
25 operations
26 references(r:String) : Set(String) =
27 if (r=’string0’)
28 then Set{’string1’}
29 else Set{} endif
30 value(r:String) : Set(Task) =
31 if (r=’string1’)
32 then self.nextPhase
33 else Set{} endif
34 constraints
35 inv C4: self.final=false
36 inv C7: self.name = ’string2’
37 end
38

39 ...
40

41 association Coding nextPhase between
42 Coding[∗]
43 SoftwareEngineeringTask[1..∗] role nextPhase
44 end

If we try to find a valid instance of this definition, we discover that the only
model satisfying all constraints is the empty model. Thus, the model at level 1 is
neither weak nor strong satisfiable. Revising the constraints at level 1, we realise
that C6 does not express what the designer had in mind (that for any coding
task, there should be a testing task starting the same day), but it expresses the
converse (i.e., for each testing class, a coding class exists). One solution is moving
constraint C6 from class Testing to Coding, modified to iterate on all instances of
Testing (i.e., Testing.allInstances()...). If we perform this change, the resulting model
becomes satisfiable, and the USE Validator generates the snapshots in Fig. 4.

Weak satisfiability is checked by finding a valid non-empty model. The USE
Validator allows configuring the minimum and maximum number of objects and
references of each type in the generated model. If we set a lower bound 1 for
class Testing, we obtain the instance model shown in the left of Fig. 4. Strong

Fig. 4. Showing weak (left) and strong (right) satisfiability of the running example.
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Coding.allInstances()−>exists(c1,c2|
Testing.allInstances()−>exists(t1,t2|

c1.final = false and
c2.final = false and
t1.final = false and
t2.final = true and
c1.startDay = 1 and
c2.startDay = 5 and
t1.startDay = 1 and
t2.startDay = 5 and
c1.nextPhase−>includes(c2,t2) and
t1.nextPhase−>includes(t2) ))

Fig. 5. Encoding of incomplete model at level 0 (left). Complete valid instance (right).

satisfiability is checked by finding a model that contains an instance of every class
and reference. By assigning a lower bound 1 to all types, the USE Validator finds
the model to the right of Fig. 4.

If the scenario to solve is completing a partial model, like the one at the
bottom level of Fig. 1, we need to provide a seed model for the search. This can
be emulated by an additional constraint demanding the existence of the starting
model structure. Fig. 5 shows the OCL constraint representing our example
model at level 0 (left), as well as the complete valid model found by USE (right).

6 Related work

Some multi-level approaches have an underlying semantics based on constraints,
like Nivel [2], which is based on WCRL. This allows some decidable, automated
reasoning procedures on Nivel models, but they lack support for integrity con-
straints beyond multiplicities.

There are several tools to validate the satisfiability of integrity constraints in
a two-level setting. We have illustrated our method with the USE Validator [13],
which translates a UML model and its OCL constraints into relational logic, and
uses a SAT solver to check its satisfiability. UML2Alloy [1] follows a similar ap-
proach. Instead, UMLtoCSP [6] and EMFtoCSP [12] transform the model into a
constraint satisfaction problem (CSP) to check its satisfiability, and ocl2smt [16]
translates it into a set of operations on bit-vectors which can be solved by SMT
solvers. The approach of Queralt [14] uses resolution and Clavel [8] maps a subset
of OCL into first-order logic and employs SMT solvers to check unsatisfiability.
HOL-OCL [5] is a theorem proving environment for OCL. In contrast to the
enumerated tools, it does not rely on bounded model finding, but it is able of
proving complex properties of UML/OCL specifications. All these works con-
sider two meta-levels, and could be used to solve the multi-level scenarios in
Section 3, once they have been translated into a two-level setting. Other works
use constraint solving for model completion [15], also in a two-level setting.

Altogether, the use of model finders to verify properties in models is not
novel. However, to the best of our knowledge, ours is the first work targeting the
analysis of integrity constraints in multi-level models.
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7 Conclusions and future work

In this paper, we have proposed a method to check the satisfiability of constraints
in multi-level models using “off-the-shelf” model finders. To this aim, the method
proposes flattenings that depend on the number of levels fed to the finder and
the height of the generated snapshot. The method has been illustrated using
MetaDepth and the USE Validator.

Currently, we are working towards a tighter integration of the USE validator
with MetaDepth, providing commands to e.g., complete a given model. We
also plan to analyse other properties, like independence of constraints [11].
Acknowledgements. This work has been funded by the Spanish Ministry of
Economy and Competitivity with project “Go Lite” (TIN2011-24139).
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Abstract. Multi-level modeling has become a popular paradigm as it
allows for a natural and easy-to-understand representation of various
real-word hierarchies. To date, several approaches have been proposed
on how multi-level models should be represented and constructed – how-
ever, their continuous evolution and consistency has received consider-
ably less attention. Consistency checking is critical to efficient and effec-
tive modeling—especially to understand the impact of model changes.
Multi-level modeling adds another dimension because it allows for both
model and metamodel changes over multiple levels. This paper discusses
the key challenges for consistency checking in multi-level modeling en-
vironments and outlines an incremental and highly flexible approach for
addressing these challenges effectively without being limited to a spe-
cific modeling paradigm. A prototype implementation of the approach
has been developed; preliminary evaluation results suggest that the ap-
proach scales and provides instant consistency information during multi-
level modeling.

1 Introduction

By applying model-driven engineering (MDE) approaches, practitioners raise
the level of abstraction in software and systems engineering. This allows for eas-
ier communication and more efficient development processes as models become
first class development artifacts that are used as blueprints for (semi-)automatic
generation of the desired system. However, it has been shown that traditional
two-layer approaches, in which a domain-specific language is used to model a
specific instance of the domain, suffers from a lack of support for expressing the
often complex hierarchies that occur in real-world domains. Even though there
exist workarounds for handling such hierarchies in common two-layer modeling
languages and tools (e.g., in UML), the solutions are usually not generic and
often counter-intuitive. Multi-level modeling allows for modeling arbitrary deep
hierarchies by allowing specific models to serve both as domain-specific instance
models of a certain domain and the domain language of another instance model—
a more specialized domain. Although it has been shown that multi-level modeling

73



PetType3

ReqSkill3

Dog2

ReqSkill2

Cat2

ReqSkill2

MediumDog2

SmallDog2

HairyCat2

GroomedCat2

Roxy1

ReqSkill1=90

Angel1

ReqSkill1=60

Ginger1

ReqSkill1=40

Pepper1

ReqSkill1=30

Clabject Metamodel
L
in
gu

is
ti
c

Ontological

O1 O2 O3

L2

L1

Fig. 1: Pet Store Web Shop Example (based on [4]).

makes models more intuitive to construct and read, it is still an open question
in the research community how exactly model construction should be done and
which methods should be used. Therefore, to date there exist various multi-level
modeling approaches, paradigms, and tools (e.g., [1–3]). However, there is an
important aspect that has been widely overlooked in multi-level modeling so
far: the need for consistency checking in models. While it is well acknowledged
that in MDE consistency checking is a crucial factor for building valid mod-
els efficiently, this has not been addressed sufficiently in multi-level modeling
approaches. Although some approaches do define well-formedness constraints,
these constraints typically define the semantics for a specific modeling paradigm
only; there is usually no support for user-defined, domain-specific consistency
rules.

In this paper, we outline the dimensions of consistency checking in multi-level
modeling environments and present a generic and paradigm-agnostic approach
that addresses these challenges, allowing modelers to easily write domain-specific
consistency rules that check both syntax and semantics. While the approach is
based on the general principles of incremental consistency checking for tradi-
tional two-level models, these concepts have been adapted and extended in order
to handle multi-level models efficiently.

2 Multi-level Modeling Example

To illustrate the issues of consistency checking in multi-level modeling environ-
ments we use a standard example which is well known in the multi-level modeling
community: the pet store web shop ontology [4]. As shown in Fig. 1, the example
is modeled using the paradigm of clabjects [2] (the actual clabject metamodel
is omitted for space reasons). Therefore, there are two levels in the linguistic
dimension: the clabject metamodel at level L2 and the instance model at level L1
in which clabjects are used to model various ontological levels. In the ontological
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dimension, there are three levels. The level O1 defines the concept of a PetType,
which has an attribute named ReqSkill which indicates the required skill level
a prospective owner of a specific pet should exhibit in order to take good care of
it. Different types of pets are then defined at level O2. Specifically, the two types
Dog and Cat are defined. For each of these two types, two subtypes (or special-
izations) are defined through inheritance: MediumDog and SmallDog for the pet
type Dog as well as HairyCat and GroomedCat for the pet type Cat. Finally,
for each specialized kind of dog or cat, there is a single animal available: Roxy,
Angel, Ginger, and Pepper. Since these animals are instances of the specialized
kinds, they are modeled at level O3.

3 Dimensions of Consistency Checking in Multi-level
Modeling

Let us now discuss the different dimensions of consistency checking that are re-
quired in the example. Specifically, there are three major dimensions: i) linguistic
conformance, ii) ontological conformance, and iii) evolution.

3.1 Checking Linguistic Conformance

As shown in Fig. 1, the example spans across two linguistic levels: L1 and L2. All
model elements, regardless of the ontological level they reside on, must conform
to the metamodel defined in L2. In the example, the metamodel to which all
model elements at L1 must conform is that of the clabject modeling paradigm.
Therefore, at L1 it must be checked whether model elements are syntactically
correct and whether they obey clabject semantics. For example, a syntactic con-
sistency rule would be that every model element (e.g., the clabject Dog) must
have a name and a potency assigned. This potency must be reduced by 1 with
every instantiation (e.g., the clabject Dog must have a potency of 2 because it
is an instance of PetType, which has a potency of 3)—this is an example for
a consistency rule checking modeling-paradigm-specific semantics. A formaliza-
tion of these syntax and semantics rules that could be checked by a standard
consistency checker, is depicted in Listing 1.1 (lines 1–4). The rule is written in
OCL. However, note that checking semantics is necessary regardless of the used
modeling paradigm; it would also be necessary if, for instance, the example was
modeled with powertypes [1].

3.2 Checking Ontological Conformance

The second dimension we discuss is that of ontological conformance. In partic-
ular, this dimension has three major areas of interests: level-specific syntax and
semantics, weak typing, and the handling of advanced modeling concepts such
as inheritance.
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1 context Clab jec t inv :
2 s e l f . name<>nu l l and
3 s e l f . potency<>nu l l and
4 s e l f . potency = type . potency−1;
5
6 context PetType inv : s e l f . ReqSki l l >=0 and s e l f . ReqSki l l <=10;
7 context Dog inv : s e l f . ReqSki l l >=5;
8 context Cat inv : s e l f . ReqSki l l >=3;
9 context MediumDog inv : s e l f . ReqSki l l >=7;

Listing 1.1: Consistency Rules for Linguistic and Ontological Conformance.

Level-specific Syntax and Semantics. This involves checking whether a
model at a given ontological level is semantically and syntactically conforming
to its ontological metamodel (i.e., to its parent ontological level). Since domain-
specific syntax rules do not differ significantly from linguistic syntax rules (e.g.,
lines 1–4 of Listing 1.1), we omit a detailed discussion here for space reasons. An
example for domain-specific semantics could be the field ReqSkill, originally
defined in PetType at level O1, which must remain within a range of 0–10. A
value of 0 indicates that the animal does not need any care at all and 10 indicates
that the animal requires extensive care on a daily basis. A corresponding OCL
consistency rule is shown in 1.1 (line 6). It must be ensured that all model
elements at level O3 have an appropriate value set.

However, there might be additional semantic rules added at level O2. For
example, the range of skill levels required for handling a dog should be greater
than or equal to 5 because dogs must be walked at least twice a day and they
also tend to adopt undesired behavioral patterns if not handled correctly. For
cats, on the other hand, the required skill level should be no smaller than 3 as
they require, for instance, feeding at a regular basis. The corresponding OCL
consistency rules are shown in Listing 1.1 (lines 7 and 8, respectively).

Moreover, there might be more specific requirements for certain kinds of dogs
and cats. For instance, medium sized dogs may have a minimum skill level of
7 because they are harder to keep under control than small dogs due to their
increased strength compared to small dogs. This is expressed in the rule shown in
Listing 1.1 (line 9). Again, these domain-specific semantics have to be enforced
at level O3.

Therefore, different semantics are defined at different ontological levels. De-
pending on the followed modeling paradigm, it might be possible that each onto-
logical level defines its own semantics, or each level might only refine the seman-
tics defined at the levels above. Either way, it is required that at each ontological
level conformance rules regarding syntax and semantics can be defined—which
is typically not possible with existing consistency checking approaches.

Weak Typing. In multi-level modeling paradigms, type hierarchies across on-
tological levels are usually modeled by using concepts defined in the linguistic
level L2. Typically, references between model elements are used to model in-
stantiations and similar relations. For instance, the type Clabject may have a
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reference instanceof that points to another Clabject and models instantia-
tions. However, similar concepts exist in most—if not all—multi-level modeling
paradigms. In order to write consistency rules for individual ontological levels, it
is necessary to use these references to discover the ontological type of an element.
Unfortunately, consistency checkers often work with linguistic types rather than
with ontological types (i.e., they use runtime type information of objects). Thus,
they are only capable of checking linguistic conformance (e.g., they may only
check instances of Clabject, but not modeled instances of Cat).

Advanced Modeling Concepts. Similar to weak typing, there are advanced
modeling concepts such as inheritance that are typically only handled at the
linguistic level by consistency checkers. For example, above we discussed the
semantics constraint that dogs require a minimum skill level of 5. Indeed, this
should be checked not only for direct instances of Dog, but also for instances of
the defined subtypes MediumDog and SmallDog (i.e., Roxy and Angel). However,
a standard consistency checker would not be able to handle such modeled in-
heritance (similar to modeled instantiation) as it would typically only consider
inheritance at the linguistic level (e.g., if at the level L2 there was a specialization
of Clabject, semantics defined for standard clabjects would also be checked for
instances of the specialized clabjects). Moreover, at different ontological levels
there might be different understandings of inheritance and thus different se-
mantics attached, and at some levels it might be undesired to have available
such modeling concepts at all. Thus, relying on a single understanding of inher-
itance that is defined at the top linguistic level—again, regardless of the actual
paradigm used—is insufficient; it is required to support the explicit definition of
concepts such as inheritance at ontological levels.

3.3 Handling Evolution

The third dimension that must be considered when checking consistency in multi-
level modeling environments is evolution. While handling evolution is also neces-
sary when checking traditional two-level models, multi-level modeling allows for
evolution scenarios that are usually not present in two-level environments. Specif-
ically, these scenarios are: i) dynamic type changes, and ii) dynamic changes of
inheritance-relations. The scenarios can occur in multi-level modeling because of
the weak typing and the flexible handling of concepts such as inheritance that
is used for modeling ontological levels.

Let us consider a change in an inheritance-relation in our pet store example:
the type SmallDog could be modeled as a specialization of MediumDog instead
of Dog by simply changing the target of the inheritance reference. This would
mean that model elements of the type SmallDog at O3 must not only conform
to semantic rules defined for instances of the types Dog and SmallDog, but also
to rules defined for instances of the type MediumDog. Moreover, note that in
multi-level modeling the ontological type of a model element can be changed
quite easily. The ontological type of Angel, for example, could be changed from
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SmallDog to HairyCat by just changing the corresponding reference. This would
mean that of the previously described rules only the allowed range of the required
owner skill level (defined for PetType at level O1) would be applicable to Angel.

Generally, for both change scenarios, syntax and semantics that a model el-
ement must conform to may change (i.e., a changed set of rules must be applied
by a consistency checker). Such changes may be performed quite frequently due
to the low cost and the typical way of how models are constructed by engineers.
Therefore, it is crucial that these changes are handled efficiently—engineers typ-
ically expect modeling tools to immediately provide feedback after changes in a
model have been performed.

3.4 Existing Support for Consistency Checking in Multi-level
Modeling

To date, there exists a variety of consistency checking approaches (e.g., [5–11])—
we now briefly summarize how they support the three dimensions of consistency
checking in multi-level modeling environments. Generally, linguistic conformance
can be checked sufficiently. Some approaches also handle evolution efficiently
(e.g., [5]). However, checking ontological conformance and handling dynamic
changes of types and inheritance at the ontological level is typically not sup-
ported by existing approaches. This is especially the case when requiring user-
definable consistency rules.

4 Consistency Checking in Multi-level Modeling
Environments

To address the issue of missing support for the dimension of ontological con-
formance checking, including the efficient handling of weak typing and dynamic
changes of inheritance, we propose a novel approach to consistency checking
in multi-level modeling environments that relies on a unification of linguistic
and ontological levels. The approach allows for arbitrary and domain-specific
consistency rules to be defined and applied at all modeled levels. It is paradigm-
agnostic, thus supporting any multi-level modeling paradigm.

4.1 Linguistic and Ontological Dimension Unification

The cornerstone of our approach is the unification of ontological and linguistic
levels. This allows a consistency checker to be employed for checking linguistic
and ontological conformance alike. To achieve unification, the multi-level model-
ing paradigm, which is defined at level L2, is transformed to a model at the newly
added ontological level O0. Thus, in our approach all levels of interest are of onto-
logical nature, with the used multi-level modeling paradigm being the top-most
ontological level. The result of this transformation for our running example is
shown in Fig. 2. Again, please note that we use clabjects in the illustration but
any modeling paradigm is supported at O0. For modeling L1 (i.e., O0–O3 in Fig. 2),
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Fig. 2: Paradigm-agnostic Multi-level Modeling Scenario in the DesignSpace.
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Fig. 3: DesignSpace Core Metamodel with Multi-level Consistency Checking.

which differs from L1 in Fig. 1, a new metamodel—called the DesignSpace Core
Metamodel (DSCM)—is used that has been defined specifically for the purpose of
flexible, multi-level modeling with consistency checking. This metamodel, which
is depicted in Fig. 3, is based on a subset (hence “Core”) of the metamodel for
flexible modeling used in our previous work on the DesignSpace [12] modeling
environment that was enhanced with concepts to support multi-level consistency
checking.

The DesignSpace Core Metamodel is sufficiently generic to model arbitrary
data structures using the simple concept of nodes (type Node) that can provide
named properties (type Property). Instantiation is modeled using the reference
type. The modeled instances of a node can be retrieved through the reference
instances. The DSCM can be used to model any multi-level modeling paradigm
at the level O0. In Fig. 2, the running example from Fig. 1 is modeled using
DesignSpace concepts (simplified for readability reasons).
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Note that consistency rules (type Rule), which can be used to check both
syntax and semantics constraints (attribute condition), can be defined for any
node (reference context), regardless of its ontological level. Our approach fol-
lows the principle of incremental consistency checking (e.g., [5]). There is a spe-
cific type (RuleApplication) that is used to model an individual application
of a consistency rule. However, the way how rules are applied in a multi-level
modeling environment differs significantly from two-level modeling approaches.
Moreover, the metamodel must allow for the dynamic definition of (ontological)
metamodel semantics. We will discuss these two aspects next, beginning with
rule application strategies.

4.2 Rule Application Strategies

Applying consistency rules in multi-level models differs significantly from two-
level models. In two-level models, rules are typically defined for a metamodel
element and are then applied for all instances of that element. For example,
a rule defined for the metamodel element Clabject in Fig. 1, such as the one
defined on Listing 1.1, is applied to every single instance; i.e., every element at
level L1. For multi-level modeling, this strategy is no longer sufficient due to the
existence of multiple ontological levels and advanced rule application strategies
are required.

Recall the semantics we discussed in Section 3 and the corresponding con-
sistency rules shown in Listing 1.1 (lines 6–9), where the valid range of required
owner skill levels was defined for different model elements (e.g., PetType at O1
and Dog at O2) and checked at level O3. Because of the used clabject modeling
paradigm, checking rules that are defined at an arbitrary ontological level x at
the level x+ 1 does not make sense—the distance between the ontological level
at which the rule is defined and at which it is applied can vary.

Moreover, note that there may be rules that should be checked not only
at a single level, but at multiple levels—depending on the modeling paradigm.
While the clabject paradigm requires attributes to have actual values assigned
if, and only if, the attribute’s potency is 1, other paradigms may require that
an attribute has a value assigned starting with a certain ontological level y. If
the type containing the attribute is then, for example, refined at level y + 1,
the attribute must still be set, yet it may have a different value assigned. Thus,
the rule should be applied at the levels within the range of [y; y + 1]. Generally,
it should therefore be possible to define for a rule a range of levels at which it
should be checked (i.e., an interval [a; b] where a, b ∈ N+).

Finally, there might be consistency rules that are defined at an ontological
level z and that should be applied at all subsequent levels z + i where i ∈ N+.
Therefore, there should be the possibility of defining rule application ranges such
as [z + 1;∞]. Note that using such ranges semantically makes the ontological
level at which the rule is defined (i.e., z) semantically to a linguistic level. In our
example in Fig. 2, it is possible to check linguistic conformance to the modeling
paradigm by defining consistency rules that express paradigm semantics at level
O0 and using a rule application range of [1;∞].
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Our approach supports all discussed rule application strategies. The strategy
can be choosen for each consistency rule individually, typically depending on the
used modeling paradigm. In the DSCM, rule application strategies are defined
using the type Interval. Similar to cardinalities in UML, using -1 instead of a
positive integer allows the definition of an unbounded interval (e.g., [1;−1]).

4.3 Definition of Metamodel Semantics

As we have discussed above, advanced modeling concepts such as inheritance
may be realized differently at different ontological levels. To support level-specific
semantics, the DSCM included the type MetamodelSemantics. Specifically, for
any node the metamodel semantics can be specified to define which properties are
used to identify the node’s respective super- and subtypes. For example, in Fig. 2
the property super models inheritance at O2. This allows consistency checkers
to use a generic mechanism to dynamically discover metamodel semantics at
any ontological level, and it enables dynamic changes of metamodel semantics
at all times in flexible modeling tools. The latter is also beneficial for supporting
incremental checking of constraints.

4.4 Efficient Evolution Handling

A key feature of multi-level modeling is the flexibility modelers have during mod-
eling. Not only may modeled instances change, but also metamodels may change
at all times. Therefore, it is of crucial importance that dynamic changes (e.g.,
type changes, changes in inheritance hierarchy) are processed efficiently so that
modelers get immediate feedback. The DSCM in Fig. 3 includes the core con-
cepts of incremental consistency checking [5] which were adapted for supporting
multi-level modeling scenarios. In particular, notice the type RuleApplication
which models a specific validation of a consistency rule on a specific instance (the
contextElement) of the validated rule’s context. During such a validation, a
scope is built that contains all elements relevant by any means for the valida-
tion (i.e., any element that was accessed). This scope is used to find affected
rule application whenever evolution takes place. A detailed explanation of the
concept can be found in [5] and we omit a detailed discussion for space reasons.
However, note that—in contrast to standarad consistency checking approaches—
type-hierarchies and metamodel semantics are also Elements that are accessed
dynamically when searching for locations to apply rules or when searching the
rules to be applied to a specific model element. Thus, types and metamodel se-
mantics can be part of rule application scopes. This means that dynamic type
or inheritance hierarchies changes can also be handled efficiently (i.e., it can be
determined easily which rule applications may be affected after such a change).

4.5 Prototype Implementation

A prototype implementation of the approach has been developed that is based on
the DesignSpace [12] modeling framework and an adapted version of the Model/-
Analyzer [5] consistency checker. A preliminary performance analysis suggests
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that required adaptations for multi-level modeling (e.g., rule application mecha-
nism) do not impose performance drawbacks compared to the two-level version of
the consistency checker. However, a detailed analysis of the performance effects
is part of future work.

5 Conclusions and Future Work

In this paper we have discussed the dimensions of consistency checking in multi-
level modeling and outlined a paradigm-agnostic approach that handles these
dimensions and provides the well-known advantages of incremental consistency
with domain-specific, user-definable rules. A prototype implementation of the
approach demonstrated its feasibility. A complete validation of the approach,
including scalability and applicability studies as well as a detailed description
of key algorithms for handling changes unique to multi-level modeling, will be
done in future work.
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Abstract. In this paper, we introduce the Modelverse, a metamodelling
framework and model repository. It clearly distinguishes and supports
physical and linguistic conformance relations and allows for deep charac-
terization and deep instantiation using potency. We introduce language
fragments, which are reusable pieces of a language definition, consisting
of an abstract syntax definition, as well as the definition of concrete syn-
tax, semantics, and a mapping onto physical (representational) concepts,
as suitable concepts for modular language design and reuse. We focus
on multi-level modelling, and use the Modelverse to model a four-level
language hierarchy, demonstrating its deep instantiation and character-
ization capabilities, as well as the use of modelling language fragments.

Keywords: Multi-Level, Modelling Languages, Model-Driven Engineer-
ing

1 Introduction

Model-Driven Engineering (MDE) is a set of notations, methods, tech-
niques and tools for designing, simulating, testing, and ultimately real-
izing so-called Software intensive Systems (SiS). MDE raises the level
of abstraction compared to traditional software development techniques,
which are mainly based on code.
The MDE approach can only be successful if there are tools support-
ing the various processes and methods used to develop these systems.
Central to any modelling activity is the notion of a modelling language,
defining the concepts a modeller can use, what their visual representa-
tion is (their concrete syntax ), and their meaning, or semantics. Various
modelling frameworks have been proposed, of which the Meta Object
Facility (MOF) [1] is one of the most popular, and has been adopted as
the standard by many metamodelling tools. The MOF uses a four-level
language approach, of which two levels are user-accessible (the class and
object level). Several articles have pointed out the limitations of this ap-
proach [2–5]. Most notably, the use of only one conformance dimension
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(an object is an instance of exactly one class), and the fact that only two
levels are user-accessible leads to inconsistencies, as strict metamodelling
is made impossible by conformance links which cross multiple levels, and
an increase in accidental complexity, as modellers have to resort to work-
arounds if they want to model types of types.
We contribute to this ongoing research by introducing a new frame-
work and repository capable of modelling multi-level language hierarchies
called the Modelverse. We also introduce language fragments, which al-
low for modular design of modelling languages. Section 2 provides back-
ground information for the rest of the paper. Section 3 presents the
architecture of the Modelverse. In Section 4, the Modelverse is used to
model a multi-level language hierarchy. Section 5 concludes the paper.

2 Background

In this section, the concepts of deep instantiation and deep characteri-
zation using potency is explained, and we take a look at the current tool
support for multi-level language hierarchies.

2.1 Deep Instantiation and Deep Characterization

Traditional instantiation mechanisms consider only two levels: classes
and their instances, objects. In case a modelling hierarchy requires types
of types to be modelled, this approach falls short. For example, in a
modelling system describing stores, it is necessary to model the types
of objects which can appear in the store: books for a library, DVDs for
a video store, or bread for a bakery. Instances of those types then de-
scribe actual products sold at those stores. It may be useful, however,
to describe properties of products in general, in other words, to make
statements about the type of the product types: for example, we might
want to ensure that each product type has an attribute denoting its
VAT. Current architectures do not have sufficient support for modelling
these kinds of hierarchies, and the proposed solutions (for the MOF) are
merely workarounds, not actual solutions to the inherent issue.
In a deep instantiation approach, a type model element can be instan-
tiated more than one level down [4]. At level 0, the traditional object
level, an element is fully defined, meaning that all of its attributes have
received a value. Closely related is deep characterization: types can make
statements about their indirect instances, two or more levels down in the
modelling hierarchy. This is done through the use of potency. Each (deep)
attribute (and modelling element) receives a potency number, signifying
how many levels down it can be instantiated. Each element both has a
type and an instance facet: an element with potency value 2 is an in-
stance of an element with potency value 3, and is a type for elements with
potency value 1. The top and the bottom level can be seen as exceptions:
they only have a type or an instance facet, respectively. A special case
are models with an undefined potency: for them, the number of levels
down they can be instantiated is not known. For top-level type models,
this is necessary, as the designer of such type models cannot know how
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many levels will be introduced by users below it.
With deep characterization, a product type can ensure that actual in-
stances of products (books, DVDs, bread) have a price, by declaring the
price attribute with a potency value of 2. This can be seen as a constraint
on instances of the product type: they all receive a potency 1 attribute
with name ‘price’, and their instances have to provide a value for it.

2.2 Tool Support

As multi-level modelling is gaining importance, tools supporting multi-
level modelling hierarchies and deep instantiation have been constructed,
of which metaDepth [6], a modelling framework with built-in support for
multi-level modelling, is an important example. The tool has a textual
interface: models are constructed using a Human Usable Textual Nota-
tion (HUTN). metaDepth distinguishes two modelling dimensions: the
linguistic dimension is static, and built into the tool. There is, however,
support for linguistic extensions in the type models defined by modellers:
attributes can be added, and there is support for inheritance on all levels
of the modelling hierarchy. Deep instantiation and deep characterization
are supported in the ontological dimension, with potency.
Melanie [7] is an Eclipse-based tool which allows multi-level modelling hi-
erarchies in the ontological dimension. It allows to define domain-specific
concrete syntax for languages, and as such it differs from the strictly tex-
tual approach of metaDepth. The linguistic dimension, however, is static
and predefined, as is the case for metaDepth.
There is a need for a tool which allows language designers to define
multi-level modelling language hierarchies, i.e., to extend the linguistic
dimension. Current tools either fail to distinguish clearly between the
linguistic and physical (representational) type of model elements, or do
not allow such extensions at all.

3 The Modelverse: Overview

In this section, we describe the architectural choices for the Modelverse,
and how it supports multi-level modelling hierarchies. Languages are cen-
tral concepts in the Modelverse: we explain how a language is modelled
by a type model, and how we consistently adhere to the strict meta-
modelling approach, where each element of a model is an instance of
an element in a type model, as well as the deep instantiation and deep
characterization principles.

3.1 Architecure of the Modelverse

The Modelverse is a repository or database of models. The Modelverse
stores any modelling artefact, including, but not limited to, type mod-
els, concrete syntax models, and rule-based model transformations. It
is accessible through an interface, which exposes an Application Pro-
gramming Interface (API). This API includes methods for Create, Read,
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Update and Delete (CRUD) operations, as well as conformance checking,
and the ability to execute models (such as constraint or action code). The
API ensures a uniform, standardized access to the Modelverse, captur-
ing all allowed operations. It will be referred to as the Modelverse Kernel
(MvK) from now on. A user interacts with the Modelverse through the
API exposed by the Modelverse. This user needs not be a human inter-
acting through code with the API of the MvK: it can be a front-end,
allowing a more user-friendly use of the Modelverse. A few examples of
front-ends include a visual front-end, such as AToMPM [8], a human-
usable textual notation, or any (formalism-specific) simulator, that in-
teracts with the Modelverse to simulate the model.
Modelling languages are defined by a linguistic type model, which de-
fines the concepts of the language and the valid ways in which they
can be instantiated. A modeller, when performing a CRUD operation,
always has to specify which linguistic type the element is an instance
of. To make this possible, the Modelverse includes a number of built-in,
predefined, type models used for modelling language engineering, model
transformation, metamodelling, and model management.

M LTM

PTM

In-Memory
Objects

RelDB Cloud RDF

Representation

Physical

Logical

Representers

Mappers

ModelverseMvKUser

request

result

Fig. 1. The framework on which the development of the Modelverse is based.

To introduce the architecture of the Modelverse, Figure 1 shows the
framework on which its development is based. There are two orthogonal
dimensions: the logical and the physical, introduced in [4]. The logical
level encompasses linguistic and ontological classification, but for the re-
mainder of the paper, we only consider linguistic classification. In the
figure, the central entity is a model M. It conforms linguistically to a
linguistic type model LTM. In the physical dimension, one type model
is defined. It defines the concepts the Modelverse needs to know about
in order to function: clabjects, attributes, associations, primitive data
types, action language, and so forth. It acts both as a type model (to
which all models in the Modelverse conform), and an interface definition
for the implementation, which defines the representation on a physical
medium, of those structures. Although the Modelverse can be seen as a
database of models, the representation of those models on physical me-
dia, such as a relational database or in-memory objects, is not known to
the user. This knowledge is not necessary because of the uniform access
through the MvK, as model management operations are performed on
instances of the physical type model. The representation of physical type
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model elements onto physical media is catered for by representers, one
for each physical medium. For example, the default representer maps
physical type model elements onto in-memory Python objects. Alterna-
tive representers would do the same for relational databases, RDF triple
stores, and others.
With this level of indirection, we make sure that this representation only
has to be defined once: we know how to represent physical type model
elements, which means we can represent any linguistic concept in the
Modelverse, as all elements by construction conform to the physical type
model. To ensure this conformance relation is maintained at all times,
physical mappers map linguistic elements onto physical elements. In these
mappers, it is possible for a language engineer to encode custom instan-
tiation policies. For the built-in formalisms, such as a Class Diagrams
formalism, these policies are predefined.
Any element in the logical dimension can take the role of the model
M — indeed, everything in the Modelverse is a model, and all models
have a type model. This has certain benefits, one being the support for
explicitly modelled model transformations [9] — often called the heart
and soul of MDE [10]. If every model conforms to exactly one linguis-
tic type model, it is possible to generate (automatically) transformation
languages for each language, and transform every model using the same
technique, which means higher-order transformations are enabled by de-
fault. A second important advantage of this approach is the ability to de-
fine a semantic mapping function. This function maps language elements
onto concepts in a domain with known semantics, for example Petrinets
[11]. This mapping needs to be unique, which can only be achieved when
it is defined in the linguistic dimension — ontologies, for example, clas-
sify multiple models in different languages, and as such, have no unique
semantic mapping.

P1

Constraint

Statement

State Transition
S2T

T2S

Class Association Composition

L1

L2L. (FRAGMENT)

Constraint

Statement

Physical

Mapping MERGE

Fig. 2. An example of a modelling language fragment.

3.2 Modular Language Design

In recent literature, reuse and abstraction for modelling languages has
received some attention. In [12], the authors explore a template-based ap-
proach for designing languages with similar characteristics. A language
designer, however, might also want to add existing capabilities to a mod-
elling language. An example is the action code used in Statechart tran-
sitions: while it is possible to define an action language from scratch and
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include it in the type model of the Statechart language, chances are that
an already existing formalism also has this feature.
A language designer needs to be able to reuse these modelling language
concepts: ultimately, a tool can provide a library of reusable language
fragments, which can be merged into the linguistic type model of any
modelling language. Languages are more than abstract syntax alone,
which describes the concepts of the language and the valid ways in which
they can be combined. A language or formalism has one or more con-
crete syntax definition(s), a mapping of its concepts to the physical type
model, a definition of its semantics, and a definition of the behaviour
of its modelling environment. A modelling language fragment has to in-
clude these concepts, such that they can be reused when merging the
fragment into a language definition. For now, we focus on the linguistic
definition of the fragment, as well as the mapping of its concepts to the
physical type model.
Figure 2 shows an example of such a fragment. The fragment contains the
definition of a constraint, which contains a number of statements. These
linguistic concepts are mapped onto physical entities that are predefined
in the Modelverse. The most obvious mapping is to the concepts shown
in the figure, as they have the expected semantics. Merging the fragment
results in the Statement and Constraint concepts to be added to the
Statecharts type model. Flexibility is achieved by leaving the potency
value of a fragment undefined (denoted by L.), as well as the linguistic
type of its elements: they are specified when merging the fragment with
the linguistic type model.
Using this mechanism allows a language designer to modularly build
modelling languages, and reuse concepts that are already defined. We
envision this approach as an answer to the observation that 1) some
concepts or structures of modelling languages are naturally reusable,
including their concrete syntax and physical mapping, and 2) these con-
cepts need to be linguistically available at the level of the type model,
i.e., instead of being part of all type models by default. In Section 4, we
demonstrate how fragments may be used, by showing how, in a multi-
level modelling hierarchy, new attributes can be introduced at any level.

4 Case Study

In this section, we model a multi-level language hierarchy in the Model-
verse. The purpose of this section is to show the capabilities of the Mod-
elverse, and the MvK, with respect to multi-level modelling. We focus on
a linguistic hierarchy, with deep instantiation and deep characterization
using potency.

4.1 A Visual Notation

In Figure 3, the example modelling hierarchy is visually represented. A
model is represented by a coloured rectangle, where higher-level models
are darker. All nodes of a model are represented by a rectangle (there
is no language-specific concrete syntax). The name of an abstract class
is shown in italics. Potency, if declared, is shown after the ‘@’ sign. An
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Fig. 3. The example modelling hierarchy.

undefined potency (meaning the element can be instantiated an unde-
fined number of times) is denoted by an asterisk. The default potency
value for Clabjects and models is undefined, for attributes it is 1. Confor-
mance relations are shown for linguistic and physical conformance. Only
a subset of the relations is shown, to avoid cluttering the figure.

4.2 Physical Representation

The physical dimension in the figure contains a relevant part of the phys-
ical type model, which is the built-in (static) type model of the Mod-
elverse. Each element in the linguistic dimension is mapped onto these
concepts.
At the top of the hierarchy, a language called MultiDiagrams is modelled.
It can model classes, attributes, and associations, and allows potency to
be specified. The Attribute class is special: the mapper for the MultiDi-
agrams formalism specifies that it is mapped onto the physical Attribute
class, instead of the physical Clabject class, which is the default. Note
also the id field attribute of Class. The Modelverse uses a dot-separated
notation to refer to elements, and elements are referred to by their name
(for example, to refer to the Class concept, one would use MultiDia-
grams.Class). The id field attributes is used one level down to identify
for each instance of Class what the identifying attribute will be. The
physical mapper then maps this attribute onto the physical name at-
tribute. In our notation, identifying fields are followed with {id}.
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1 package MyFormalisms:

Model:

name = ’Store ’

potency = 2

6 Class:

name = ’Element ’

potency = *

is_abstract = True

id_field = ’id’

11

Attribute:

name = ’id’

type = String

16 Attribute:

name = ’id_field ’

type = String

Class:

21 name = ’Product ’

Attribute:

name = ’VAT ’

type = Float

26 potency = 1

Attribute:

name = ’price ’

type = Float

Listing 1. Tex-

tual notation for

Model Store

Attribute:

name = ’discount ’

type = Float

5 Inherits:

name = ’product_i_element ’

from_clabject = ’Product ’

to_clabject = ’Element ’

10 Class:

name = ’Creator ’

Attribute:

name = ’name ’

15 type = String

Inherits:

name = ’creator_i_element ’

from_clabject = ’Creator ’

20 to_clabject = ’Element ’

Association:

name = ’created ’

25 Attribute:

name = ’year ’

type = Integer

Inherits:

30 name = ’created_i_element ’

from_clabject = ’created ’

to_clabject = ’Element ’

1

package MyFormalisms:

Store:

3 name = ’Library ’

potency = 1

Product:

name = ’Book ’

8 id_field = ’id’

VAT = 7

Attribute:

name = ’id’

13 type = String

Attribute:

name = ’title ’

type = String

18

Attribute:

name = ’ISBN ’

type = String

Listing 2. Tex-

tual notation for

Store Library

Creator:

name = ’Writer ’

id_field = ’id’

4

Attribute:

name = ’id’

type = String

9 Attribute:

name = ’website ’

type = String

created:

14 name = ’written ’

id_field = ’id’

Attribute:

name = ’id’

19 type = String

Attribute:

name = ’publisher ’

type = String

2

package MyFormalisms:

2 Library:

name = ’myLibrary ’

potency = 0

Book:

7 id = ’internet_playground ’

name = ’The Internet is a Playground ’

price = 12.99

discount = 0

ISBN = ’978 -0980672923 ’

12

Writer:

id = ’david_thorne ’

name = ’David Thorne ’

website = ’http ://www.27 bslash6.com/’

17

Book:

id = ’unpublished_emails ’

name = ’The Unpublished Emails ’

price = 12.44

22 discount = 0.7

ISBN = ’978 -0615615950 ’

Listing 3. Textual notation for

myLibrary

3

On the level below, a type model with potency 2 models a Store lan-
guage. A store consists of Products, and are created by Creators. Certain
attributes of the classes need to be defined on the level below (such as
VAT ), while others are left to be defined two levels down (such as name).
This shows the deep characterization capabilities of the Modelverse.
While some attributes are already declared for the elements of the Store
attribute, it might be that modellers making store instances want to add
other attributes to their instances. While this seems reasonable, and is
shown in the Library formalism below, this feature has to be modelled
explicitly in the Store formalism, and, more importantly, proper seman-
tics have to be given to it in its physical mapper. As can be seen from
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the figure, the linguistic type of Attribute in the Store formalism is Mul-
tiDiagrams.Class. Its physical mapper, though, maps it onto the physical
Attribute class. In this way, instances created of this class are seen as at-
tributes of physical Attributes by the Modelverse, but at the same time,
they are seen as linguistic instances of Class, which means they can, for
example, be matched as such in transformation rules. This is an example
of a language fragment, as explained in Section 3.2, although the merging
is currently done manually. Another example is the id field attribute.
The Library formalism has one specific product: books, which are cre-
ated by writers. Any attributes introduced at this level have potency 1.
Both classes have an attribute id as their identifying attribute (meaning
that it is mapped onto the physical name attribute). The instances of
Library are level-0 models, meaning they are fully defined: all attributes
have values, and their potency level has decreased to 0.

4.3 A Textual Representation: the HUTN

Finally, we show in Listings 1, 2, and 3 what the example shown in Fig-
ure 3 looks like in the HUTN syntax, which is a possible front-end for the
Modelverse. In Listing 1, the keywords ‘package’, ‘Model’, ‘Class’, ‘At-
tribute’, ‘Inherits’ and ‘Association’ are highlighted. Only ‘package’ is a
reserved word in the HUTN, while the others are defined using an alias
mechanism which refers to model elements belonging to the above men-
tioned ‘MultiDiagrams’ protected formalism. The model ‘Store’ defined
in Listing 1 is a type model for the ‘Library’ model shown in Listing 2,
which in turn is used as a type model for the ‘myLibrary’ model shown
in Listing 3.
The verbosity of the HUTN is due to a rather conscious design choice
for the concrete syntax: the main objective is to enable the modellers to
seamlessly navigate between different modelling levels while maintaining
the same concrete syntax look-and-feel.

5 Conclusions and Future Work

In this paper, we have introduced the Modelverse, a metamodelling
framework which allows for multi-level linguistic modelling hierarchies,
as well as modular language design. We have demonstrated its use with
a representative case: a four-level modelling hierarchy for stores. We
showed its use as a language workbench, allowing the definition of multi-
level linguistic modelling hierarchies, which to our best knowledge, no
other tool is capable of. We demonstrated the concept of “physical map-
pers” which allows to define custom instantiation policies. This allows to
replace, for example, the top-level linguistic type model, which in most
tools is static. In the example case we defined a type model for multi-level
language hierarchies called MultiDiagrams, but it would be possible to
replace this by a type model for modelling two-level language hierarchies.
In the future, we will continue enhancing the capabilities of the Model-
verse, including:
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– Introducing the ability to define ontological type models, and an on-
tological conformance check, which checks properties in the semantic
domain of the model.

– Continue the work on language fragments, including the automation
of the merge operation, and a definition of a library of fragments.

– The addition of representations on different physical media, to scale
the Modelverse to a distributed environment.
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Abstract. Model-driven approaches to establishing interoperability be-
tween information systems have recently embraced meta-modelling frame-
works spanning multiple levels. However, no consensus has yet been
established as to which techniques adequately support situations where
heterogeneous domain-specific models must be linked within a common
modelling approach. We introduce modelling primitives that support
the multilevel modelling paradigm for information integration in het-
erogeneous information systems. We extend standard specialisation and
instantiation mechanisms to enable the propagation of semantic and
schema information across model levels and compare our approach us-
ing a suite of criteria to show that our approach improves modularity,
redundancy, query complexity, and level stratification.

1 Introduction

The core idea of conceptual modelling since the ER-Model [1] is the notion of
defining a particular language that can be used to effectively construct concise and
clear domain models. Carrying over conceptual model characteristics into object-
oriented software models (such as UML), led to rich design methods including
meta-modelling frameworks: models that can define the languages used to produce
the actual conceptual and design models for information systems. For example,
Atkinson and Kühne [2] analyse the way in which design/product relationships
cause inconsistencies with the fixed meta-model hierarchy of the UML standard.
However, advanced application domains, such as those requiring the in-depth
modelling of products, e.g. engineering standards, online catalogues, reference data
libraries, continue to present a particular challenge to meta-modelling frameworks.
This is further exacerbated when investigating appropriate multilevel modelling
abstractions suitable for applications in an interoperability setting.

In this paper we discuss the multi-level modelling extensions that we believe
will enable automated, model-driven transformation of data between two of the
major data standards in the Oil & Gas industry [3,4]. A key concern is the
notion that the same component in a real system can be subject to multiple
classifications. This is to allow a multi-dimensional view of the modelled data,
from recording specific technical solutions and constraints to be used for technical
access as well as to serve business/ERP requirements.

The contribution of this paper is a set of modelling extensions to overcome
limitations of existing approaches, such as the “heterogeneous level” issue of [5].
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Fig. 1: Product catalogue modelled in plain UML, using generalisation, instantia-
tion and aggregation (adapted from [5])

2 Motivating Example and Multi-Level Modelling

There are several important aspects and complexities to the domain that need
to be modelled. We identify three levels of data: business level, specification
level, and physical entity level. Firstly, both designs and the physical entities of
a product catalogue must be represented and have their own life-cycles which
forms the physical entity level. Secondly, a second level of classification provides
the specifications of the physical entities. Thirdly, a third level of classification, or
categorisation, must be imposed on the designs. This third level of classification
also consists of complex taxonomies relevant from the business/ERP perspective.
The modelling approaches taken by established related standards demand a
flexible approach to support mappings and model transformations between them.

A UML-based approach to modelling this situation is shown in Figure 1, in
which ProductCatalogue, ProductCategory, ProductModel, and ProductPhysicalEntity
are modelled as an abstraction hierarchy using aggregation. Specialisation is used
to distinguish categories (i.e. business classifications), models (i.e. designs), and
physical entities of pumps and motors.

Modelling complex domains using UML suffers from what Henderson-Sellers
et al. describe as enactment (see [6]). Moreover, the model in Figure 1 contains a
number of redundant classes as discussed in [5,7]; the misuse of the aggregation
relationship to represent a membership and/or classification relation; and the
result that the physical entities are not intuitively instances of their product
models, but rather are part-of their models. Basically, a domain model that seems
to naturally have multiple levels of classification is forced into a 2-level modelling
framework so that all aspects of the product data exist at the instance level. In
an attempt to resolve such issues, multi-level modelling (MLM) techniques have
been developed.

94



(a) (b)

Fig. 2: Deep Instantiation (a) and Power Type (b) models of a product catalogue

The concept of potency [7] was originally introduced for Deep Instantiation
(DI) to support the transfer of information across more than one level of instanti-
ation. DI introduced the concept of ontological instantiation, which is a domain
specific instantiation relationship (different from standard linguistic instantiation
in UML meta-modelling).

Using DI techniques, which works within the boundaries of strict meta-
modelling, invariably results in relationships (other than instantiation) crossing
level boundaries, which is not permitted under strict meta-modelling. For ex-
ample in Figure 2a, if the attributes temp2 and maxTemp1 were modelled as
associations to values of the type DegreeCelsius (rather than just integers that
must be interpreted as such), no matter at what level DegreeCelsius is placed
it would result in an association crossing a level boundary at some point [8].
Moreover, if an additional level of instantiation was introduced into a DI-based
model, global changes to the potency values of all concepts in the model (as
opposed to just the subhierarchy directly affected) are required.

The concept of power types [9] has also been applied in the context of
MLM frameworks [10]. Basically, for a power type t of another type u, the
instances of t must be subtypes of u. In contrast to potency, power types do not
necessarily provide deep instantiation semantics; they provide semantics closer
to the conceptual situation being represented by clearly identifying the concepts
involved, their relationships, and their properties.

For example, Figure 2b shows one instance of the Power Type pattern, where
type and instance facets of a concept are depicted within the ellipse. The power
type Pump Model for the type Pump is displayed; the concept ProductCategory
would be represented as cascading uses of the power type pattern.

M-objects (multi-level objects) and m-relationships (multi-level relationships)
were introduced in [11] along with the concretization relation which stratifies
objects and relationships into multiple levels of abstraction. The m-objects
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Fig. 3: Product catalogue example modelled in our framework

technique allows for the encapsulation of the different levels that relate to a
specific domain concept in the m-object representing that concept. Furthermore,
it combines the different abstraction hierarchies for specialisation, instantiation,
and aggregation into a single concretization hierarchy. As such, the example
situation would be modelled with a top-level concept ProductCatalogue containing
the definition of its levels of abstraction: category, model, and physical entity.
The lower levels would then include objects for the different PumpCategories,
PumpModels, and PhysicalPumps, respectively.

While the m-objects technique produces concise models with a minimum
number of relations, they hide complex semantics. This can lead to difficulties in
interpreting the models as the concretization relation between two m-objects (or
two m-relationships) must be interpreted in a multi-faceted way.

3 Modelling Extensions to Support Multilevel Modelling

Recently, the notion that every part of an object model is an object (embraced in
certain OO programming and conceptual modelling [2] approaches) has regained
popularity [8,6]. We follow this approach and treat all model elements as objects
that can include both type and instance facets.

The MLM approaches summarised in the previous section place the emphasis
on a clear and consistent layering of the levels in the model. However, when applied
to ontological instantiation in information modelling for systems interoperability,
the level construct actually becomes an artefact of the modelling outcome. Domain
engineers do not think in levels; they work in terms of semantic relationships, and
there can be arbitrary many levels for each of them. Capturing these in terms
of potency is useful if the originating models are available for reorganisation
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according to the strictness criterion and if solid estimates exist on the expected
number of levels that future developers may want to add in a particular domain.
In the interoperability space this is generally not the case. We will now examine
the specific relationships used in our framework.

3.1 Instantiation vs. specialisation relationship

In MLM, the existence of two basic relationship types for increasing specificity is
commonly assumed: (1) instantiation which can be broadly defined by the confor-
mance of instances to types in which specificity is increased by assigning distinct
values to attributes (if they exist); and (2) specialisation (or generalisation),
which makes a concept more specific by including finer distinction (based on the
Liskov Substitution Principle (LSP) [12]). Intuitively our modelling extensions
are compatible with the intuition of the LSP, however formal proof to verify such
a claim is left for future work.

Viewed in terms of increasing specificity it becomes obvious that what we
have generally referred to as specificity, and what MLM approaches measure by
potency, actually represents two different conceptual relations: One is the reference
of a specification to the specified item. This captures the powertype aspect of
the relationship and is also at the core of the materialization relationship in the
conceptual modelling literature. The other is the definition of the vocabulary
used in the specification. It should be clear that this distinction is of fundamental
importance for interoperability mappings, since they rely on being able to treat
the specification of a system separately from its runtime state.

We characterise specialisation relationships along the lines of [13] to distin-
guish a relationship that extends a class (by adding attributes, associations, or
behaviour) from one that refines a class (by adding granularity to the description).
We call a specialisation relationship that extends the parent class a Specialisation
by Extension (SbE) and adopt standard monotonic specialisation semantics. As
such it can include but does not necessitate refinement. Most importantly, this
form of specialisation introduces a new model level (as opposed to standard
meta-modelling and MLM techniques where modelling levels are fixed a priori).

In contrast, a specialisation relationship that only refines the parent class
is called Specialisation by Refinement (SpecR), which allows the introduction
of subtypes that restrict the domain of the specialised class (e.g., by restricting
the domains of properties and associations, or adding domain constraints on
properties) but without introducing additional model levels. This allows for an
arbitrary number of subtypes that simply refine the level of granularity.

We characterise instantiation as either Instantiation with Extension (InstX)
or Standard Instantiation (InstN). Both forms of instantiation introduce addi-
tional model levels; however, standard instantiation means that all attributes of
the type being instantiated must be assigned a value from their domain, while
InstX allows for additional attributes, behaviour, etc. to be added to the concept
that can then be instantiated or inherited further to lower model levels.

The Subset by Specification (SbS) relationship represents the existence of a
class of specification construct that identifies particular subtypes of another type.
The specification (for example EquipmentModel) exists at the same level as the
type it refers to, because the specification can only refer to properties of that
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type (and not to properties of individual subtypes). It is, however, possible to
define subtypes of this type of specification to reference particular properties (so
EquipmentModel can be specialised to PumpModel which can refer to properties
of Pumps). Together with InstX, this relationship can be used to construct
the powertype pattern [9]. In Figure 3, PumpModel could be modelled as the
powertype of EquipmentModel since it specialises EquipmentModel and the instance
of PumpModel, i.e. C12KerosenePump, is an indirect subtype (by extension) of
Equipment.

Different to UML associations, most conceptual models permit general associ-
ations that represent domain specific relationships. We identify two particular
such associations. The first we call Member. In contrast to the instantiation
relation which it otherwise resembles, member does not have any constraints
on the assignment of values to attributes as it is purely a basic set membership
relation. However, this does not preclude the specification of membership criteria,
or constraints, for allowing or disallowing the possible members of a set. Member
does require the existence of a “primary” instantiation relation. The second such
association is Specification by Enumeration SbE, which represents a relationship
between concepts A and B that describes how the extensions of the sets of entities
that they represent are related. Specifically, it means that the members of A
are instances of B. These relations permit us to emulate multiple inheritance
by establishing statements about categories, without defining the attributes or
associations of the included object or the category itself.

Below we present the formal properties of our model. The first argument
denotes the instance or specialised concept, whereas the second argument repre-
sents the type or general concept. Relations Member and SbE are jointly used to
specify a classification scheme that subdivides the instances of a concept. Model
elements are organised in levels numbered such that the type-level number is
one less than the instance-level. Function level returns the level number of each
element. Each element is described by a set of typed attributes, some of which
may have assigned values, and a constraint expression stating necessary properties
of the object’s instances. Function attr maps each object to a set of attribute
names, function type associates a data type to each object-attribute pair, and
partial function val returns the value associated with a given object-attribute
pair (if one has been assigned). We implicitly assume that primitive data types
and their possible values are implicitly modelled as concepts and instances, re-
spectively. Function desc maps each concept to a constraint expression capturing
the properties that all instances of the object must satisfy, and names returns
the attribute labels used in said description.

Domains:
O Set of objects L Set of attribute labels
N Natural numbers S Constraint language over attributes in L

Functions:
level : O 7→ N The level at which an object is defined (zero is top level)
attr : O 7→ 2L The set of attribute labels for an object
type : O × L 7→ O The type of an attribute of an object
val : O × L 7→ O The value of an attribute of an object
desc : O 7→ S Constraint expression instances of an object must satisfy
names : S 7→ 2L The attribute labels used in a constraint expression
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Relations:
InstN ⊆ O ×O InstN(x, c): x is an instance of c
InstX ⊆ O ×O InstX(x, c): x is an instance-with-extension of c
SpecR ⊆ O ×O SpecR(c, c′): c is a specialisation-by-refinement of c′

SpecX ⊆ O ×O SpecX(c, c′): c is a specialisation-by-extension of c′

Member ⊆ O ×O Member(x, c): x is in a Member relation with c
SbE ⊆ O ×O SbE(c, c′): c is a Specification-by-Enumeration of c′

SbS ⊆ O ×O SbS(c, c′): c is a Subset-by-Specification of c′

We use (ρ∗) ρ+ to denote the (reflexive-)transitive closure of relation ρ.

Definitions
The Spec relation generalises the two forms of specialisation

Spec(c, c′)↔ (SpecR(c, c′) ∨ SpecX(c, c′))
An object is a leaf iff it has no specialisations Leaf(c)↔ @x : Spec(x, c)
The Inst relation generalises the two forms of instantiation

Inst(x, c)↔ InstN(x, c) ∨ InstX(x, c)
Object x is a general instance of c iff it is instance of or specialises an instance of (a
specialisation of) c

GenInst(x, c)↔ ∃x′∃c′ : Spec∗(x, x′) ∧ Inst(x′, c′) ∧ Spec∗(c′, c)
Axioms for specialisation and instantiation
Inst, Spec, Member are jointly acyclic (Inst ∪ Spec ∪Member)∗(x, c)→ x 6= c
InstN and InstX, SpecR and SpecX are mutually exclusive

InstN(x, c)→ @c′ : InstX(x, c′) InstX(x, c)→ @c′ : InstN(x, c′)
SpecR(x, c)→ @c′ : SpecX(x, c′) SpecX(x, c)→ @c′ : SpecR(x, c′)

Inst, Spec restricted to a unique parent object
ρ(x, c) ∧ ρ(x, c′)→ c = c′ for ρ ∈ {Inst, Spec}

Only leaf objects can be instantiated Inst(x, c)→ Leaf(c)
Level consistent with Inst, Spec

Inst(x, c)→ level(x) = level(c) + 1
SpecR(x, c)→ level(x) = level(c) SpecX(x, c)→ level(c) ≤ level(x)

Axioms for schema consistency
Attribute type must be consistent with level order

a ∈ attr(x) ∧ t = type(x, a)→ level(t) < level(x)
SpecR does not change attribute set SpecR(x, c)→ attr(c) = attr(x)
SpecX extends attribute set SpecX(x, c)→ attr(c) ⊂ attr(x)
Spec may specialise attribute types

Spec(x, c) ∧ a ∈ attr(x) ∩ attr(c) ∧ t = type(x, a) ∧ t′ = type(c, a)→ Spec∗(t, t′)
InstN does not change attribute set InstN(x, c)→ attr(c) = attr(x)
InstX extends attribute set InstX(x, c)→ attr(c) ⊂ attr(x)
Inst does not change attribute type

Inst(x, c) ∧ a ∈ attr(x) ∩ attr(c)→ type(x, a) = type(c, a)
Inst instantiates all attributes of c

Inst(x, c) ∧ a ∈ attr(c) ∧ t = type(x, a)→ ∃v : v = val(x, a) ∧GenInst(v, t)
Axioms for Member and Specification-by-Enumeration
Member relation must be consistent with level order

Member(x, c)→ level(c) < level(x)
Specification-by-Enumeration must be consistent with level order

SbE(c, t)→ level(t) ≤ level(c)
Specification-by-Enumeration classifies general instance of the type

SbE(c, t) ∧Member(x, c)→ GenInst(x, t)

Axioms for Subset-by-Specification
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Subset-by-Specification must be consistent with level order
SbS(c, c′)→ level(c) = level(c′)

Instances of each subset specification must be a specialisation of the partitioned type
SbS(c, c′) ∧ Inst(x, c)→ Spec+(x, c′)

The specification may refer only to the attributes of the partitioned type
SbS(c, c′) ∧ φ = desc(c)→ names(φ) ⊆ attr(c′)

Axioms for Descriptions
Constraints can use only attributes defined in its associated object

φ = desc(c)→ names(φ) ⊆ attr(c)
Constraints must respect the specialisation hierarchy

Spec(c, c′) ∧ φ = desc(c) ∧ φ′ = desc(c′)→ (φ(x)→ φ′(x))
Instances of a object must satisfy its constraint

GenInst(x, c) ∧ φ = desc(c)→ φ(x)
Members in a Member relation must satisfy its classifier’s constraint

Member(x, c) ∧ φ = desc(c)→ φ(x)

4 Comparison of MLM Techniques

A comparison of MLM approaches was performed in [5] based on a number
of criteria from the perspective of reducing accidental complexity; that is, mis-
matches between what is being modelled and the modelling formalism being used.
These criteria are: (1) Compactness, (2) Query Flexibility, (3) Heterogeneous
Level-Hierarchies, and (4) Multiple Relationship-Abstractions. These criteria are
important for modelling the domain in a concise, flexible, and simpler way. How-
ever, they do not cover certain aspects of particular importance to our domain
and application in the OGI Pilot. We consider two additional criteria:

(a) Locality of Attributes & Relationships refers to what model elements
attributes and relationships are defined on. Attributes/relationships are
defined locally if they are defined on the model elements closest to where
they are used. For example, an attribute relevant to product designs should
be situated on the concept ProductModel rather than a related concept such
as Product. This is in contrast to the modularity aspect, which attempts
to minimise the different locations at which attributes and associations are
located; however, it is particularly important in terms of interoperability
as the different domain models exhibit different modelling approaches and
scope, and attributes and associations may not have been grouped together
consistently across the information system ecosystems. Having a flexible
framework that can handle such a situation elegantly is important.

(b) Clarity of Relations’ Semantics is concerned with whether the relations
of the approach have clearly delineated semantics from other relations, or
if they combine the semantics of multiple, commonly understood, relations
together. For example, while a relationship that combines both the semantics
of specialisation and instantiation may simplify the graphical representation of
the model, the confounding of multiple relations in one could cause difficulties
for constructing model transformations. Moreover, a number of issues can
arise if the distinctions between relations are de-emphasised. Weakening the
intrinsic differences between established relations comes at a significant cost
such as “sanity checks regarding the integrity of metamodelling hierarchies
that otherwise would not exist” [14].
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In applying the criteria to our approach we conclude that it:

– is modular as it treats the class and object facets of a concept together
allowing the specification of information regarding a concept in one place;

– allows redundancy-free modelling by using a range of relations that include
various attribute propagation, inheritance, and assignment semantics;

– supports query flexibility through the different relationships and concepts in
a domain model, e.g. different pump models can be accessed by retrieving the
instances of PumpModel, the models in a particular category can be retrieved
by accessing the members of the desired PumpCategory, and the physical
pumps can be accessed through the instances of Pump;

– allows heterogeneous level-hierarchies through its flexible and dynamic nature
of level stratification;

– supports specialisation and instantiation of domain and range of relationships;

While it is a balancing act to not produce too many relations, many of the
relations in our approach are special cases of well known relations, alleviating
possible issues with understandability and adding information of finer granularity.
Moreover, existing domain models could be analysed to identify such distinctions,
improving the identification of model transformations for interoperability.

There are three potency-based approaches in the comparison, the latter two
of which are newly added to the comparison: Deep Instantiation [7], MetaDepth
[15], and Dual-Deep Instantiation (DDI) [8]. MetaDepth allows the specifica-
tion of different views (similar to the modelling spaces proposal of [2]), which
allow for heterogeneous level-hierarchies. DDI extends DI with explicit levels
based on “sort” hierarchies and attributes and associations with 2 potencies
(source and target) rather than the single potency of DI and MetaDepth. DDI
supports query flexibility (i.e. descendents of an object at a particular (sort) level
can be queried in ConceptBase), heterogeneous level-hierarchies and multiple
relationship-abstractions.

All three potency-based techniques can support locality of attributes and
relations; however, it comes at the cost of not taking advantage of potency, i.e.
restricting the possible potencies to zero or one. Similarly, under this restriction,
standard DI and MetaDepth have clear cut relations, while using higher potency
starts to mix instantiation with specialisation semantics. Finally, DDI more
strongly combines the instantiation and specialisation relations and, hence, does
not support the last criteria at all.

Assessing the power type approach (both simple and extended) with respect to
the new criteria reveals that it supports locally specified attributes and relations.
Whether the approach supports clarity of relation semantics is unclear as it
depends on whether or not the partitions relation is provided with instantiation
semantics [10]. However, the power type approaches only partly support compact-
ness and only the extended power type approach fully supports query-flexibility
while the simple approach only provides partial support. In terms of relationship
abstraction, both approaches require OCL to provide this support.

The application of the additional criteria to m-objects show that the clarity
of relation semantics is low, due to the combination of the relations aggregation,
specialisation, and instantiation. In addition, as the intention of the M-Objects
technique is to encapsulate all of the attributes and relationships of a concept on a
single m-object, it does not support locally specified attributes and relationships.
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5 Conclusion

Effective exchange of information about processes and industrial plants, their
design, construction, operation, and maintenance requires sophisticated informa-
tion modelling and exchange mechanisms that enable the transfer of semantically
meaningful information between a vast pool of heterogeneous information sys-
tems. This need increases with the growing tendency for direct interaction of
information systems from the sensor level to corporate boardroom level. One
way to address this challenge is to provide more powerful means of information
handling, including the definition of proper conceptual models for industry stan-
dards and their use in semantic information management. In this paper we have
described our modelling framework for large scale ecosystem handling and the
extended relationship types that help to succinctly express data models across a
heterogeneous information system ecosystem.
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Abstract. Traditional modeling approaches support a limited set of
instantiation levels (typically one for classes and another adjacent one
for objects). Multi-level modeling approaches on the other hand have no
such limit to the number of levels. As a consequence, an arbitrary number
of levels may be used to define models, and the distinction between class
and instance is redefined.
The paper summarizes the experience gained from applying multi-level
modeling techniques to a real application from the domain of develop-
ment process improvement (DPI). The underlying case study has been
conducted in cooperation with a large automotive supplier. We discuss
the pros and cons of using multi-level modeling techniques and propose
areas that we think would benefit from further research.

1 Introduction

Although problem domains often have a natural structure that spans more than
two logical levels, traditional modeling languages like, for example, MOF [20] or
UML [21] are limited to only two layers. As a consequence, using UML or MOF
to capture such problem domains leads to squeezing several logical levels into
two. This in turn causes accidental complexity [12] that does not originate from
the problem domain itself. Consequently, concepts like powertypes [17], potency
[12], dual classification [11], etc. have been developed to allow for the definition
of an arbitrary set of classification levels.

This paper reports on experience with defining and using deep models in an
industrial case study. It is organized as follows: Sec. 2 presents the case study’s
problem statement. Sec. 3 describes our experiences with using deep modeling
techniques. Sec. 4 discusses related work. We conclude with a list of research
areas that could improve the applicability of multi-level modeling.

2 Problem Statement

Most companies working in the automotive domain need to use development pro-
cesses (DP) that comply with requirements defined by quality standards (QS)
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like CMMI [14] or ISO 26262 [18]. Company specific standards or laws enforced
by governments may pose additional requirements. Moreover, those companies
often have to provide evidence that their DP complies with all requirements, for
example, due to economic reasons (precondition of contracts) or legal consider-
ations (product liability). Hence, there is a strong need to collect this evidence
information in a systematic way.

The basic approach is straightforward: Just collect and later analyze map-
pings between QS requirements and elements of the DPs. Here is a typical ex-
ample mapping that we illustrate at the bottom of Fig. 1:

– Integrate SW Component is an item (e.g., a Task) defined by the company’s
DP.

– SW Integration and Testing is a QS requirement (e.g., a description of a
phase) that has to be implemented by elements of the company’s DP.

– Mapping connects both elements with the following semantics: The require-
ment SW Integration and Testing is fulfilled by the element Integrate

SW Components.

SW Integration and 
Testing

Mapping

Phase PhaseTaskMapping

Mapping Domain

Mapping Layer

Mapping Type  
Layer

Kernel LayerQSElement DPElementQSDPMapping

DP DomainQS Domain

Task

Integrate SW 
Component

Fig. 1. Organization by responsibility (horizontal) and domain (vertical).

Note that these are items from three different domains. First, items from
the DP domain need to be taken into account. There is no commonly used
standard approach for describing DPs, but typical items found in DPs are Task,
Step, Function or Template. In our case study, we use ARIS [6] to describe the
company’s DP. Second, we capture QS requirements in the QS domain. In
our case, the company’s process has to comply with three QSs simultaneously
(CMMI, Automotive SPICE [13] and ISO 26262). Last, the mapping domain
collects mappings between items of the DP and QS domain.

Fig. 1 also structures the problem into three orthogonal layers:

– The Mapping Layer collects mapping information.
– The Mapping Type Layer defines valid mappings.
– The Kernel Layer provides the foundation with respect to the terminology

used within the DP, QS, and mapping domain.

The natural structure of the problem domain in Fig. 1 does not fit into two
levels. Instead, Fig. 1 shows a scenario that is well suited for deep modeling
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techniques. Below we present such a deep model that we have implemented in
an industrial application.

3 The Case Study

3.1 DeepML in a Nutshell

None of the research papers on concepts and features of deep modeling offers
the flexibility and freedom needed for our case study (for details see Sec. 4). In
general, existing approaches lack

– freedom to combine concepts from several approaches. There is no
common set of deep modeling concepts, that would allow to cherry-pick
suitable concepts from various approaches.

– freedom to omit concepts. Known approaches do not allow to omit con-
cepts that are unnecessary for our solution.

– freedom to experiment with new ideas. None of the approaches we
know of provides means to explore new ideas or to add new concepts.

As we needed this degree of freedom for our case study, we designed the
DeepML language and infrastructure. DeepML supports the usual modeling
concepts like inheritance, primitive data types, and enumerations. Furthermore,
DeepML builds on the idea of dual classification and potency that is unified
in the ontological classification architecture (OCA) [8]. OCA distinguishes be-
tween two kinds of instantiation relationships: The linguistic instantiation
(lio) is a relation between elements of the model (that describes the core lan-
guage capabilities, e.g., attributes, references, etc.) and elements of the problem
domain. Linguistic instantiations therefore are not domain specific. Fig. 2 gives
examples. On the other hand, ontological instantiation (oio) relations capture
domain specific aspects. In Fig. 2, for example, Book is an ontological instance
of ProductType.

Clabject

«lio»

ProductType
taxRate @1
price @2

ProductType @2

taxRate = 7 /@0
price /@1 

Book /@1

price = 27.95 /@0

LordOfTheRings /@0

«lio» «lio»

«oio» «oio»

Potency declaration Value (or slot)
Potency "derived" by ontological 
instantiation (indicated by slash)

Dual classification

Li
n

gu
is

ti
c 

M
o

d
el

O
n

to
lo

gi
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l 
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Underlined means 
potency zero

Fig. 2. DeepML in a Nutshell – Dual Classification.
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Both elements (Book, ProductType) have a property called potency which
is a positive integer value. Every ontological instantiation step decrements the
potency by one. Model elements with a potency zero cannot be further instan-
tiated. Consequently, the element Book has both an instance and a class facet.
This is commonly called a clabject [10]. DeepML clabjects ”derive” the po-
tency in the same way as attributes. To express this inheritance, we use the ”/”
character as in Book/@1.

Due to space restrictions, instead of describing DeepML’s language capabil-
ities in full detail, the next sections highlight some of its key features. We also
compare them to other deep modeling languages in Sec. 4.

3.2 Sample Mapping Scenario from the Case Study

As outlined in Sec. 2, collecting mappings is always done with a specific goal in
mind. For example, in our case study, the DP needs to fulfil the requirements
of a new and emerging QS (ISO 26262). However, the company’s DP already
fulfils a subset of the requirements as defined by the QS CMMI. One strategy
to minimize the effort of gap analysis in such a situation is to map elements
from both QSs onto each other. We consider those ISO 26262 requirements that
we can map to CMMI requirements as already covered by the company’s DP.
ISO26262 requirements that cannot be mapped to CMMI necessitate further
investigation.

The following subsections present parts of our Process Improvement and
Quality Standard Harmonization Model (PIQSH-M), a deep model that under-
lies our mapping management application for the QS-DP-Mapping (Sec. 2) and
QS-QS-Mapping (see below) scenario.

3.3 Ontological Containment

QSs are usually published as large text documents. These documents are typ-
ically organized with a specific ordering structure in mind. For example, each
chapter at a specific level (e.g., ”9.5.6 SW Integration and Testing”) represents
a phase. On its left side, Fig. 3 shows how to model the following clabjects for
capturing QSs in DeepML:

– QSDElement (Quality Standard Domain Element): Base clabject of
all elements that belong to the QS domain.

– QSTM (Quality Standard Type Model): Instances of this clabject are
top level elements of models used for capturing the structure of one QS
(e.g. entities, relations, etc.). An example is the clabject ISO26262/@1.

– QSElement: Instances of QSElements represent non top level elements of
QSs (e.g., clabject Phase/@1).

To capture the relationships between elements of one QS, we introduce ref-
erences. In DeepML, relationships among clabjects are expressed by references
that are always unidirectional and owned by exactly one clabject. They are, thus,
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*
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* PhasePAMapping
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*
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«oio»
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«oio»

:PhasePAMapping
/@0

«oio»

:phases

*

processAreas /@0

*

QS Domain Mapping Domain

{ refAllowed=True; containmentAllowed=False }

QS-Domain Mapping Domain

Elements at kernel layer Elements at mapping type layer Elements at mapping layer

Fig. 3. An extract of the PIQSH-model.

more similar to references in MOF than to association classes in UML. Refer-
ences may participate in classification hierarchies in the same way as clabjects
do. Consequently, the potency of a reference is either directly specified or derived
from a classifying reference. For example, the reference intraQSRelation@2 clas-
sifies the set of relationships (not values) between QS elements. Thus, instances
of this reference, for example ownedPhases:intraQSRelation/@1, express that
ISO 26262 is made up of a set of phases. A slot concept is used to store values and
in DeepML underlined text is used as notation. For example, :ownedPhases/@0
is a slot, and SW Integration and Testing/@0 is owned by :ISO26262/@0.

A similar model structure captures mapping information: Instances of the
clabject Mapping Type Model (MTM) are top level containers of models for speci-
fying meaningful mappings. An example for such a mapping is PhasePAMapping/@1
which links Phases (from ISO26262) and ProcessAreas (from CMMI). Concrete
mappings can then be captured on the mapping layer (e.g., :PhasePAMapping/@0).

Although, references optionally may be containment references, most deep
language specifications ignore this. Instead, DeepML adds an ontological con-
tainment concept because: Firstly, a containment is a common constraint that
should be natively supported. Secondly, and more importantly, a containment
hierarchy reflects the hierarchical structure that the domain expert had in mind.
Finally, persistance layers typically use containments to find the one (or no)
resource to store elements into. An example for a containment reference is
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ownedQSElements@1 (see Fig. 3). Given its definition, QSElements are part of
exactly one QSTM.

3.4 Domain Stacks and Model Organization

One of the key requirements of the PIQSH-M is to support reuse. For example,
other companies or organizational units may need to comply with a different set
of QSs. The basic idea for addressing this problem is to develop a library of com-
monly used QSs that grows over time. Missing QSs can simply be transformed
into deep models and added to that library for later reuse.

When managing such a library, it is important to define what kinds of models
are part of it. Restricting and managing dependencies between models is equally
important. We decided to use the matrix-like organization shown in Fig. 1 as a
guideline because it separates model content with respect to the domain (QS,
Mapping, DP) and to the role (kernel, mapping, and mapping type definition
layer). For example, direct and indirect instances of QSTMs@2 (e.g., CMMI/@1 and
:CMMI/@0, respectively) are models managed by the library.

As explained above, restrictions should apply to the set of permissible re-
lations between models from different domains and layers. DeepML allows the
definition of references without a classifying reference at any level. For exam-
ple, we could define a direct reference between Phase and ProcessArea without
defining the corresponding mapping type. However, such a direct reference would
lead to a direct dependency between ISO26262/@1 and CMMI/@1 — thus break-
ing the intentional decoupling introduced by the mapping layer and leading to
a pollution of model content.

To prevent pollution of this kind, the concept of domain stacks is added to
DeepML, formalizing the separation into domains as illustrated in Fig. 1. Every
clabject may be part of at most one domain stack. For example, all elements on
the left side of Fig. 3 are members of the QS domain stack. References between
elements within the same domain stack are allowed. References to elements of
other domain stacks or to domainless elements are not allowed by default.

The situation is slightly different for members of the DP domain stack (right
side of Fig. 3): They must refer to elements from other domain stacks, but must
not contain them. To express these rules, a relationship between domain stacks
is introduced that specifies which kind of references are allowed. An example is
shown at the top of Fig. 3.

To summarize, by using top level containers, ontological containment and
domain stacks, a clean separation of content is realized that spans multiple levels.
However, a capability for managing mapping projects is still missing.

3.5 A Deep Model for DPI Project Management

With a deep model for organizing items of the QS and DP domains at hand,
the practitioner also needs tool support to actually use this model for creating
and managing mapping information. Let us now demonstrate how the DeepML

108



model serves as a foundation of an application called PIQSH Support Center
(PIQSH-SC) that covers the three main use cases of managing projects in the
DPI domain:

(1) Define Quality Standards: Capture the structure and content of QSs.
(2) Define Mapping Type Models: Define the set of meaningful mappings

between certain combinations of QSs (or QSs and DPs).
(3) Collect Mapping Information: Collect mapping information within a

specific context (e.g. between QSs or between QSs and DPs).

Use case (1) is straightforward. As it is only concerned with creating models,
we do not discuss it any further. Use case (2) involves at least three models,
for example, two QSTMs (e.g., CMMI/@1 and ISO26262/@1) and one MTM (e.g.,
ISO26262CMMI/@1) as shown in Fig. 3. The inter-model relationships can also
be captured in DeepML as the PIQSH Project Management Model (PIQSH-
PMM) and the clabject Model Type Definition Project (MTDProject). With
this clabject, we string together all models in terms of an import relationship.
The resulting model is shown on the left side of Fig. 4.

:impQSMs d2@0

impDPs d2@1

*

mappingModels d2@1

*

mappingTypes @1 *

MappingProject 
@1

QSTM@2

ISO26262 /@1

:ISO26262 /@0

«oio»

«oio»

impQSTMs @1

*

impDPTMs @1

*
mtms @1

*

MTDProject 
@1

QSTM@2

DPTM@2

MTM@2

:MappingProject /@0:CMMI /@0

«oio»

impQSMs d2@1

*

Fig. 4. Deep Model for Project Organization.

Use case (3) requires capturing mapping information. Within use case (2),
MTDProject and the corresponding references had equal potency values, and
both were reduced within an ontological instantiation step. In contrast, in use
case (3) a project needs to store references to models on the mapping layer;
that is, to instances of instances of QSTMs or MTMSs. Since references of this kind
cannot be expressed with DeepML, we enhance references by the concept of
distance.

The distance between two clabjects A and B is defined as the number of
instantiation relationships that need to be traversed in order to reach A when
starting from B. As an example, the distance between QSTM@2 and ISO26262/@0

is 2 (see right side of Fig. 4). The rule for assigning values to a reference depends
on the distance: The distance between the reference’s target type and the value
to be assigned must be equal to the distance of the reference. Fig. 4 shows the
clabject MappingProject and the notation (d<distance>@<potency >) that is
used to specify both distance and potency. As a consequence, the semantics of
the reference impQSMs d2@1 in the context of a concrete mapping management
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project is to store instances of instances of QSTMs. There is an example for
reference values (i.e., instances of MappingProject) shown at the top of Fig. 4.

3.6 DeepML’s Framework Architecture

Fig. 5 gives an architectural overview of our framework. DeepMLCore is the core
language implemented with the Eclipse Modeling Framework (EMF) [2]. On top
of it there is a set of supporting libraries: The DeepML Editor is a generic compo-
nent that provides views and editors for visualizing and modifying DeepML mod-
els from both perspectives, the ontological and the linguistic one. The Epsilon

Adapter is a bridge for using the language family (M2M, M2T, etc.) provided
by the Epsilon framework [3]. The Epsilon Adapter is also used to realize a
bridge to BIRT (Business Intelligence and Reporting Tool) [1]. The PIQSH-SC
in turn uses BIRT for generating reports (e.g., gap analysis).

DeepML Core

EMF

DeepML 
Editor

DeepML Code 
Generation 

Facilities Epsilon 
Adapter

BIRT Adapter

BIRT

PIQSH-SC

Fig. 5. DeepML’s Architecture and Framework.

4 Related Work

The need to define efficient strategies for managing mappings in scenarios as
outlined in Sec. 2 has been identified before, for example, in [16] and [22]. How-
ever, this paper focuses on experience made by using deep modeling techniques.
So we will concentrate on related work in that area of research.

Melanee [4] provides a deep modeling framework with graphical syntax and
editors. It is built on top of EMF and also incorporates ideas from the domain
of ontologies. It therefore supports an additional so-called exploratory mode [9].
In exploratory mode, a reasoning engine establishes ontological instantiation
relationships. However, our goal was to use a deep modeling language with a
minimal set of language constructs that is optimized for building models in
a constructive way, that is, by using explicit instantiation relationships. Also,
Melanee does not define a concept similar to domain stacks for managing model
partitioning. There is also no concept available in Melanee for realizing layer
spanning references as defined in Sec. 3. However, some framework capabilities
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like for example emendation support [7] are neither provided by DeepML nor by
any other deep modeling framework we are aware of.

Another deep modeling language is MetaDepth [5]. MetaDepth provides a
convenient textual syntax for creating deep models and has some unique lan-
guage features, for example, the *-potency. A clabject with a star potency has
an unlimited potency. With each instantiation step, that potency may either
remain unlimited or a concrete potency value may be assigned. Yet, MetaDepth
lacks support for ontological containment and domain stacks that greatly sim-
plified the architecture needed for our case study 3.

5 Conclusion and Future Work

In this paper we report on our experience gained by applying deep modeling
techniques to a real life industrial use case. The corresponding application has
been successfully used by our industrial partner for approximately one year, and
we are currently discussing further extensions. The underlying deep model is very
well suited for this kind of problem: The concept of layers and stacks provides
a clean separation of concerns, and the model is very flexible. We continue to
develop both, the application and the DeepML framework, mainly focussing on
the following topics:

First, one of the main problems with traditional programming languages,
such as Java, is, that they only support two levels of instantiation (class and
object). We are currently investigating solutions to this problem either by using
appropriate patterns to emulate multiple levels or by enhancing the program-
ming language (like e.g. done in DeepJava [19]). Second, a lot of enhancements
are planned with respect to the infrastructure. For example, diagram based ed-
itors, additional code generators for automatically generating code to ease the
development of user interfaces, and so forth. Third, we are looking for other
domains that might benefit from using deep modeling techniques. A promising
candidate is the domain of variant management in software development and
systems engineering. Fourth, we intend to explore the combination of PIQSH-
M with executable process models such as eSPEM [15]. One possibility is to
introduce a process execution layer below the mapping layer, but limited to the
DP domain. This leads to a four-level model architecture.

To summarize, we think multi-level modeling techniques are very well suited
for the kinds of problem outlined in Sec. 2. However, there remains a lot of
research to be done. For example, we did not find any solutions for handling
model migration in a multi-level aware way. Yet, in our view, the major stumbling
block is the lack of an agreed and publicly available specification of the core
concepts and terminology of multi-level modeling (a standard deep meta model).

Finally, we hope our experience report encourages other people to use deep
modeling techniques — at least in areas similar to the one outlined in Sec. 2.
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Abstract. Enterprise Architecture Management (EAM) is an IT-man-
agement process in which the relationships of business services, applica-
tions and the underlying IT-infrastructure is modeled. With dedicated
EA models, activities such as architectural consolidation, planning and
risk analysis are facilitated. A key factor in modeling and document-
ing enterprise architectures is the the underlying meta-model that en-
ables to capture the information demand of an organization. Current
EA tools provide no or only inflexible mechanisms to create and evolve
such organization-specific meta-models. Therefore we present a novel
modeling framework that has been established from a consulting and
a research project with two data centers. It makes use of both, concepts
from multi-level modeling and classical three-level modeling and sepa-
rates structural and ontological model ingredients. A key aspect of the
presented approach is the separation of modeling tasks across different
stakeholders and modeling levels and the favoring of practical usability
over language feature richness.

1 Introduction

In the context of Enterprise Architecture Management (EAM) and (IT-)systems
operation management, specialized modeling tools are typically used to model
the dependencies between the IT-infrastructure, deployed applications and the
business functions they support [14]. These models are then used to analyze the
current architecture, assess risks and plan changes to it.

In our previous work [7] we showed that keeping such a model in-sync with
reality is a major problem in practice. In line with Schweda [16], we argue that
a key aspect of an organization’s ability to effectively utilize and update the
model, is to create an evolvable organization-specific meta-model that matches
the stakeholders current information demand. In the context of EAM we call
this meta-model the information model (i.e. M1 ).

An information model is defined to only capture organization relevant data
and specifies the architectural patterns that occur in the organization’s business
and IT. However, the proper definition of such a model is hard to achieve in
practice: Typically multiple types of modeling artifacts need to be maintained
and different stakeholders use and adjust them. This poses challenges to both,
the underlying modeling framework itself as well as the user interfaces that

113



manage certain stakeholder groups to only model those parts for which they
have expertise.

In this paper we briefly present the EA and IT-modeling tool Txture1 that,
among other features, is capable of a flexible creation of information models
and the maintenance of instances thereof. The main purpose of Txture is to
support the architecture documentation efforts of stakeholders in an enterprise.
It separates the modeling concerns at different modeling layers via dedicated user
interfaces and thus links the different stakeholder groups to their individual area
of expertise and responsibility. The tool is the result of ongoing consulting and
research work in collaboration with two data centers that helped us to identify
modeling challenges in practice.

A central part of this paper is to show how we tackled modeling challenges
with a combination of a classical three-level modeling approach, a type – instance
based modeling approach and flexible extensions for individual model elements.
The goal of work is to share our experiences from practice and to engage in
discussions with the multi-level modeling research community on our approach
and potential alternative methods.

The remainder of this paper is structured as follows: We first provide general
background information for the Txture-tool. We then continue by presenting IT-
architecture modeling requirements and challenges in Section 3. In Section 4, we
describe how our modeling framework tackles these. Finally, we discuss related
work and end with concluding remarks.

2 Background of the IT-Modeling Tool Txture

In 2011 we started a consulting project with a banking data center and subse-
quently a research project with the data center of a large semiconductor manufac-
turer. The overall goal of both projects was to make IT-infrastructure documen-
tation more efficient and effective. Enhanced usability features and stakeholder-
orientation of the implemented tool were generally considered important. Be-
sides, requirements of common work activities on top of an IT-documentation,
such as flexible visualizations of the architecture for planning and risk analysis,
have been elicited.

The key features of the resulting Txture modeling tool are:

– Dynamic and flexible visualizations of IT-architectures via graphs.
– Configurable import mechanisms to automatically use architectural data

contained in external sources such as in Configuration Management Databases
(CMDB), Excel spreadsheets or relational databases.

– Modeling of the architecture via a form-based web-client to support less
technically skilled users.

– Textual architecture modeling via an information-model aware Eclipse-based
text editor [8].

1 http://www.txture.org
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Fig. 1. The Txture environment showing the architecture browser (left screenshot),
navigable visualizations (top-most) and the ability to view and change the information
model (bottom-most). The tool is fully functional.

– High-performance model queries via optimized persistence of models in a
graph database.

– The ability to define and change the information model at runtime.

In order to exemplify the motivation for such a tool, Figure 1 depicts a
graph-based architecture visualization in Txture. Here, relationships between
application containers, an application and the underlying (clustered) hardware
infrastructure are shown. Such a visualization is used in practice e.g., to perform
impact and risk analysis of application deployments.

Several other key visualization features can be seen in this figure:

– Architectural elements are assigned to configurable layers, hence the visual-
ization automatically shows an intuitive architectural stack.

– The visualization is navigable via a set of traversal, deletion and grouping
operations for depicted documentation nodes (see context menu in Figure 1).

– Nodes are styled based on their type or other attributes, like mission-criticality.

Furthermore, Figure 1 also shows the meta-modeling capabilities for defining
information models via a form-based editor.

In the following section we outline the main modeling challenges that led to
Txture’s underlying modeling framework.
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3 Modeling Challenges

Related work in the domains of IT-systems modeling as well as in the multi-level
modeling community has mostly focused on modeling software systems (refer to
Section 5). Compared to the modeling of software systems, IT-infrastructure
documentation has unique modeling requirements and its very own challenges.
We can summarize the most important challenges as follows:

CH1: Separation of stakeholders defining the information model and the ones
who are actually responsible for documenting IT-systems: Two main modeling
stakeholder groups were determined in both projects: One group consists of Ex-
pert Architects and the other group are Element Responsibles. Expert architects
have an interest in overseeing the entire IT-architecture of a given organiza-
tion. This group of stakeholders usually works together in order to develop the
organization-specific information model that forms the basis for the actual IT-
systems documentation. Architects are not necessarily the persons who docu-
ment the architecture. This is the task of Element Responsibles, who maintain
dedicated parts of the architecture documentation. Opposed to the architects,
they are mostly experts in a very narrow field that revolves around the items
and technologies they work with. Server responsibles are likely to be experts
in very specific types of virtualizations or hardware. Application responsibles,
on the other hand, often only roughly know the hardware their applications are
deployed on. As one can see, distinct user groups perform modeling on differ-
ent levels. This challenge needs to be tackled by a proper IT-documentation tool.

CH2: Documentation and information models both need to be evolvable: In
cases where the general architectural structure of an organization shifts, it be-
comes necessary to adapt the information model (think e.g. introduction of cloud
computing), or an architectural pattern was discovered that can not be docu-
mented with the current information model. These types of changes should be
applicable while the tool is running and without the help of a modeling expert
(i.e. no recompilation, complex configuration and adherence to certain modeling
patterns is required).

CH3: A documentation tool needs to expose familiar terminology and enter-
prise-aligned concepts to stakeholders: Especially in the more technology-related
parts of an architecture documentation, changes occur frequently and require
updates to modeling artifacts. A documentation tool needs to enable stakehold-
ers to quickly re-establish a useful documentation that is in-sync with the real
world and reflects enterprise-specific terminology.

CH4: Documentations need to be extensible according to individual stake-
holder’s documentation requirements: Different stakeholders typically have dif-
ferent documentation demands. We found out e.g. that components which are
central to an IT-architecture are likely to be documented in a more detailed way
than others. Therefore a documentation tool needs to flexibly cater for docu-
mentation intents of stakeholders that are beyond a defined common model.
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Fig. 2. A simple IT-infrastructure documentation model.

4 Modeling Solutions

In this section we further outline the Txture modeling framework, first, by pro-
viding an example model on which we base our discussions and second, by pre-
senting our solution approach to tackle the abovementioned challenges.

The documentation model (i.e. M0 ) in Figure 2 shows instances of IT-system
components that are documented. The specific example describes an application
container instance “JBoss Inst T3” which “runs on” a physical server named
“Server Prod T3”. As we have described in the previous section, such a docu-
mentation model can be used e.g., to perform impact analysis (“What happens
if the specific server crashes?”) or to do infrastructure planning (“Is the specific
server appropriately dimensioned to run such software?”). Additional to model-
ing IT-component instances and their structural dependencies, a simple notion
of ontology can be seen on the right side of the figure. Such ontological classi-
fications are modeled as part of the documentation activity (also on M0 ) and
allow Element responsibles to further describe and categorize their documented
instances.

The descriptive concepts which are available are types and tags. Types are
used to provide a (domain-related) classification of instances and may also define
additional attributes for them. In our example case, the application container
instance is of type “JBoss EAP 6.2.0”. Additionally, a set of tags can be as-
signed to instances and types. They provide a simple means to further classify
elements via keywords. In our example the server type is tagged “Servlet Con-
tainer” to indicate its relatedness to Java servlet technology. The typing and
tagging mechanisms are also used in Txture to allow browsing, search and filter
functionality across the IT-systems documentation.

Figure 3 provides an extended picture of our example model by including its
meta-model hierarchy. On the information model level, the expressiveness of the
underlying documentation model is set. At this level the linguistic structure that
architects agreed upon is modeled. Opposed to this, the ontological structure,
which reflects domain expert knowledge, is modeled as part of the documentation
process. This reflects the separation that is demanded in challenge CH1.

The top-level artifact, the meta-meta model (i.e. M2 ), defines all concepts
that are used in Txture and, in line with requirements of our industry partners,
are needed to properly describe their IT-infrastructures. It defines the concepts
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Fig. 3. The Txture modeling infrastructure. Annotation boxes (black) reflect where
a model element gets instantiated (@IM = Information Model, @Onto = Ontological
model and @DM = Documentation Model).

class, association (i.e. association classes) and property to develop the structure
of an organization-specific architecture modeling language (i.e. the linguistic
model) and the concepts type, tag and mixin that shape the ontological model.

4.1 Classical Hierarchies to separate Modeling Activities

One of the experiences we gained from modeling workshops with our industry
partners is that modeling novices or software developers understand modeling
best when using strict and limited hierarchies in which modeling concepts and
their instantiations are described. In our case the modeling levels that users have
to interact with are manifested by the information model and the documentation
model as its instantiation.

Besides understandability of concepts, having a clear cut between modeling
levels also supports a permission and concern-oriented separation for managing
the IT-documentation and the information model it relies on. This separation is
important as different modeling activities are performed by individual stakehold-
ers with potentially diverse domain expertise. In one of our projects, stakeholder
roles like employees from operations, database administrators, software devel-
opers and also project managers were involved in the documentation process
and a few selected stakeholders of these groups together with the IT-architects
managed the information model.

In our tool the modeling of each level is separated by different user interface
and therefore tackles challenge CH1.
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4.2 Types to mitigate Invasive Information Model Changes

Another experience we made was that adapting the information model is typ-
ically a recurring activity, triggered by frequent change requests from industry
partners and driven by adjustments, extensions and simplifications to modeled
concepts. It is common to any modeling activity, that changes to models may
involve corresponding changes on dependent models, as part of re-establishing
conformance in the model hierarchy. To minimize the efforts and consequences
of such changes, either well-defined automated model refactoring procedures are
required or an information model needs to be realized in a way so that the
most-common changes to it only minimally interfere. For our industry partners
a manual refactoring after information model changes was out of question. This
is why we settled on a modeling pattern similar to the one of power types [15]
that allows for creating types at the documentation model level and therefore
reduces the need to actually adapt the related information model.

Our original modeling approach made heavy use of inheritance on the in-
formation model level. For example we applied a deep inheritance structure to
model different application containers according to their vendor, software ver-
sion or required runtime platform. This rendered the information model both,
large in size (i.e. number of model elements) and prone to frequent changes (e.g.
on software version changes).

Using types greatly helped to reduce the size of the information model and
therefore maintaining comprehensibility and lowering the frequency in which
changes to it needed to be applied. Based on using types, our new modeling ap-
proach consists of only including generic information model elements like physical
server or application container. The goal was to provide basic, but stable mod-
eling concepts that are invariant to an organization. These concepts span the
structure of the model, i.e. the permissible nodes and relations between them.
This reflects the generic structure that all involved stakeholders can relate to.
E.g. no highly-specific vendor-based product terminology is used that would
only be understood by a minority of stakeholders. Accordingly, in our ontologi-
cal model we allow to extend information model elements with the help of types.
Types are part of the documentation model, but reference elements of the in-
formation model. In the example of Figure 2 and 3 JBoss EAP 6.2.0 extends
the meaning of the documented instance JBoss Inst T3 beyond that of being an
application container. While application container can be considered a stable in-
formation model concept, JBoss-specific server software will likely change from
time to time and by our understanding of types can be easily adjusted within the
documentation model. This is in line with Atkinson and Kühne [2], who describe
the need for changes and newly added types that are possible while the system
is running. Our type concept delivers a light-weight way for dynamic additions
and proved to be intuitively usable in IT-infrastructure documentation practice.

In addition to types, we use tags to further categorize documentation model
elements. Tags are comparable to UML stereotypes2 and can be applied to types

2 cf. UML 2.4.1 infrastructure specification, http://www.omg.org/spec/UML/2.4.1/
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and individual instances. In Txture both, type and tag elements are modeled by
element responsibles and as part of the documentation model.

Our intention with types is to reduce the amount of changes on the infor-
mation model, tackling challenge CH2. Using types together with tags as a
means to categorize and describe documented instances contributes a solution
to challenge CH3.

4.3 Multi-level Instantiation to support Dynamic Extensions

With the introduction of types on the documentation model level, we are able to
limit the amount of changes that otherwise are applied to the information model.
While this is beneficial, maintaining an information model of only generic con-
cepts bares issues regarding the expressiveness of the documentation: Generic
information model concepts leave out detail and shift the specification of prop-
erties of documentation elements onto types. Our documentation activities re-
quire that types and instances can be managed by the same stakeholders within
the documentation model. For proper infrastructure documentation, types not
only define properties to be instantiated by their related instances, but need to
specify values for certain properties themselves.

Figure 3 shows that the JBoss-example type defines values for the properties
version and vendor, whereas our example application container defines a text
value reflecting its deployment location to be “Shanghai”. In our exemplary
documentation model we assume this property to be dependent on the actual
type, as e.g., not for all application containers the location is known or relevant
to be documented. Because of this, we needed to realize a property-like concept,
so called mixins [5], that can be instantiated on both, the level of types and
documented instances. This is comparable to the concept of deep instantiation [1]
or that of intrinsic attributes in the MEMO meta-modelling language [10].

The mixin concept aligns well with the flexible nature of our type concept
and allows the documenting stakeholders to adapt the documentation model to
cater their particular documentation needs. With mixins we provide a potential
solution to challenge CH4.

5 Related Work

In the context of EAM it is common that tools provide predefined information
models that can often only be adapted in a very limited way. For example,
the EAM tool iteraplan3 only allows for the extension of existing classes via
attributes. No additional classes or relationships can be added. As shown in
the EAM tool survey by Matthes et al.[14] there exist some configurable tools,
their technical foundation, however, is not clear. Other tools work with fixed
information models based on EA modeling standards such as The Open Group
Architecture Framework [11] or Archimate [13]. We argue that these standards

3 http://www.iteraplan.de/en

120



are inflexible as it is difficult to adapt them to the terminology used in an organi-
zation or to evolve. Schweda presents a sophisticated approach for pattern-based
creation of organization-specific information models [16] and shares our model-
ing requirements in his research. However, other than the scope of our work, its
practical applicability was not shown so far. With the MEMO meta-modeling
language, Frank et al. [10] present a language and a tool suite for building mod-
eling languages in the enterprise context. The tool is Eclipse-based and needs
code generation steps in order to react on a changed information model. The
proposed language for IT-infrastructure modeling, ITML [9], provides fixed con-
cepts and can not support organization-specific information models. In line with
Kattenstroth [12], we conclude that although the need for organization-specific
and evolvable EA information models has been identified in literature [7, 16], re-
lated work mostly focuses on formulating generic and fixed information models
that cannot be adapted to the requirements of a given organization.

In the general modeling research much related literature can be identified.
Still, modeling in this area mainly discusses requirements from software engineer-
ing and does not necessarily consider modeling techniques from other domains.
For Txture we mainly built on top of known modeling paradigms, but unified
them in a novel way to contribute a usable EA documentation method. This
includes ideas from UML stereotypes, power types, the proposed separation of
linguistic and ontological models (and instantiations) [2]. Implementation-wise
we rely on Ecore4, an object-oriented meta-modeling framework with reflective
capabilities and a programming interface for Java, which proved to be stable and
reliable. For persisting models we used a custom hybrid repository approach in-
cluding a relational database together with a graph database for permanent
storage and fast model query capabilities respectively. These technologies were
chosen due to prior experience; another promising alternative to be evaluated for
our use case is MetaDepth [6], a framework for supporint arbitrary numbers of
meta levels and advanced modeling concepts. As we implemented custom form-
based modeling user interfaces to ease the IT documentation for non-modelers,
we were unable to rely solely on UML and its provided graphical notations;
despite many UML concepts are used in our work. Txture also consists of a
number of different editors for different stakeholder groups and purposes (cf.
e.g., the approaches described by Atkinson et al. [3, 4]).

6 Conclusion & Outlook

In this paper we presented the modeling framework Txture that offers a flexible
mechanism to create organization-specific architecture models. In the main sec-
tion we described IT-architecture documentation challenges and presented our
solutions. These solutions are derived from practical experiences from two in-
dustry projects. Based on these experiences we claim that proper architecture
modeling requires a hybrid approach, consisting of a classical meta-model hierar-
chy and multi-level modeling methods. The classical modeling part is important

4 http://www.eclipse.org/modeling/emf/?project=emf
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to make documentation capabilities comprehensible to a wide range of different
stakeholders in an enterprise. Multi-level modeling, like we employ via types and
mixins renders the overall documentation process flexible and extensible. Thus,
many of our design decisions were influenced by the overriding principles of
practical tool usability and intuitiveness. For example, we favored a free tagging
mechanism over type-inheritance.

While we strongly believe that many application domains would benefit
from multi-level modeling concepts, however, corresponding modeling frame-
works that have proven maturity are rare. This is why we built Txture on top of
Ecore, although we needed to heavily deviate from its intended usage (regarding
power types and mixins) to build the here-described framework.

In the future we want to gather additional practical experiences, in order to
further evaluate the flexibility of Txture’s modeling capabilities.
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